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Abstract

We consider the problem of rewriting a query efficiently using
materialized views. In the context of information integration,
this problem has received significant attention in the scope
of emerging infrastructures such as WWW, Semantic Web,
Grid, and P2P which require efficient algorithms. The prob-
lem is in general intractable, and the current algorithms do not
scale well when the number of views or the size of the query
grow. We show however that this problem can be encoded as
a propositional theory in CNF such that its models are in cor-
respondence with the rewritings of the query. The theory is
then compiled into a normal form, that is called d-DNNF and
supports several operations like model counting and enumer-
ation in polynomial time (in the size of the compiled theory),
for computing the rewritings. Although this method is also
intractable in the general case, it is not necessarily so in all
cases. We have developed, along these lines and from off-
the-shelf propositional engines, novel algorithms for finding
maximally-contained rewritings of the query given the set of
accessible resources (views). The algorithms scale much bet-
ter than the current state-of-the-art algorithm, the MiniCon
algorithm, over a large number of benchmarks and show in
some cases improvements in performance of a couple orders-
of-magnitude.

Introduction
Emerging Web infrastructures are making available an enor-
mous amount of resources and demand effi cient techniques
to query them. To achieve this goal, tasks as locating
sources, query rewriting, optimization, and evaluation need
to scale up to large spaces of alternatives. In this paper, we
consider the problem of rewriting a query using materialized
views (Levy et al. 1995; Halevy 2001) which consists on the
reformulation of the query from the views. In general, this
problem is intractable in the worst case and existing algo-
rithms do not scale well even for restricted classes of queries.
This problem has received recent attention in the context
of data integration (Duschka & Genesereth 1997b; Kwok
& Weld 1996; Lambrecht, Kambhampati & Gnanaprakasam
1999), and query optimization and data maintenance (Levy,
Rajaraman & Ordille 1996; Zaharioudakis et al. 2000;
Mitra 2001).

We approach this problem from a logical perspective with
the aim to exploit the recent developments in knowledge
compilation and SAT which are currently able to handle log-
ical theories with thousands of variables and clauses.
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The main idea of our approach is to cast the query rewrit-
ing problem into a propositional theory such that the models
of the theory constitute the solution for the problem. This
theory is then compiled into a normal form called d-DNNF
that implements model enumeration in polynomial time in
the size of the compiled theory. From a complexity point
of view, the proposal doesn’t appear to be an overkill of the
input problem since the number of rewritings is exponential
in the worst case, and deciding if one candidate rewriting is
valid is an NP-complete problem. Similarly, although model
enumeration is intractable in the worst case, it doesn’t need
to be so for specifi c cases.

Our experimental results show that the logical approach is
up to two orders of magnitude faster than the current state-
of-the-art algorithms over benchmark problems from the lit-
erature. These results makes us believe that our formulation
isn’t only of theoretical interest but practical too, and en-
courage us to continue our line of research.

The paper is organized as follows. The next section covers
preliminaries defi nitions of the rewriting and containment
problems, and the MiniCon algorithm. We then describe the
propositional theory and the d-DNNF normal form. Later,
we show the experimental results and conclude with a brief
discussion that includes a summary and future work.

Preliminaries
Let P be a set of predicates where each p ∈ P is of arity
ap. We consider databases over P of the form D = 〈P, T 〉
where T = {Tp}p∈P is a set of tables, each Tp with ap
columns, that represents the predicates in extensional form.
A conjunctive query Q over P is of the form

Q(x) :− p1(x1), p1(x2), . . . , pm(xm) ,

where pi ∈ P , x is a vector of variables, and each xi is a
vector of length api

made of variables and constants. The
result of Q over D, denoted as Q(D), is the table with |x|
columns that result of the projection of the relational join
�� {Tpi

}m
i=1 over x; i.e. Q(D) def= σx(�� {Tp1}m

i=1). The
head and body of Q are Q(x) and {pi(xi) : 1 ≤ i ≤ m}
respectively, and V ars(Q) are all the variables that appear
in the query. A variable x ∈ V ars(Q) that doesn’t appear
in the head is called an existential variable. The atoms in the
body of Q are also called the (sub)goals of Q.

