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Abstract

The 5th International Planning Competition will be colocated
with ICAPS-06. This IPC edition will contain a track on non-
deterministic and probabilistic planning as the continuation
of the probabilistic track at IPC-4. The non-deterministic
track will evaluate systems for conformant, non-deterministic
and probabilistic planning under different criteria. This doc-
ument describes the general goals of the track, the planning
tasks to be addressed, the representation language and the
evaluation methodology.

Introduction
The 5th International Planning Competition (IPC-5) will be
colocated with the 16th International Conference on Auto-
mated Planning and Scheduling, ICAPS-06, to be held in
The English Lake District, UK, during June 6–10, 2006. The
IPC is a biannual event where planning systems are evalu-
ated across several problems and domains of different diffi-
culty addressing specific planning subtasks. The main goals
of the competition are to assess the current state-of-the-art in
planning, to evaluate and motivate research in the field, and
to identify lines for future research.

The IPC started in 1998 when Drew McDermott and the
comittee organized the first IPC at AIPS-98, and created the
PDDL language. The competition was a big success in the
planning community whose results have had a big impact
on research. Since then, IPC had taken place at AIPS-2000,
organized by Faheim Bacchus, at AIPS-2002, organized by
Derek Long and Maria Fox, and at AIPS-2004, organized by
Stefan Edelkamp and Jörg Hoffmann.

The 4th edition of IPC included a track on probabilistic
planning for the first time, organized by Michael Littman
and Håkan Younes, where 7 research groups from several
countries met to evaluate their systems. The results of the
competition included a specification language for proba-
bilistic planning (PPDDL), an interactive system for planner
evaluation, a set of benchmark problems, and some impor-
tant learned lessons.

In response to this success, IPC-5 will include a new
edition of the probabilistic planning track, generalized to
include separate subtracks for nondeterministic planning.
Moreover, due to the number of research groups and plan-
ning systems dealing with more general forms of non-
determinism in planning, non-deterministic planning sub-

tracks that will cover the areas of non-deterministic confor-
mant planning, non-deterministic planning (i.e. conditional
planning with full observability), and probabilistic planning
(i.e. conditional probabilistic planning with full observabil-
ity).

As done in the classical track of IPC, we believe that plan-
ners that offer different guarantees on the quality of their so-
lutions should be evaluated differently; otherwise the com-
parisons are not meaningful. Hence, planners within each
group will be further categorized by the guarantees they pro-
vide, as much as possible given the number of participants.

The rest of this document is organized as follows. Sect.
2 gives a brief background on the different planning tasks
included in the competition as well as the form of the solu-
tions. Sect. 3 presents the extensions and restrictions upon
the PPDDL language to be used. Sect. 4 focuses on the
evaluation aspects of the competition, mainly how different
planners are evaluated, while Sect. 5 includes brief thoughts
about the nature of the competition problems. Finally, Sect.
6 includes tentative schedule of major timelines, and the ap-
pendix includes BNF grammars for the planning languages.

Tasks and Form of Solutions
The competition will focus only on planning problems for
goal reachability with unit costs, as they are the simplest
generalization of classical planning to the non-deterministic
setting, and also as the majority of existing planners fall into
this category. Problems of this type can be described by
models of the form:
M1. a finite state space (set of states) S,
M2. a set S0 ⊆ S of initial states,
M3. a set SG ⊆ S of goal states,
M4. sets A(s) of applicable actions for each s ∈ S, and
M5. a non-deterministic transition function F (s, a) ⊆ S for

all states s ∈ S and actions a ∈ A(s).
Models of M1–M5 are described using a high-level plan-

ning language based on propositional logic in which the
states are valuations for the propositional symbols, the set
of initial and goal states are described by logical formulae,
and the set of applicable actions (operators) and the transi-
tion function are described by means of action schemata.

The form of a solution and the optimality criteria depend
on the particular planning task as follows.



