
Multiple Symmetries in Sliding-Tile Puzzles: First Experiments

César Romero Julio Castillo Blai Bonet
Departamento de Computación

Universidad Siḿon Boĺıvar
Caracas, Venezuela

{cesar,julio}@gia.usb.ve , bonet@ldc.usb.ve

Abstract

Since their introduction, symmetries have proven to be very
powerful for the solution of different tasks related to heuris-
tic search on sliding-tile puzzles. The most relevant being
the boost of the heuristic values stored in Pattern Databases
(PDBs), the construction time and storing size of PDBs,
and the reduction in the number of written states in exter-
nal search algorithms. Indeed, in the later, symmetries are
almost a necessity in order to perform such complete search
in acceptable time and space. All these applications only use
single symmetries. As it turns out, multiple symmetries can
also be utilized with very good results. In this paper, we ex-
plore the application of multiple symmetries on sliding puzzle
problems and present some preliminary experimental results
on complete explorations of state spaces using an external
search algorithm. As it is shown, the net result is a 4-fold
reduction in the number of written states with respect to an
implementation that utilizes no symmetries.

Introduction
The first use of reflection symmetries in the sliding-tile puz-
zles seems to appear in Culberson and Schaeffer’s seminal
work on Pattern Databases (PDBs) (Culberson & Schaef-
fer 1998). In such work, symmetries are used to boost the
heuristic value of a states by taking the maximum of the
PDB value fors and the PDB value for the reflection ofs.

Since then, symmetries have proven to be very powerful
for solving sliding-tile puzzles in one form or another. Sym-
metries have been used to boost the heuristic value of pattern
databases (Korf & Felner 2002; Felner, Korf, & Hanan 2004;
Felneret al. 2005), in a dual IDA* algorithm that switches
between states and their reflections along paths dynamically
(Zahaviet al. 2008), and to reduce the number of states writ-
ten to disk in a complete exploration of the state space using
an external search algorithm (Korf & Schultze 2005). The
latter is a dramatic example of the potential savings reached
by symmetries as their use permit to reduce the number of
written states by half reducing the disk needs from near 3TB
to 1.4TB.

Another application of symmetries, already noted in the
work of Culberson and Schaeffer, is to reduce the computa-
tion time and size of large PDBs. Indeed, a single symmetry
can reduce the size and computation time by almost a half
yet special care must be taken in order to preserve compact

ranking functions. Since PDBs have become the source of
the best and most powerful heuristics for diverse problems
(Korf 1997; Edelkamp 2001; Felner, Korf, & Hanan 2004;
Holte et al. 2006), the effective use of symmetries then be-
comes a fundamental tool.

All these applications always utilize one symmetry of the
given puzzle among several candidates. However, given the
success stories just described, we asked whether it was pos-
sible to utilize more than one symmetry simultaneously and,
in such case, what would be the benefits.

It turns out that the answer is affirmative, and our first
findings show that the benefits are quite good. Indeed, the
use of one symmetry reduces in half the number of written
states in an external search algorithm, yet the use of two
symmetries simultaneously reduces the latter by a factor of
2 for a total reduction by a factor of 4.

In this paper, we describe the use of multiple symmetries
in three fundamental tasks related to the sliding-tile puzzles:
the boost of heuristic values given by PDBs, the reduction in
time and size for the construction of PDBs, and the reduction
in the number of written states in complete explorations of
state spaces using external search algorithms. Besides these
contributions, the paper offers a comprehensive exposition
of symmetries that we also consider part of the contribution.

The paper is organized as follows. In the next section,
we offer a complete exposition of permutations and sym-
metries in the puzzle, and derive the equations that relate
reflected paths and states with respect to their unreflected
counterparts. Then, we show how symmetries can be ex-
ploited in the three fundamental tasks, and explain how the
multiple symmetries can be used concurrently instead of a
single one. Some preliminary experiments for the case of
complete explorations of state spaces using external search
are presented. The paper finishes with discussions of future
work and conclusions.

Permutations and Symmetries
We use permutations to define the different elements that
compose the sliding-tile puzzles, and then utilize them to
define symmetries on the puzzle, paths and symmetric paths,
and the relations among such concepts.

