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Abstract

Recently there has been a renewed interest in AO* as plan-
ning problems involving uncertainty and feedback can be nat-
urally formulated as AND/OR graphs. In this work, we carry
out what is probably the first detailed empirical evaluation
of AO* in relation to other AND/OR search algorithms. We
compare AO* with two other methods: the well-known Value
Iteration (VI ) algorithm, and a new algorithm, Learning in
Depth-First Search (LDFS). We consider instances from four
domains, use three different heuristic functions, and focus on
the optimization of cost in the worst case (Max AND/OR
graphs). Roughly we find that while AO* does better than
VI in the presence of informed heuristics,VI does better
than recent extensions of AO* in the presence of cycles in
the AND/OR graph. At the same time,LDFS and its vari-
ant BoundedLDFS, which can be regarded as extensions of
IDA*, are almost never slower than either AO* orVI , and in
many cases, are orders-of-magnitude faster.

Introduction
A* and AO* are the two classical heuristic best-first al-
gorithms for searching OR and AND/OR graphs (Hart,
Nilsson, & Raphael 1968; Martelli & Montanari 1973;
Pearl 1983). The A* algorithm is taught in every AI class,
and has been studied thoroughly both theoretically and em-
pirically. The AO* algorithm, on the other hand, has found
less uses in AI, and while prominent in early AI texts (Nils-
son 1980) it has disappeared from current ones (Russell &
Norvig 1994). In the last few years, however, there has
been a renewed interest in the AO* algorithm in planning re-
search where problems involving uncertainty and feedback
can be formulated as search problems over AND/OR graphs
(Bonet & Geffner 2000).

In this work, we carry out what is probably the first in-
depth empirical evaluation of AO* in relation with other
AND/OR graph search algorithms. We compare AO* with
an old but general algorithm,Value Iteration(Bellman 1957;
Bertsekas 1995), and a new algorithm,Learning in Depth-
First Search, and its variant BoundedLDFS (Bonet &
Geffner 2005). WhileVI performs a sequence of Bellman
updates over all states in parallel until convergence,LDFS
performs selective Bellman updates on top of successive
depth-first searches, very much as Learning RTA* (Korf
1990) and RTDP (Barto, Bradtke, & Singh 1995) perform
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Bellman updates on top of successive greedy (real-time)
searches.

In the absence of accepted benchmarks for evaluating
AND/OR graph search algorithms, we introduce four para-
metric domains, and consider a large number of instances,
some involving millions of states. In all cases we focus on
the computation of solutions with minimum cost in the worst
case using three different and general admissible heuristic
functions. We find roughly that while AO* does better than
VI in the presence of informed heuristics,LDFS, with or
without heuristics, tends to do better than both.

AO* is limited to handling AND/OR graphs without cy-
cles. The difficulties arising from cycles can be illustrated
by means of a simple graph with two states and two ac-
tions: an actiona with cost5 maps the initial states0 non-
deterministically into either a goal statesG or s0 itself, and
a second actionb with cost10 mapss0 deterministically into
sG. Clearly, the problem has cost10 andb is the only (opti-
mal) solution, yet the simple cost revision step in AO* does
not yield this result. Thus, for domains where such cycles
appear, we evaluate a recent variant of AO*,CFCrev∗ , intro-
duced in (Jimeńez & Torras 2000) that is not affected by this
problem. We could have used LAO* as well (Hansen & Zil-
berstein 2001), but this would be an overkill as LAO* is de-
signed to minimize expected cost in probabilistic AND/OR
graphs (MDPs) wheresolutions themselvescan be cyclic,
something that cannot occur in Additive or Max AND/OR
graphs. Further algorithms for cyclic graphs are discussed
in (Mahanti, Ghose, & Sadhukhan 2003).LDFS has no lim-
itations of this type; unlike AO*, it is not affected by the
presence of cycles in the graph, and unlike Value Iteration,
it is not affected either by the presence of dead-ends in the
state space if the problem is solvable.

The paper is organized as follows: we consider first the
models, then the algorithms, the experimental set up and the
results, and close with a brief discussion.