A view V over D is a query over P . In the context of
data integration, the database D is an idealized description
of the information contained across multiple data sources:
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each data source E is a table of tuples that is described as a
view. Since the data sources are assumed to be maintained
independently, they are incomplete in the sense that the table
E is a subset of the table V (D). Moreover, two identically
views V and V ′, describing different data sources, are typi-
cally such that EV �= EV ′ even though V (D) = V ′(D).

Thus, given a database D, a query Q and a collection of
(incomplete) views E = 〈{Vi}i, {Ei}i〉, we are required to
fi nd all the tuples in Q(D) obtainable from the views in E.
Formally, we need to fi nd all the rewritings

R(x) :− Vi1(x1), Vi2(x2), . . . , Vin
(xn)

such that R(E) ⊆ Q(D),1 or equivalently all the maximal-
contained rewritings. A rewriting R is contained in R′ if
R(E) ⊆ R′(E). If R is a collection of rewritings, the result
R(E) of R over E is the collection of tuples ∪R∈RR(E).

A query rewriting problem (QRP) is a tuple 〈P,Q, {Vi}〉
where P is a set of predicates, Q is a query over P and {Vi}
is a collection of views. We assume safe problems in the
sense that all variables mentioned in the head of the query
(resp. in the head of each view) appear in the body of the
query (resp. in the body of each view). Further, we only
deal with QRPs without constant symbols nor with arith-
metic predicates inside the query and/or the views; e.g. pred-
icates like ‘x ≤ y’ are forbidden.2

A rewriting R is a valid rewriting, with respect to a
given QRP, if for all databases D = 〈P, T 〉 and (incom-
plete) extensions {Ei}, R(E) ⊆ Q(D). A collection R of
valid rewritings is a solution of the QRP if for all databases
D = 〈P, T 〉 and extensions {Ei}, there is no another R′

such that R(E) ⊂ R′(E) ⊆ Q(D). We are interested in
fi nding the minimal rewriting R for a QRP (see below).

For example, consider a single binary predicate ‘arc’ used
to talk about digraphs such that arc(x, y) holds iff there is an
arc from x to y, and the QRP (Ullman 2000):

Q(x, z) :− arc(x, y), arc(y, z) ,

V1(x1, y1) :− arc(x1, x1), arc(x1, y1) ,

V2(x2, y2) :− arc(x2, y2) .

It can be shown that the collection of rewritings:

R1(x, z) :− V1(x, z) ,

R2(x, z) :− V2(x, y), V2(y, z) ,

R3(x, z) :− V1(x, y), V2(x, z) ,

R4(x, z) :− V1(x, y), V2(y, z) ,

R5(x, z) :− V2(x, z), V1(z, y) ,

R6(x, z) :− V2(x, y), V1(y, z)

is the minimal rewriting solution of the QRP.

The Query Containment Problem
An important related problem is to determine whether for
two queries Q and Q′, Q(D) ⊆ Q′(D) for all databases D;
the so-called query containment problem. In such case, we
write Q ⊆ Q′, Q ⊂ Q′ if in addition there is a database D

1Observe that the collection of views and their extensions can
be thought as a database and thus R(E) is well defined.

2Although constant symbols can be easily accommodated, in-
terpreted predicates are more challenging.

such that Q(D) ⊂ Q′(D), and fi nally Q∼= Q′ iff Q ⊆ Q′

and Q′ ⊆ Q.
Several methods have been proposed to answer the query

containment problem (Chandra & Merlin 1977; Ullman
2000) from which the fi rst one, using containment map-
pings, is relevant to our work.

Given two queries Q and Q′ over P , of the form

Q(x) :− p1(x1), p2(x2), . . . , pm(xm) ,

Q′(y) :− p′1(y1), p′2(y2), . . . , p′m′(ym) ,

a containment mapping from Q to Q′ is a homomorphism
φ : V ars(Q) → V ars(Q′) such that every atom in the
body of φ(Q) appears in the body of Q′, and the head of
φ(Q) matches the head of Q′. That is, pi(φ(xi)) ∈ Q′ for
all 1 ≤ i ≤ m and φ(x) = y. It is known that

Theorem 1 (Chandra & Merlin 1977) Q′ ⊆ Q if and
only if there is a containment mapping from Q to Q′.