Conformant Planning
The problem of conformant planning is that of deciding
whether there exists a linear sequence of actions that will
achieve the goal from any initial state and any resolution
of the non-determinism in the problem (Goldman & Boddy
1996; Smith & Weld 1998).

Given a model for M1–M5, we say that
s0, a0, . . . , an−1, sn is a trajectory generated by actions
a0, . . . , an−1 when

C1. s0 ∈ S0,
C2. ak ∈ A(sk) for 0 ≤ k < n, and
C3. sk+1 ∈ F (sk, ak) for 0 ≤ k < n.

The plan a0, . . . , an−1 is a (valid) solution to the model if
each trajectory under a0, . . . , an−1 is such that sn ∈ SG.
The plan is optimal if its length is minimal.

Non-deterministic Planning
Non-deterministic planning with full observability refers
to deciding whether there exists a conditional plan that
achieves the goal for a model satisfying M1–M5. The
main difference from conformant planning is that solutions
are policies (partial functions) mapping states into actions,
rather than linear sequences of operators.

Let π : S → ∪s∈SA(s) be a policy for model M1–M5,
Sπ the domain of definition of π, and Sπ(s) the set of states
reachable from s using π,1 then we say that:

a) π is closed with respect to s iff Sπ(s) ⊆ Sπ ,
b) π is proper with respect to s iff a goal state can be

reached using π from all s′ ∈ Sπ(s),
c) π is acyclic with respect to s iff there is no trajectory s =

s0, π(s0), . . . , sn with i and j such that 0 ≤ i < j ≤ n
and si = sj , and

d) π is closed (resp. proper or acyclic) with respect to S′ ⊆
S if it is closed (resp. proper or acyclic) with respect to
all s ∈ S′,

A policy π is a valid solution for the non-deterministic
model iff π is closed and proper with respect to the set of
initial states S0. A valid policy π is assigned a (worst-case
scenario) cost Vπ equal to the longest trajectory starting at
s0 ∈ S0 and ending at a goal state. For acyclic policies with
respect to S0, the cost Vπ is always well defined, i.e. < ∞.
A policy π is optimal for model M1–M5 if it is a valid solu-
tion of minimum Vπ value.

The competition will only include non-deterministic do-
mains that admit acyclic solutions, and thus optimal solu-
tions always have finite cost.

Probabilistic Planning
Probabilistic planning problems can be described by models
M1–M5 extended with

M6. transition probabilities 0 < Pa(s′|s), for s′ ∈ F (s, a)
and a ∈ A(s), such that

∑
s′∈F (s,a) Pa(s′|s) = 1.

1A state s′ is reachable from s using π if there is some trajectory
s = s0, π(s0), . . . , π(sn−1), sn = s′ ending in s′.

In this case, solutions are also policies π that map states into
actions. As in the non-deterministic case, definitions (a)–
(d) can be used to characterize the properties of π. A policy
π is a valid solution if it is closed and proper with respect
to S0. The cost Vπ assigned to a valid π is defined as the
expected cost incurred by the policy when it is applied from
the initial states, i.e. Vπ is defined as

∑
s∈S0

Vπ(s0)/|S0|
where the function Vπ(·) is the unique solution to the Bell-
man equation giving Vπ(s) for states s 6∈ SG:

Vπ(s) = 1 +
∑

s′∈F (s,π(s))

Pa(s′|s)Vπ(s′),

where Vπ(s) is taken to be zero for s ∈ SG. We can then
take as optimal any policy for a probabilistic model M1–M6
that is a valid policy with minimum Vπ value.

Language
For this edition of IPC, there is no need to introduce a
new description language or to significantly modify PPDDL.
Thus, the official language for the competition is PPDDL
with minor extensions required to model non-deterministic
effects. On the other hand, the original PPDDL specifica-
tion is too ample for the competition needs, and thus only a
subset of it will be actually used.