Models
We consider AND/OR graphs that arise from non-
deterministic state models as those used in planning with
non-determinism and full observability, where there are

1. a discrete and finite state spaceS,
2. an initial states0 ∈ S,
3. a non-empty set of terminal statesST ⊆ S,
4. actionsA(s) ⊆ A applicable in each non-terminal state,
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5. a function mapping non-terminal statess and actionsa ∈
A(s) into setsof statesF (a, s) ⊆ S,

6. action costsc(a, s) for non-terminal statess, and
7. terminal costscT (s) for terminal states.
Models where the states are onlypartially observable,can
be described in similar terms, replacing states bysets of
statesor belief states(Bonet & Geffner 2000).

We assume that bothA(s) andF (a, s) are non-empty, that
action costsc(a, s) are all positive, and terminal costscT (s)
are non-negative. When terminal costs are all zero, terminal
states are calledgoals.

The mapping from non-deterministic state models to
AND/OR graphs is immediate: non-terminal statess be-
come OR nodes, connected to the AND nodes< s, a > for
eacha ∈ A(s), whose children are the statess′ ∈ F (a, s).
The inverse mapping is also direct.

The solutions to this and various other state models can
be expressed in terms of the so-called Bellman equation
that characterizes theoptimal cost function(Bellman 1957;
Bertsekas 1995):

V (s) def=
{

cT (s) if s terminal
mina∈A(s) QV (a, s) otherwise (1)

whereQV (a, s) is an abbreviation of the cost-to-go, which
for Max and Additive AND/OR graphs takes the form:

QV (a, s) :
{

c(a, s) + maxs′∈F (a,s) V (s′) (Max)
c(a, s) +

∑
s′∈F (a,s) V (s′) (Add)

(2)
Other models can be handled in this way by choosing other
forms for QV (a, s). For example, for MDPs, it is the
weighted sumc(a, s) +

∑
s′∈F (a,s) V (s′)Pa(s′|s) where

Pa(s′|s) is the probability of going froms to s′ givena.
In the absence of dead-ends, there is a unique (optimal)

value functionV ∗(s) that solves the Bellman equation, and
the optimal solutions can be expressed in terms of the poli-
ciesπ that aregreedywith respect toV ∗(s). A policy π is a
function mapping statess ∈ S into actionsa ∈ A(s), and a
policy πV is greedy with respect to a value functionV (s), or
simply greedy inV , iff πV is the best policy assuming that
the cost-to-go is given byV (s); i.e.

πV (s) = argmin
a∈A(s)

QV (a, s) . (3)

Since the initial states0 is known, it is actually sufficient
to considerclosed (partial) policiesπ that prescribe the ac-
tions to do in all (non-terminal) states reachable froms0 and
π. Any closed policyπ relative to a states has a costV π(s)
that expresses the cost of solving the problem starting from
s. The costsV π(s) are given by the solution of (1) but with
the operatormina∈A(s) removed and the actiona replaced
by π(s). These costs are well-defined when the resulting
equations have a solution over the subset of states reachable
from s0 andπ. For Max and Additive AND/OR graphs, this
happens whenπ is acyclic; elseV π(s0) = ∞. Whenπ is
acyclic, the costsV π(s0) can be defined recursively start-
ing with the terminal statess′ for which V π(s′) = cT (s′),
and up to the non-terminal statess reachable froms0 andπ
for whichV π(s) = QV π (π(s), s). In all cases, we are inter-
ested in computing a solutionπ that minimizesV π(s0). The
resulting value is the optimal cost of the problemV ∗(s0).

Algorithms
We consider three algorithms for computing such optimal
solutions for AND/OR graphs: Value Iteration, AO*, and
Learning in Depth-First Search.