For a given QRP, we say that a valid rewriting R is max-
imal if there is no another valid rewriting R′ such that
R ⊂ R′ (when R and R′ are considered as queries over
{Vi}). It is then easy to show that the solutions to the QRP
are sets of maximal valid rewritings. However, such sets
are not unique since for any query Q there are queries Q′

equivalent to it (in fact, a infi nite number of them). For ex-
ample, if R(x) :−V (x) is a maximal valid rewriting then
R′(x) :−V (x), V (x) is also maximal. Yet, this is the only
type of example, since with incomplete views, if R ∼= R′

and R′ �= R then either body(R) ⊂ body(R′) or vice versa.
Therefore, we can partially order the class of all solutions

as follows: for solutions R and R′, defi ne R ≤ R′ iff for
every R ∈ R there is an R′ ∈ R′ such that body(R) ⊆
body(R′). Then, it is not hard to show that this partial order
has a unique minimal element R∗ called the minimal solu-
tion in which each R ∈ R∗ is called a minimal rewriting.

The aim of QRP algorithms is to fi nd R∗ by constructing
all minimal rewritings. This task however is very diffi cult to
achieve since not much is known about minimal rewritings.
Perhaps the best-known general results are

Theorem 2 (Levy et al. 1995) If the query and views are
such that no constant symbols neither arithmetic predicates
appear in the bodies, any minimal rewriting has at most the
same number of goals of the query.

Theorem 3 (Levy et al. 1995) To check whether there is a
valid rewriting R of Q with at most the same number of
goals as Q is an NP-complete problem.

Above theorems suggest a simple non-deterministic algo-
rithm for fi nding solutions: generate all possible rewriting
candidates R of length less than or equal to the length of
the query Q, and keep those contained. This algorithm is
highly ineffi cient since there is an exponential number of
candidates and testing containment is an expensive task.

The MiniCon Algorithm
The MiniCon algorithm attempts to fi nd a solution to the
QRP by exploiting certain independences in the problem
(Pottinger & Halevy 2001). In the example, it can be ar-
gued that the fi rst goal of V1 can be used to “cover” the goal
arc(x, y) while V2 can be used to cover the second goal of
the query yielding the rewriting R3. In this case, the vari-
ables x, y of Q are both mapped into variable x1 of V1, and
y, z to x2, y2 of V2, yielding x = y = x1 = x2 and z = y2.
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The general idea can be formalized as follows (Pottinger
& Halevy 2001). A view V covers a subset of goals C ⊆
body(Q) iff there is a pair 〈h, φ〉 where h : V ars(V ) →
V ars(V ) is a head homomorphism that is identity on
existential variables and satisfi es h(x) = h(h(x)) for
head variables,3 and φ : V ars(Q) → h(V ars(V )) is
a partial homomorphism such that φ(V ars(head(Q))) ⊆
h(V ars(head(V ))) and if φ(x) is an existential variable,
then all goals pi ∈ body(Q) that mention x are in C and
V ars(pi) ⊆ Dom(φ).4

Such coverings, described by tuples M = 〈V, φ, h, C〉,
are called MiniCon Descriptions (MCDs).5 For example,
the MCD that covers the fi rst goal of Q with the fi rst goal
of V1 is M = 〈V1, φ, h, {arc(x, y)}〉 where h = {x1 →
x1, y1 → y1} and φ = {x → x1, y → x1}. An MCD
defi nes an equivalence relation between the variables in Q
given by the non-empty subsets φ−1({x}) for x ∈ Ran(h).
In the example, φ−1({x1}) = {x, y} and thus x is equiva-
lent to y.

MiniCon computes a set M of MCDs and combine them
in order to build valid rewritings. The valid rewritings are
associated with combinations S = {M1, . . . ,Ml} ⊆ M
such that ∪{Ci : 1 ≤ i ≤ l} = body(Q) and Ci ∩ Cj = ∅
for all 1 ≤ i < j ≤ l.

To describe the combination process, consider one such
combination S and the least-restrictive equivalence relation
that agrees with all the equivalence relations defi ned by the
MCDs in S. Defi ne now the mapping ψ(x) equal to one
(fi xed) representative of the class [x] for x ∈ V ars(Q),
one (fi xed) representative of the class containing φ−1

i ({x})
if non-empty and x ∈ V ars(Vi), and x if x ∈ V ars(Vi)
and φ−1({x}) = ∅. The rewriting is then

R(ψ(x)) :− V1(ψ(h(x1))), . . . , Vl(ψ(h(xl))) .