For those tasks where an explicit solution plan is required,
for example conformant planning, a language for describing
such plans is required.

This section describes the extensions and subset of
PPDDL to be used in the competition as well as the output
language.

The formal definition of PPDDL and its semantics is
given in (Younes & Littman 2004). We extend it with an ad-
ditional non-deterministic statement, the counterpart of the
probabilistic statement for non-deterministic models,
of the form:

(oneof e1 e2 ... en)

where the ek’s are PPDDL effects. The semantics is that
when executing such effect, one of the ei is chosen and ap-
plied to the current state.

For the competition, PPDDL specifications will be based
on the :adl requirement, i.e. STRIPS with arbitrary con-
ditions and conditional effects, yet no existential quantifi-
cation, disjunctions or negative literals will be permitted
in the preconditions of operators nor in the conditions for
conditional effects. However, general formulae will be al-
lowed in the descriptions of the goals. As mentioned in
the PPDDL manual, all effects will be order independent
and non-conflicting (interfering), see (Younes & Littman
2004) for details. Additionally, in order to ease the devel-
opment of parsers for PPDDL, all operator schemata will be
such that non-determinism inside conditional effects and/or
nested conditional effects will not be allowed (this is simi-
lar to the 1ND normal form of (Rintanen 2003) with addi-
tionally no nested conditional effects). This restriction still
leaves PPDDL universal (Rintanen 2003).



Output Language
Conformant planners or planners that claim guarantees of
properness and/or optimality of solutions will be required to
output the solution policy into a file in a suitable representa-
tion language. This section describes such language. Other
output languages will be considered on request, as needed,
but the competition staff may not have the resources to sup-
port additional output languages.

The file contains three sections separated by ‘%%’:

<n> <atom-list>
%%
<m> <action-list>
%%
<plan>

where <n> is an integer, possibly 0, denoting the size of
<atom-list> which is a space-separated list of atoms
such as ‘(on A B)’, <m>, possibly 0, is the size of
<action-list> which is a space-separated list of opera-
tors ‘such as (move A C B)’, and <plan> is the repre-
sentation of the plan.

For conformant planning problems, <plan> must be of
the form:

linear <k> <integer-list>

where <k> is the size of <integer-list> which is a
space-separated list of integers in [0,m − 1] each denoting
the action with such index.

For example, the following file denotes the conformant
plan ‘(pick B);(putdown B)’:

0
%%
4 (pick A) (putdown A) (pick B) (putdown B)
%%
linear 2 2 3

For non-deterministic and probabilistic problems, <plan>
can be either an explicit or a factored representation of the
policy. In the first case, <plan> is of the form:

policy <k> <map-list>

where <k> is the size of <map-list> which is a space-
separated list of variable-sized elements. The elements of
<map-list> define a partial function mapping states into
actions. Each element is of the form:

<l> <atom-list> <action-index>

where <l> is the size of <atom-list> which is a space-
separated list of integers in [0, n−1], each denoting the atom
with such index, and <action-index> is an integer in
[0,m−1] denoting the action with such index. Such element
defines the mapping from the unique state that makes all and
only all atoms in <atom-list> true into the action with
appropriate index.

For example, the file:
4 (on A B) (clear A) (clear B) (on B A)
%%
4 (pick A) (putdown A) (pick B) (putdown B)
%%
policy 2 2 0 1 0 2 3 2 2

denotes the policy π such that π(s) and π(s′)
are ‘(pick A)’ and ‘(pick B)’ respectively,
and s = {(on A B),(clear A)} and s′ =
{(on B A),(clear B)}.

Factored representation of policies are supported in the form
of Free Algebraic Decision Diagrams (FADDs) (Bryant
1992). An FADD is like an Free Binary Decision Diagram
whose leaves are tagged with reals. In our case, we use
FADDs with leaves tagged with integers in [0,m − 1] de-
noting actions.