Value Iteration
Value iteration is a simple and quite effective algorithm that
computes the fixed pointV ∗(s) of Bellman equation by
plugging an estimate value functionVi(s) in the right-hand
side and obtaining a new estimateVi+1(s) on the left-hand
side, iterating untilVi(s) = Vi+1(s) for all s ∈ S (Bell-
man 1957). In our setting, this convergence is guaranteed
provided that there are no dead-end states, i.e., statess for
which V ∗(s) = ∞. Often convergence is accelerated if the
same value function vectorV (s) is used on both left and
right. In such a case, in each iteration, the states values are
updatedsequentially from first to last as:

V (s) := min
a∈A(s)

QV (a, s) . (4)

The iterations continue untilV satisfies the Bellman equa-
tion, and henceV = V ∗. Any policy π greedy inV ∗ pro-
vides then an optimal solution to the problem.VI can deal
with a variety of models and is very easy to implement.

AO*
AO* is a best-first algorithm for solving acyclic AND/OR
graphs (Martelli & Montanari 1973; Nilsson 1980; Pearl
1983). Starting with a partial graphG containing only the
initial state s0, two operations are performed iteratively:
first, a best partial policy overG is constructed and a non-
terminal tip states reachable with this policy is expanded;
second, the value function and best policy over the updated
graph are incrementally recomputed. This process continues
until the best partial policy is complete. The second step,
called thecost revision step, exploits the acyclicity of the
AND/OR graph for recomputing the optimal costs and pol-
icy over the partial graphG in a single pass,unlike Value
Iteration (yet see (Hansen & Zilberstein 2001)). In this
computation, the states outsideG are regarded as terminal
states with costs given by their heuristic values. When the
AND/OR graph contains cycles, however, this basic cost-
revision operation is not adequate. In this paper, we use the
AO* variant developed in (Jimenéz & Torras 2000), called
CFCrev∗ , which is based in the cost revision operation from
(Chakrabarti 1994) and is able to handle cycles.

Unlike VI , AO* can solve AND/OR graphs without hav-
ing to consider the entire state space, and exploits lower
bounds for focusing the search. Still, expanding the partial
graph one state at a time, and recomputing the best policy
over the graph after each step, imposes an overhead that, as
we will see, does not always appear to pay off.

Learning DFS
LDFS is an algorithm akin to IDA* with transposition ta-
bles which applies to a variety of models (Bonet & Geffner
2005). While IDA* consists of a sequence of DFS iterations
that backtrack upon encountering states with costs exceed-
ing a given bound,LDFS consists of a sequence of DFS itera-
tions that backtrack upon encountering states that areincon-
sistent: namely statess whose values are not consistent with
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LDFS-DRIVER(s0)
begin

repeatsolved := LDFS(s0) until solved
return (V, π)

end

LDFS(s)
begin

if s is SOLVED or terminal then
if s is terminalthen V (s) := cT (s)
Mark s asSOLVED
return true

flag := false
foreacha ∈ A(s) do

if QV (a, s) > V (s) then continue
flag := true
foreachs′ ∈ F (a, s) do

flag := LDFS(s′) & [QV (a, s) ≤ V (s)]
if ¬flag then break

if flag then break

if flag then
π(s) := a
Mark s asSOLVED

else
V (s) := mina∈A(s) QV (a, s)

return flag

end

Algorithm 1: Learning DFS

the values of its children; i.e.V (s) 6= mina∈A(s) QV (a, s).
The expressionQV (a, s) encodes the type of model: OR
graphs, Additive or Max AND/OR graphs, MDPs, etc. Upon
encountering such inconsistent states,LDFS updates their
values (making them consistent) and backtracks, updating
along the way ancestor states as well. In addition, when
the DFS beneath a states does not find an inconsistent
state (a condition kept byflag in Fig. 1), s is labeled as
solvedand is not expanded again. The DFS iterations termi-
nate when the initial states0 is solved. Provided the initial
value function is admissible and monotonic (i.e.,V (s) ≤
mina∈A(s) QV (a, s) for all s), LDFS returns an optimal pol-
icy if one exists. The code forLDFS is quite simple and
similar to IDA* (Reinefeld & Marsland 1994); see Fig. 1.