For example, consider the MCD M from above, and M ′ =
〈V2, h

′, φ′, {arc(y, z)}〉 where h′ = {x2 → x2, y2 → y2}
and φ′ = {y → x2, z → y2}. These MCDs induce the
equivalence relation {{x, y}, {z}} and thus ψ is:

{x → x, y → x, z → z, x1 → x, y1 → y1, x2 → x, y2 → z}

that yields R(x, z) :− V1(x, y1), V2(x, z) equal to R3.
The MiniCon algorithm is, up to our knowledge, the

current state-of-the-art algorithm for computing maximally
contained rewritings. The algorithm works in two phases:
the fi rst phase computes a set M of minimal MCDs,6 and
the second phase forms all possible combinations of MCDs
into valid rewritings. The second phase, that works greedily
by picking up MCDs to cover Q, is easily implemented. The
fi rst phase, on the other hand, is diffi cult to implement and
we are not aware of any good implementation of it, or even
sure on how to implement it effi ciently.

3This condition makes up a normal form for head homomor-
phism, see the reference.

4This is Property 1 from (Pottinger & Halevy 2001).
5An MCD is just a description of a containment mapping. We

use the term MCD whether such description is minimal, or not. See
below for more on minimality.

6An MCD M = 〈V, h, φ, C〉 is minimal if there is no another
MCD M ′ = 〈V, h′, φ′, C′〉 such that C ′ ⊂ C, and h′ and φ′ are
restrictions of h and φ respectively. The set of minimal MCDs is
enough to generate a valid solution for the QRP.

It should be emphasized that although MiniCon aims to
generate the minimal solution R∗, there are no guarantees
for that. Indeed, it is not hard to design problems where
MiniCon generates non-minimal rewritings.

Propositional Encodings
Our approach is similar to MiniCon’s in the sense of fi rst
building a set of MCDs and then combining them. The main
contribution of this paper is however that we deal with both
tasks from a logical perspective. The idea is to build a propo-
sitional theory, called the MCD theory, such that its models
are in one-to-one correspondence with a set of MCDs suf-
ficient to build a solution. The MCDs can then be recov-
ered from the theory and combined into valid rewritings as
in MiniCon or, as we will see, the MCD theory can be repli-
cated into an extended theory such that its models are in cor-
respondence with valid rewritings.

We fi rst present the construction of the MCD theories and
then the extended theories. For the rest of this section, let us
consider a fi xed QRP Q = 〈P,Q, {Vi}n

i=1〉.

MCD Theories
Let us assume that the query Q has m goals and consider an
MCD 〈V, φ, h, C〉 for Q. In order to simplify the logical the-
ory, the information contained in 〈φ, h〉 can be summarized
with a relation τ ⊆ V ars(Q) × V ars(V ) with the sole re-
striction that the variables τx = {y ∈ V ars(V ) : (x, y) ∈
τ} are distinguished.7 We thus deal only with τ relations.

The MCD theory for Q, denoted by T (Q), has the follow-
ing variables:

1. {v0, . . . , vn} to indicate that the MCD uses view Vi; v0 is
used to indicate the null MCD,

2. {g1, . . . , gm} to indicate the goals in C,
3. {zj,k,i} to indicate that the jth goal in Q is covered by the

kth goal in Vi, and
4. {tx,y} to indicate that (x, y) ∈ τ .

The range of indices for the z variables depend on Q; e.g.
if K are the goals in Vi of the same type as goal gj , then k
ranges in K for zj,k,i. For t variables, x ranges in the num-
ber of variables in Q and y ranges in the maximum number
of variables in the views.

The theory T (Q) contains the following clauses:

Covering Clauses

C1. (At least of view is used):
∨n

i=0 vi

C2. (At most one view is used): vi ⇒ ¬vj for 0 ≤ i, j ≤ n,
C3. (Null view equals null): v0 ⇒ ¬gj for 1 ≤ j ≤ m,

C4. (Views are useful): vi ⇒
∨m

j=1 gj for 1 ≤ i ≤ n,

C5. (Subgoals are covered at most once): zj,k,i ⇒ ¬zj,l,i
for appropriate i, j, k, l with k �= l,

C6. (Scope of views): vi ⇒ ¬gj for such goals that can’t
be covered by Vi,

C7. (Consistency): vi∧gj ⇔
∨

zj,k,i for appropriate i, j, k.