For a factored policy, <plan> is of the form:

factored <k> <fadd-elements>

where <k> is the size <fadd-elements> which is a
space-separated list of variable-sized elements that define
the FADD. Each FADD element is either an internal element
or a leaf element. An internal element is of the form:

I <atom> <left> <right>

where <atom> is an integer in [0, n− 1] denoting the atom
with such index, and <left> and <right> are integers in
[0, k − 1] denoting the FADD elements with such indexes.
The <left> branch corresponds to states when <atom>
is true and the <right> branch to states when <atom> is
false. A FADD leaf is of the form:

L <action>

where <action> is an integer in [0,m]: if <action> is
less than m, it denotes the action with such index, else it de-
notes the undefined action. Undefined actions are needed in
factored representations since not all the valuations of atoms
stand for valid states of the problem and/or since the pol-
icy doesn’t need to be complete in order to be a proper and
closed policy. The FADD elements should be listed in in-
verse topological order of the DAG associated to the FADD.

For example, the file:
4 (on A B) (clear A) (clear B) (on B A)
%%
4 (pick A) (putdown A) (pick B) (putdown B)
%%
factored 3
L 0
L 2
I 1 0 1

denotes a policy π′ such that Sπ′ ⊇ Sπ and that π′ agrees
with π in Sπ , the domain of definition of π, where π is the
policy defined above. The corresponding FADD is depicted
in Fig. 1.

The appendix includes BNF grammars for the version of
the PPDDL language to be used in the competition as well
as the output language.

Evaluation
The non-deterministic track of IPC-5 will include:

• Conformant planning track
• Non-deterministic planning track: proper subtrack and

general subtrack,
• Probabilistic planning track



(pick B)(pick A)

(clear A)

Figure 1: FADD associated with the factored policy in the
example in text.

All conformant planner entries will be required to output a
valid plan that will be verified by the competition software.
The general case for the non-deterministic track, as well as
the entire probabilistic track, will use the server-based eval-
uation of the planning system as was done in IPC-4. Indeed,
the same client-server architecture of IPC-4 will be used,
perhaps with few changes on the protocol and the evaluation
function. In this case, the planner is not required to produce
an explicit solution, instead it connects with a server and
sends the actions to be executed in a dynamic environment.
The planner is evaluated over a number of random ‘trials’.

The other cases of conformant planning and the proper
subtracks for non-deterministic require planners to produce
an explicit solution for the problem. Such solution is
checked for properness and its cost is computed. At the end,
the planners are ranked by quality of solution and time to
compute. For this case, we plan to distribute the proper-
ness verifier and cost computation software so competitors
can prepare in advance. The software will read the PPDDL
specification of the problem and the plan description, and
then output whether the plan is proper and its cost.

Prior to the actual competition, competitors will be asked
to categorize their planners into one (or multiple) tracks.
Any planner that enters the conformant planning track or
the proper subtrack of the nondeterministic track must offer
such guarantee, and the competition software will attempt
to check such guarantees. If any such guarantee is found
to be false, as for example, if the properness verifier detects
an improper policy, then the planner is disqualified from the
corresponding domain, and may at the organizers’ discretion
be disqualified from the entire track.

We are open to offering other tracks upon request, if there
is sufficient interest and sufficient time available. In partic-
ular we are willing to offer versions of the above tracks that
allow for automated domain analysis and/or machine learn-
ing via planner interaction with a problem generator and/or
PDDL description for a learning period prior to the eval-
uation. Please inform the organizers of any interests your
group has in this or other directions prior to the registration
deadline.

Tentative Schedule
• 12/2005: Call for Participation
• 01/31/2006: Deadline for registration
• 02/15/2006: Release of plan verifiers and example do-

mains

• 02/28/2006: Release of final version of languages and
server.

• 03/20–26/2006: Mock competition on example domains
• 04/20–26/2006: Competition.