BoundedLDFS, shown in Fig. 2, is a slight variation
of LDFS that accommodates an explicitbound parameter
for focusing the search further on paths that are ‘critical’
in the presence of Max rather than Additive models. For
Game Trees, BoundedLDFS reduces to the state-of-the-art
MTD(−∞) algorithm: an iterative alpha-beta search proce-
dure with null windows and memory (Plaatet al. 1996).
The code in Fig. 2, unlike the code in (Bonet & Geffner
2005) is for general Max AND/OR graphs and not only
trees, and replaces the booleanSOLVED(s) tag in LDFS
by a numerical tagU(s) that stands for anupper bound;
i.e., U(s) ≥ V ∗(s) ≥ V (s). This change is needed be-
cause BoundedLDFS, unlike LDFS, minimizesV π(s0) but
not necessarilyV π(s) for all statess reachable froms0

and π (in Additive models, the first condition implies the
second). Thus, while theSOLVED(s) tag in LDFS means

B-LDFS-DRIVER(s0)
begin

repeat B-LDFS(s0, V (s0)) until V (s0) ≥ U(s0)
return (V, π)

end

B-LDFS(s, bound)
begin

if s is terminal orV (s) ≥ bound then
if s is terminalthen V (s) := U(s) := cT (s)
return

flag := false
foreacha ∈ A(s) do

if QV (a, s) > bound then continue
flag := true
foreachs′ ∈ F (a, s) do

nb := bound− c(a, s)
flag := B-LDFS(s′, nb) & [QV (a, s) ≤ bound]
if ¬flag then break

if flag then break

if flag then
π(s) := a
U(s) := bound

else
V (s) := mina∈A(s) QV (a, s)

return flag

end

Algorithm 2: BoundedLDFS for Max AND/OR Graphs

that an optimal policy fors has been found, theU(s) tag
in BoundedLDFS means only that a policyπ with cost
V π(s) = U(s) has been found. BoundedLDFS ends how-
ever when the lower and upper bounds fors0 coincide. The
upper boundsU(s) are initialized to∞. The code in Fig. 2
is for Max AND/OR graphs; for Additive graphs, the term∑

s′′ V (s′′) needs to be subtracted from the right-hand side
of line nb := bound− c(a, s) for s′′ in F (a, s) ands′′ 6= s′.
The resulting procedure however is equivalent toLDFS.

Experiments
We implemented all algorithms in C++. Our AO* code is a
careful implementation of the algorithm in (Nilsson 1980),
while our CFCrev∗ code is a modification of the code ob-
tained from the authors (Jimenéz & Torras 2000) that makes
it roughly an order-of-magnitude faster.

For all algorithms we initialize the values of the terminal
states to their true valuesV (s) = cT (s) and non-terminals
to someheuristic valuesh(s) whereh is an admissible and
monotone heuristic function. We consider three such heuris-
tics: the first, the non-informativeh = 0, and then two func-
tions h1 andh2 that stand for the value functions that re-
sult from performingn iterations of value iteration, and an
equivalent number of ‘random’ state updates respectively,1

starting withV (s) = 0 at non-terminals. In all the experi-
ments, we setn to Nvi/2 whereNvi is the number of itera-

1More precisely, the random updates are done by looping over
the statess ∈ S, selecting and updating statess with probability
1/2 til n× |S| updates are made.
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problem |S| V ∗ NVI |A| |F | |π∗|
coins-10 43 3 2 172 3 9
coins-60 1,018 5 2 315K 3 12

mts-5 625 17 14 4 4 156
mts-35 1, 5M 573 322 4 4 220K
mts-40 2, 5M 684 – 4 4 304K

diag-60-10 29,738 6 8 10 2 119
diag-60-28 > 15M 6 – 28 2 119
rules-5000 5,000 156 158 50 50 4,917
rules-20000 20,000 592 594 50 50 19,889

Table 1: Data for smallest and largest instances: number of
(reachable) belief states, optimal cost, number of iterations
taken byVI , max branching in OR nodes (|A|) and AND
nodes (|F |), and size of optimal solution (M = 106; K =
103).

tions that value iteration takes to converge. These heuristics
are informative but expensive to compute, yet we use them
for assessing how well the various algorithms are able to
exploit heuristic information. The times for computing the
heuristics are common to all algorithms and are not included
in the runtimes.

We are interested inminimizing cost in the worst case
(Max AND/OR graphs). Some relevant features of the in-
stances considered are summarized in Table 1. A brief de-
scription of the domains follows.