7Indeed, from 〈φ, h〉 construct τ by letting (x, y) ∈ τ iff
φ(x) = h(y). On the other hand, from such τ form the least-
restrictive equivalence relation such that for all x, τx is contained
in an equivalence class. Then, choose a representative from each
class and define h(y) equal to it, and φ(x) equal to the representa-
tive of the class containing τx.
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These clauses follow directly from the defi nition of the vari-
ables. Note however that C7 is a double implication and thus
there isn’t a model satisfying zj,k,i and zj′,k′,i′ with i �= i′

since then vi and vi′ must hold in contradiction with C2.

Mapping Clauses
C8. (Dead variables): vi ⇒ ¬tx,y for all x, y with y /∈ Vi,
C9. (Head homomorphism): vi ∧ tx,y ⇒ ¬tx,y′ for all

existential variables y, y′ ∈ Vi,
C10. (Distinguished): vi ⇒ ¬tx,y for all distinguished x ∈

Q and existential y ∈ Vi,
C11. (Existential): vi ∧ tx,y ⇒ gj for all existential y ∈ Vi

and goals j that contain existential x ∈ Q,
C12. (Matching): vi∧zj,k,i ⇒ tx,y for all x and y that must

match if goal j in Q is covered by goal k in Vi.
Clauses C10 say that τx must be a subset of distinguished
variables, and C11 that if x is mapped into an existential
variable, then all goals containing x must also be mapped.
Clauses C12, on the other hand, make the mapping.

Minimization Clauses
C13. (1-1 on ∃ vars): vi ∧ tx,y ⇒ ¬tx′,y for x, x′ ∈ Q, y ∈

Vi and x is existential,
C14. (If the view has no existential variables, the MCD cov-

ers at most one goal): vi ∧ gj ⇒ ¬gk.
Strictly speaking, clauses C13–C14 are not necessary for the
soundness and completeness of the theory, yet they often re-
duce the number of MCDs generated. This reduction is due
to the fact that if 〈V, h, φ, C〉 is a minimal MCD such that V
is a view with only distinguished variables, then |C| = 1.

The theory T (Q) is the collection of all clauses generated
by rules C1–C14. A model ω for T (Q) either satisfi es v0
and is called null, or defi nes an MCD Mω = 〈V, τ, C〉 where
V = Vi if ω |= vi, C = {gj : ω |= gj} and τ = {(x, y) :
ω |= tx,y}. It is not hard to show

Theorem 4 Let Q be a QRP. If M is a minimal MCD for
Q, then there is ω ∈ Models(T (Q)) such that M = Mω . If
ω ∈ Models(T (Q)), then ω is null or Mω is an MCD.

The structure of a query is an undirected graph with nodes
equal to the goals of the query and edges between goals
that share common variables. Chain (resp. star) queries are
queries with a chain (resp. star) structure. A chain query is
called a 2-chain if the query has exactly two distinguished
variables that appear at the extremes of the chain. A 2-chain
(resp. chain/star) QRP is a QRP where the query and all
views are 2-chain (resp. chain/star).

Theorem 5 Let Q be a 2-chain QRP. If T (Q) |= ω then ω
is null or Mω is a minimal MCD for Q. Thus, for 2-chains,
the set of MCDs associated to T (Q) coincides with those
computed by MiniCon.

Extended Theories
Theorem 2 tells us that a minimal rewriting has at most the
same number of goals as the query and then, since each
MCD covers at least one goal, only rewritings with at most
that number of MCDs should be considered. Therefore, the
extended theory is built by conjoining m copies of the MCD
theory, indexed with superscripts t denoting the t-th copy,
with the clauses:
C15. (Cover all goals):

∨m
t=1 gt

j for 1 ≤ j ≤ m,

or

or or or or

and and

and and and and and and and and

~A ~BB C ~D D ~CA

Figure 1: A decomposable and deterministic NNF.