Plan verifiers for the conformant track and the nondeter-
ministic proper track will accept plans as input and return
true or false according to whether the plan meets the require-
ments. Example domains will be either single PDDL files or
programs generating a range of related PDDL files (problem
generators).
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Appendix A: BNF for PPDDL
The following BNF is adapted from the PPDDL docu-
ment (Younes & Littman 2004). It describes the version of
PPDDL used in the competition.

〈domain〉 ::= (define (domain 〈NAME〉)
(:requirements :adl)

[〈types〉] [〈constants〉] [〈predicates〉]
〈action〉∗)

〈types〉 ::= (:types 〈NAME〉∗)
〈constants〉 ::= (:constants 〈typed-list〉)
〈typed-list〉 ::=

〈predicates〉 ::= (:predicates 〈NAME〉∗)
〈action〉 ::= (:action 〈NAME〉 [〈param〉] 〈body〉)
〈param〉 ::= (:parameters 〈typed-list〉)
〈body〉 ::= [〈prec〉] [〈effect〉]
〈prec〉 ::= (:precondition 〈p-formula〉)
〈effect〉 ::= (:effect {〈nd-eff〉 | 〈det-eff〉})
〈nd-eff〉 ::= 〈prob〉 | 〈one-of〉
〈prob〉 ::= (probabilistic 〈p-eff〉+)
〈p-eff〉 ::= 〈RATIONAL〉 〈det-eff〉



〈one-of〉 ::= (oneof 〈det-eff〉+)
〈det-eff〉 ::= 〈ATOM〉 | (not 〈ATOM〉) |

(and 〈det-eff〉+) |
(when 〈p-formula〉 〈simple-eff〉) |
(forall 〈typed-list〉 〈det-eff〉)

〈simple-eff〉 ::= 〈ATOM〉 | (not 〈ATOM〉) |
(and 〈det-eff〉+) |
(forall 〈typed-list〉 〈simple-eff〉)

〈p-formula〉 ::= 〈ATOM〉 |
(not (= 〈NAME〉 〈NAME〉)) |
(and 〈p-formula〉∗) |
(forall 〈typed-list〉 〈p-formula〉)

〈formula〉 ::= 〈ATOM〉 |
(not (= 〈NAME〉 〈NAME〉)) |
(not 〈formula〉) |
(and 〈formula〉∗) |
(or 〈formula〉∗) |
(forall 〈typed-list〉 〈formula〉) |
(exists 〈typed-list〉 〈formula〉)

〈problem〉 ::= (define (problem 〈NAME〉)
(:domain 〈NAME〉)
(:requirements :adl)
[〈objects〉]
[〈init〉] 〈goal〉 )

〈goal〉 ::= (:goal 〈formula〉)
〈init〉 ::= (:init tokeninit − el∗)

〈init-el〉 ::= 〈ATOM〉 |
(probabilistic 〈p-init-el〉+) |
(oneof 〈ATOM〉+)

〈p-init-el〉 ::= 〈RATIONAL〉 〈ATOM〉

Appendix B: BNF for Output Language

〈file〉 ::= 〈atoms〉 %% 〈actions〉 %% 〈plan〉
〈atoms〉 ::= 〈INT〉 〈ATOM〉∗

〈actions〉 ::= 〈INT〉 〈ACTION〉∗

〈plan〉 ::= 〈linear〉 | 〈policy〉 | 〈factored〉
〈linear〉 ::= linear 〈INT〉 〈INT〉∗

〈policy〉 ::= policy 〈INT〉 〈map〉∗

〈map〉 ::= 〈INT〉 〈INT〉∗ 〈INT〉
〈factored〉 ::= factored 〈INT〉 〈fadd〉∗

〈fadd〉 ::= 〈internal〉 | 〈leaf〉
〈internal〉 ::= I 〈INT〉 〈INT〉 〈INT〉
〈leaf〉 ::= L 〈INT〉