Coins: There areN coins including a counterfeit coin that
is either lighter or heavier than the others, and a 2-pan bal-
ance. A strategy is needed for identifying the counterfeit
coin, and whether it is heavier or lighter than the others
(Pearl 1983). We experiment withN = 10, 20, . . . , 60. In
order to reduce symmetries we use the representation from
(Fuxi, Ming, & Yanxiang 2003) where a (belief) state is a
tuple of non-negative integers(s, ls, hs, u) that add up toN
and stand for the number of coins that are known to be of
standard weight (s), standard or lighter weight (ls), standard
or heavier weight (hs), and completely unknown weight (u).
See (Fuxi, Ming, & Yanxiang 2003) for details.

Diagnosis: There areN binary tests for finding out the
true state of a system amongM different states (Pattipati &
Alexandridis 1990). An instance is described by a binary
matrix T of sizeM ×N such thatTij = 1 iff test j is pos-
itive when the state isi. The goal is to obtain a strategy
for identifying the true state. The search space consists of
all non-empty subsets of states, and the actions are the tests.
Solvable instances can be generated by requiring that no two
rows inT are equal, andN > log2(M) (Garey 1972). We
performed two classes of experiments: a first class withN
fixed to10 andM varying in{10, 20, . . . , 60}, and a second
class withM fixed to60 andN varying in{10, 12, . . . , 28}.
In each case, we report average runtimes and standard devi-
ations over 5 random instances.

Rules: We consider the derivation of atoms in acyclic rule
systems withN atoms, and at mostR rules per atom, andM
atoms per rule body. In the experimentsR = M = 50 and
N is in {5000, 10000, . . . , 20000}. For each value ofN , we
report average times and standard deviations over 5 random
solvable instances.

Moving Target Search: A predator must catch a prey that
moves non-deterministically to a non-blocked adjacent cell
in a given random maze of sizeN × N . At each time, the
predator and prey move one position. Initially, the preda-
tor is in the upper left position and the prey in the bottom
right position. The task is to obtain an optimal strategy for
catching the prey. In (Ishida & Korf 1995), a similar prob-
lem is considered in a real-time setting where the predator
moves ‘faster’ than the prey, and no optimality requirements
are made. Solvable instances are generated by ensuring that
the undirected graph underlying the maze is connected and
loop free. Such loop-free mazes can be generated by per-
forming random Depth-First traversals of theN ×N empty
grid, inserting ‘walls’ when loops are encountered. We con-
sider N = 15, 20, . . . , 40, and in each case report aver-
age times and standard deviations over 5 random instances.
Since the resulting AND/OR graphs involve cycles, the al-
gorithmCFCrev∗ is used instead of AO*.

Results
The results of the experiments are shown in Fig. 2, along
with a detailed explanation of the data. Each square depicts
the runtimes in seconds for a given domain and heuristic
in a logarithmic scale. The figure also includes data from
another learning algorithm, a Labeled version of Min-Max
LRTA* (Koenig 2001). Min-Max LRTA* is an extension
of Korf’s LRTA* (Korf 1990) and, at the same time, the
Min-Max variant of RTDP (Barto, Bradtke, & Singh 1995).
Labeled RTDP and Labeled Min-Max LRTA* are exten-
sions of RTDP and Min-Max LRTA* (Bonet & Geffner
2003) that speed up convergence and provide a crisp ter-
mination condition by keeping track of the states that are
solved.