C16. (Disjunctive covering): gt
j ⇒ ¬gs

j for 1 ≤ s �= t ≤ m,

C17. (Symmetries): gt
i ⇒

∨i−1
j=1 gt−1

j for 1 ≤ i, t ≤ m.

Clauses C15 say that all goals must be covered, C16 that
each goal is covered at most once, and C17 break symme-
tries by enforcing an order upon the copies of the theories.

Decomposable Negation Normal Form
Knowledge compilation is the area in AI concerned with
the problem of mapping logical theories into suitable frag-
ments that make certain desired operations tractable (Sel-
man & Kautz 1996; Cadoli & Donini 1997). For exam-
ple, propositional theories can be compiled into Ordered Bi-
nary Decision Diagrams (OBDDs) making a large number
of operations tractable (Bryant 1992). A more recent com-
pilation language is Decomposable Negation Normal Form
(DNNF) (Darwiche 2001). DNNFs support a rich set of
polynomial-time operations, are more succinct than OBDDs
(Darwiche & Marquis 2002), and have been recently used in
non-deterministic planning (Palacios et al. 2005).

A propositional theory is in Negation Normal Form
(NNF) if it is constructed from literals using only conjunc-
tions and disjunctions (Barwise 1977). An NNF can be rep-
resented as a directed acyclic graph in which leaves are la-
beled with literals and internal nodes are labeled with ∧ and
∨; see Fig. 1 for an example.

An NNF is decomposable (DNNF) (Darwiche 2001) if
for each conjunction

∧
i φi, the set of variables in each con-

junct are pairwise disjoint; i.e. V ars(φi) ∩ V ars(φj) = ∅
for i < j. A DNNF is deterministic (d-DNNF) (Darwiche
2001) if for each disjunction

∨
i φi, the disjuncts are pair-

wise logically contradictory; i.e. φi ⇒ ¬φj for i < j. The
NNF in Fig. 1 is decomposable and deterministic. DNNFs
support a number of operations, including model counting,
in polynomial time; d-DNNFs support additional operations.

We use d-DNNFs to compute the MCDs and rewritings
associated to the propositional theories. The d-DNNFs
are obtained from the CNF theories using a general and
publicly-available CNF to d-DNNF compiler. The com-
piler’s algorithm is similar to the DPLL algorithm for SAT
but enhanced with advanced techniques such as clause learn-
ing and caching.

Experiments
We evaluated the proposed method, called MCDSAT, and
the MiniCon algorithm over a large benchmark that in-
cludes problems of different sizes and structures. We didn’t
consider other algorithms like the bucket algorithm (Levy,
Rajaraman & Ordille 1996) or the inverse-rules algorithm
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Figure 2: Compilation times of MCD theories for MCDSAT versus the time to generate MCDs for MiniCon. Each data point is
the average over 10 runs. Time is in seconds. Missing points refer to early termination due the resource bounds.

CNF d-DNNF
# goals # vars # clauses # nodes # edges

3 185.2 4,575.3 286.0 677.8
5 369.8 6,818.5 651.6 3,884.3
7 643.7 10,377.8 1,165.4 12,021.0
3 555.6 13,742.9 534.3 1,518.2
5 1,849.0 34,164.5 1,881.7 13,980.3
7 4,505.9 72,835.6 5,841.9 116,858.9

Table 1: Average sizes of MCD (top) and extended (bottom)
theories for chain queries with half variables distinguished.

(Qian 1996; Duschka & Genesereth 1997a) since (Pottinger
& Halevy 2001) shows MiniCon to be superior.

Two experiments were run for each benchmark. The fi rst
one measured the time to compile the MCD theory and the
time to generate the MCDs for MCDSAT, and the time to
generate the MCDs for MiniCon. The second one measured
the time to compile the extended theory for MCDSAT, and
the time to compute the rewritings for MiniCon.

We considered problems with different structures: 2-
chains, chains with all/half variables distinguished, stars
with half/all variables distinguished, and random.

Some of these problems have exponential number of
MCDs, rewritings or both. One clear advantage of the logi-
cal approach over MiniCon is that, once the theory is com-
piled, one can repeatedly ask for a fi xed number of MCDs or
rewritings in linear time, whereas MiniCon must start from
scratch each time. Thus, the logical theories can be thought
as compact repositories of MCDs or rewritings.

