Compilation of Query-Rewriting Problems into Tractable Fragments of Propositional Logic

Yolifé Arvelo Blai Bonet María Esther Vidal
Departamento de Computación
Universidad Simón Bolívar
Caracas, Venezuela
We consider the problem of rewriting a query using materialized views.

This problem appears frequently in the context of Data Integration, Web Infrastructures and Query Optimization:

- [Duschka & Genesereth 1997; Kwok & Weld 1996; Lambrecht, Kambhampati & Gnanaprakasam 1999]

The problem is in general intractable and existing algorithms do not scale well even in simple cases.
Data Integration

- **OBJECTIVE:** Given a query Q, retrieve all tuples *obtainable from the data sources* that satisfy Q

- Data sources are assumed to be:
 - **Independent** (i.e. maintained in a distributed manner)
 - **Described as views** (i.e. the *Local As View* model)
 - Incomplete
QUERY: Find round-trip flights that start in the US
QUERY:* Find round-trip flights that start in the US

\[Q(x, y) := \text{flight}(x, y), \text{flight}(y, x), \text{uscity}(x) \]

Data sources modelled as views:

\[
\begin{align*}
\text{national}(x_1, y_1) &:= \text{flight}(x_1, y_1), \text{uscity}(x_1), \text{uscity}(y_1) \\
\text{oneway}(x_2, y_2) &:= \text{flight}(x_2, y_2) \\
\text{onestop}(x_3, z_3) &:= \text{flight}(x_3, y_3), \text{flight}(y_3, z_3)
\end{align*}
\]
ASSUMPTION: Views may be incomplete

Then, the solution is the collection of rewritings:

\[R_1(x, y) :\text{ oneway}(x, y), \text{ oneway}(y, x), \text{ national}(x, w) \]
\[R_2(x, y) :\text{ oneway}(x, y), \text{ oneway}(y, x), \text{ national}(w, x) \]
\[R_3(x, y) :\text{ national}(x, y), \text{ national}(y, x) \]
\[R_4(x, y) :\text{ oneway}(x, y), \text{ national}(y, x) \]
\[R_5(x, y) :\text{ national}(x, y), \text{ oneway}(y, x) \]

Observe that there is no rewriting using \text{onestop}(x, y)
Query Rewriting Problem: Formal

- **INPUT:** A query Q and set of views $\mathcal{V} = \{V_1, V_2, \ldots, V_n\}$

- **TASK:** Find a maximal-contained set of rewritings of Q using the views

- A rewriting is a query-like expression that refers only to the views

- **ASSUMPTION:** Q and V_i are **conjunctive** queries without arithmetic predicates
Related Work: Algorithms

- Bucket algorithm [Levy & Rajaraman & Ullman 1996]
- Inverse rules algorithm [Duscka & Genesereth 1997]
- MiniCon algorithm [Pottinger & Halevy 2001]
The MiniCon Algorithm [Pottinger & Halevy 2001]

- Exploit independences to decompose into smaller subproblems and then combine solutions
- Solutions to subproblems are called MCDs

<table>
<thead>
<tr>
<th>MCD</th>
<th>View</th>
<th>Mapping</th>
<th>Covered subgoals</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>national</td>
<td>{X \rightarrow X_1, Y \rightarrow Y_1}</td>
<td>{0}</td>
</tr>
<tr>
<td>M_2</td>
<td>national</td>
<td>{X \rightarrow Y_1, Y \rightarrow X_1}</td>
<td>{1}</td>
</tr>
<tr>
<td>M_3</td>
<td>national</td>
<td>{X \rightarrow X_1}</td>
<td>{2}</td>
</tr>
<tr>
<td>M_4</td>
<td>national</td>
<td>{X \rightarrow Y_1}</td>
<td>{2}</td>
</tr>
<tr>
<td>M_5</td>
<td>oneway</td>
<td>{X \rightarrow X_2, Y \rightarrow Y_2}</td>
<td>{0}</td>
</tr>
<tr>
<td>M_6</td>
<td>oneway</td>
<td>{X \rightarrow Y_2, Y \rightarrow X_2}</td>
<td>{1}</td>
</tr>
</tbody>
</table>
The MiniCon Algorithm: How does it work?

- Generate all MCDs (very expensive since performs **blind search**)
- Rewritings generated **greedily** as combination of MCDs such that:
 - Cover disjoint subsets of subgoals in the query
 - Cover all subgoals in the query
- In the example, combining M_3, M_5, M_6 produces the rewriting:

 $R_1(x, y) :- \text{oneway}(x, y), \text{oneway}(y, x), \text{national}(x, w)$
Our Approach: MCDSAT

■ Given a query Q and a set of views \mathcal{V}

■ Build a **propositional theory** such that its models are in correspondence with the MCDs

■ Generating MCDs is now a problem of **model enumeration**

■ Model enumeration can be done with modern SAT techniques that implement:
 - Non-chronological backtracking via clause learning
 - Caching of common subproblems
 - Heuristics

■ We also extend propositional theory such that its models are in correspondence with the rewritings

■ **We call our approach MCDSAT!!**
Negation Normal Forms (NNF)

- A formula is in Negation Normal Form (NNF) if constructed from literals using only conjunctions and disjunctions [Barwise 1977]

- It can be represented as a rooted DAG whose leaves are literals and internal nodes are labeled with conjunction or disjunction
Deterministic and Decomposable NNFs (d-DNNFs)

- Introduced by [Darwiche 2001]

- A NNF is **decomposable** if each variable appears at most once below each conjunct

- A NNF is **deterministic** if disjuncts are pairwise logically inconsistent

- A d-DNNF supports a number of operations in **linear time**:
 - satisfiability
 - clause entailment
 - model counting
 - model enumeration (output linear time)
 - ...

- Transformation into d-DNNF is **intractable in the worst case**, but **not necessarily so on average**
Implementation

- **MCDSat** translates QRP into a propositional theory T
- T is compiled into d-DNNF using Darwiche’s c2d compiler
- Models are obtained from the d-DNNF and transformed into MCDs or rewritings

- c2d and models are off-the-shelf components
- MCDSat written in scripting language
OBJECTIVE: To study the effect of the query sizes and number of views in the performance of MCDSAT and MiniCon

- Large benchmark with problems of different sizes and structures
- Comparison metric: **time**
- For lack of space, we only report few instances
Experimental Results

- MCD Theory: time to generate MCDs (no combination)
- Extended Theory: time to generate rewritings
- Structure: Chain and Star
- Half distinguished variables
- Queries of different length
- Different number of views
- Each point is average over 10 instances
- Random instances created with generator of [Afrati, Li & Ullman 2001]
Experimental Results: MCD Theories

- Chain queries / half distinguished vars / 80 views
- Star queries / half distinguished vars / 80 views
- Chain queries / half distinguished vars / 8 subgoals
- Star queries / half distinguished vars / 8 subgoals
Experimental Results: Extended Theories

- Chain queries / half distinguished vars / 80 views
- Star queries / half distinguished vars / 80 views
- Chain queries / half distinguished vars / 6 subgoals
- Star queries / half distinguished vars / 6 subgoals

Graphs showing the relationship between time in seconds and the number of goals in query or number of views for MiniCon and McdSat.
Conclusions

- Proposed a novel method for QRPs using propositional logic which:
 - Uses off-the-shelf propositional components
 - It’s easy to implement
 - Shows improved performance over other methods

- Thus, the logical approach is not only of scientific interest but practical too!

- Similar ideas can be applied to other problems!