The domains from top to bottom areCOINS, DIAGNOSIS
1 and 2,RULES, andMTS, while the heuristics from left to
right areh = 0, h1, andh2. As mentioned above,MTS
involves cycles, and thus,CFCrev∗ is used instead of AO*.
Thus leaving this domain aside for a moment, we can see
that with the two (informed) heuristics, AO* does better
than VI in almost all cases, with the exception ofCOINS
with h1 whereVI beats all algorithms by a small margin.
Indeed, as it can be seen in Table 1,VI happens to solve
COINS in very few iterations (this actually has to do with a
topological sort done in our implementation ofVI for find-
ing first the states that are reachable). InDIAGNOSIS and in
COINS with h1, AO* runs one or more orders of magnitude
faster thanVI . With h = 0, the results are mixed, withVI
doing better, and in certain cases (DIAGNOSIS) much bet-
ter. Adding nowLDFS to the picture, we see that it is never
worse than either AO* orVI , except inCOINS with h = 0
andh2, andRULES with h = 0 where it is slower thanVI
and AO* respectively by a small factor (in the latter case 2).
In most cases, however,LDFS runs faster than both AO* and
VI for the different heuristics, in several of them by one or
more orders of magnitude. BoundedLDFS in turn does never
worse thanLDFS, and in a few cases, includingDIAGNOSIS
with h = 0, runs an order of magnitude faster. InMTS, a
problem which involves cycles in the AND/OR graph, AO*
cannot be used,CFCrev∗ solves only the smallest problem,
andVI solves all but the largest problem, an order of magni-
tude slower thanLDFS, which in turn is slower than Bounded
LDFS. Finally, Min-Max LRTA* is never worse than AO*,
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performs similar toLDFS and BoundedLDFS except inDI-
AGNOSISandCOINSwhere BoundedLDFS dominates all al-
gorithms, and inRULESwhere Min-Max LRTA* dominates
all algorithms.

The difference in performance betweenVI and the other
algorithms forh 6= 0 suggests that the latter make better use
of the initial heuristic values. At the same time, the differ-
ence betweenLDFS and AO* suggests that often the over-
head involved in expanding the partial graph one state at a
time, and recomputing the best policy over the graph after
each step, does not always pay off.2 LDFS makes use of the
heuristic information but makes no such (best-first) commit-
ments. Last, the difference in performance betweenLDFS
and BoundedLDFS can be traced to a theoretical property
mentioned above and discussed in further detail in (Bonet
& Geffner 2005): whileLDFS (and AO* andVI ) compute
policiesπ that are optimal over all the states reachable from
s0 andπ, BoundedLDFS computes policiesπ that are op-
timal only where needed; i.e. ins0. For OR and Additive
AND/OR graphs, the latter notion implies the former, but
for Max models does not. BoundedLDFS (and Game Tree
algorithms) exploits this distinction, whileLDFS, AO*, and
Value Iteration do not.

Discussion
We have carried an empirical evaluation of AND/OR search
algorithms over a wide variety of instances, using three
heuristics, and focusing in the optimization of cost in the
worst case (Max AND/OR graphs). Over these examples
and with these heuristics, the studied algorithms rank from
fastest to slowest as BoundedLDFS, LDFS, AO*, and VI ,
with some small variations.The results for Min-Max LRTA*
show that its performance is similar toLDFS but inferior to
BoundedLDFS except inRULES.

We have considered the solution of Max AND/OR graphs
as it relates well to problems in planning where one aims to
minimize cost in the worst case. Additive AND/OR graphs,
on the other hand, do not provide a meaningful cost criteria
for the problems considered, as in the presence of common
subproblems they count repeated solution subgraphs multi-
ple times. The semantics of Max AND/OR graphs does not
have this problem. Still we have done preliminary tests un-
der the Additive semantics to find out whether the results
change substantially or not. Interestingly, in some domains
like diagnosis, the results do not change much, but in others,
like RULES they do,3 making indeed AO* way better than
LDFS andVI , and suggesting, perhaps not surprisingly, that
the effective solution of Additive and Max AND/OR graphs
may require different ideas in each case. In any case, by
making the various problems and source codes available, we
hope to encourage the necessary experimentation that has
been lacking so far in the area.
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Table 2: Experiments: each square depicts runtimes in seconds for problems with a given domain and heuristic. The domains
are from top to bottom:COINS, DIAGNOSIS 1 and 2,RULES, andMTS, and the heuristics from left to right:h = 0, h1, and
h2. In the first diagnosis domain, the number of states is increased, while in the second, the number of tests. Problems with
more than16 tests are not solved forh1 andh2 as these heuristics could not be computed beyond that point. Such problems are
solved byLDFS and BoundedLDFS with h = 0. All runtimes are shown in logarithmic scales, yet the range of scales vary.
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