Implementation
MCDSAT translates QRPs, specifi ed in a suitable format,
into a propositional formula in CNF which is then com-
piled into d-DNNF using the publicly-available c2d com-
piler (Darwiche 2004).8 For MiniCon, we made an imple-
mentation in Java following the description in (Pottinger &
Halevy 2001) and some advice from R. Pottinger. Addi-
tionally, we used the implementation of the fi rst phase of
MiniCon of (Afrati, Li & Ullman 2001).

Overview of Results
For lack of space, we focus on chain and star problems either
with 80 views and different number of subgoals, or with a

8MCDSAT will be available in our Web page; c2d can be found
at http://reasoning.cs.ucla.edu/c2d.

query with 8/6 subgoals and a different number of views.
These are good representative of other results; the complete
benchmark contains others type of problems with different
number of subgoals and views. The experiments were run in
a cluster of 2GHz AMD processors each with 1Gb of RAM.
Resource bounds of 30 minutes of time and 1Gb of memory
were enforced in each experiment.

Fig. 2 shows the results for the fi rst experiment. The
curves are plotted in logarithmic scale where each point
stands for the average compilation time of 10 experiments.
As shown, MiniCon outperforms MCDSAT in the smaller
instances but, as the number of goals in the query increases,
MCDSAT shows an improved performance over MiniCon.
Some of the improvement can be attributed to a better im-
plementation of the SAT engines, yet that couldn’t explain
the exponential gap depicted. Also note that for bigger
instances, MiniCon isn’t able to fi nish within the given
bounds. Table 1 shows the sizes of the CNF and compiled
formulae for the propositional theories for chain queries
with half variables distinguished.

The results for the second experiments are shown in
Fig. 3. The results are similar to the fi rst experiment where
MCDSAT outperforms MiniCon on the bigger instances.
The results for other structures and number of views are con-
sistently similar to these curves.

Finally, we did an experiment aimed to harm MCDSAT
with a problem that have an exponential number of non-
minimal MCDs, all that appear as models of the theory. The
QRP is:

Q(x, y) :− p1(x, z1), q1(z1, y), . . . , pk(x, zk), qk(zk, y) ,

V1(x, y) :− p1(x, z1), q1(z1, y) ,

...

Vk(x, y) :− p1(x, z1), q1(z1, y), . . . , pk(x, zk), qk(zk, y) .

It can be shown that MiniCon computes only minimal
MCDs whose number is k(k + 1)/2 while MCDSAT com-
putes all MCDs whose number is 2k+1 − k − 2. However,
even in this extreme example, MCDSAT is able to generate
the MCDs faster than MiniCon; see Table 2.

Conclusions and Future Work
We have proposed a novel method for solving QRPs using
propositional theories. The approach, grounded on the idea
of MCDs from MiniCon, consists of building a theory such
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Figure 3: Compilation times of extended theories for MCDSAT versus the time to generate valid rewritings for MiniCon. Each
data point is the average over 10 runs. Time is in seconds. Missing points refer to early termination due the resource bounds.

MiniCon MCDSAT
k # MCDs time # MCDs time
4 10 0.6 26 0.0
6 21 1.6 120 0.1
8 36 11.2 502 0.2
10 55 80.1 2,036 0.4

Table 2: Problem with exponential # of non-minimal MCDs.

that its models are in correspondence with the MCDs from
which a solution can be built.

The experimental results show a couple of order-of-
magnitude improvement on time for the generation of the
MCDs over MiniCon. These MCDs can be combined as in
MiniCon, or with an extended logical theory for which its
models are in correspondence with the rewritings.

We think that these theories can be further extended into
templates or schemata for answering queries of certain form.
For example, by using additional propositional variables, a
general logical theory for answering chain queries of length
at most N can be constructed and compiled. Thus, in pres-
ence of such a query, certain propositional variables are in-
stantiated so that the resulting models constitute a solution.
Such general theories would be bigger and thus harder to
compile, yet once compiled they would provide rewritings
in polynomial time in the size of the compiled theory, and
thus the preprocessing (initial compilation) can be amortized
over multiple runs. We also think that other Databases and
Data Integration problems can be addressed from a logical
perspective. We plan to work along these lines.
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