We assume the reader is knowledgeable with the sliding-
tile puzzles and that has some elementary knowledge of per-
mutations. In this paper, the composition of two permu-



tationss and t is denoted by multiplications · t, or even
st, and corresponds to the permutation(st)(i) = t(s(i)).
All permutations will be defined over sets of the form
{0, . . . , n − 1} denoted by[n]. The set of permutations
over [n] with composition form a multiplicative group; in
particular, the composition operation is associative and each
permutations has an inverses−1.

Everything is a Permutation
In our view of the puzzle, everything constitutes a permuta-
tion: states (configurations) of the puzzle and operators. If
we are dealing with an = rows× cols puzzle, all permuta-
tions are over[n]. If s denotes a configuration, thens(i) is
the tile at positioni with 0 denoting the blank.1

For simplicity, let us assume for the moment a3× 3 puz-
zle. In order to represent the operators as permutations, we
qualify each operator with the blank position. Thus, for ex-
ample, for the ‘up’ operator that moves the blank one posi-
tion up in the puzzle, there are 6 operatorsup3, up4, . . . , up8
such thatupi refers to the operator when the blank is in posi-
tion i. As the up operator cannot be applied when the blank
is in the first row, there is noupi operator fori = 0, 1, 2.

Each operator can be understood as a permutation. For
example, the operatorup5, that moves the blank up when it
is located in position 5, is the permutation

up5 =
(

0 1 2 3 4 5 6 7 8
0 1 5 3 4 2 6 7 8

)
since if s is a configuration of the puzzle with the blank at
position 5, thenup5 · s is the configuration that results after
moving the blank up one position. Observe that two opera-
tors can refer to the same permutation, e.g.up5 = down2

and in general every operator equals its inverse operator.
If we apply a sequence of movements, saya1, a2, . . . , am

to states, then the resulting state can be expressed as

(am · · · (a2(a1s)) · · · ) = (am · · · a1)s = πs

whereπ is themacro-operator(permutation) that results of
applying all operators in the given order, i.e.π = am · · · a1.
We call from now on, such macro-operators as paths as they
correspond to the different paths in the search tree generated
from a given initial configurations0. A sequence of opera-
tors applicable ats is called a valid sequence or path ats. If
π is a valid path ats0 that leads to states = πs0, then we
say thats is reached byπ.

Symmetries
A symmetryD of the puzzle is a permutation of the tiles in
the puzzle, i.e. a permutation over[n].

The intuitive idea behind the use of symmetries is the fol-
lowing. A symmetryD induces a mapping (automorphism)
over the paths in the search tree rooted at the initial config-
urations0 in which the image of a pathπ is denoted byπD.
If s belongs to the search tree, then there is a pathπ that in-
ducess, and so we can talk about the statesD that is reached

1An alternative representation is thats(i) denotes the position
of tile i. Both representation are equivalent yet the mathematical
formulation changes a bit.

by πD. If πD has the same length asπ, thens andsD are
at the same depth in the tree, and furthermore, ifsD can be
computed efficiently froms, then we can manage to prune
sD from the search as no information is loss.

A formalization of above intuition must meet three re-
quirements:
R1. if π is a path in the search tree, thenπD is also a path

in the search tree, and vice versa,

R2. the length ofπD equals the length ofπ, and

R3. sD ands must be easily computable from each other.
In particular, there should be no need to keep track of
either pathπ or πD explicitly.

Let s be a state in the search tree andπ its inducing path.
In order to defineπD, we ask for the following property

Ds = D(πs0) = (Dπ)s0 = (πDD)s0 = πD(Ds0)

where the third equality is the property we require. In words,
that the symmetric image ofs should be equal to the state
reached byπD on the symmetric image ofs0.

This equation impliesDπ = πDD and thusπD =
DπD−1. Therefore, ifπ = a1a2 · · · an, then

πD = Da1a2 · · · anD−1

= (Da1D
−1)(Da2D

−1) · · · (DanD−1)

= aD
1 aD

2 · · · aD
n

whereaD
i

.= DaiD
−1 is defined as thesymmetric operator

of ai. Henceforth, requirement R2 is clearly satisfied. The
pathπD is also called the symmetric or reflected path.

For example, letD be areflectionof the puzzle along its
main diagonal

D =
(

0 1 2 3 4 5 6 7 8
0 3 6 1 4 7 2 5 8

)
.

UnderD, the operators right, down, left and up become the
operators down, right, up and left respectively; e.g.upD

5 =
left7, rightD7 = down5, downD

0 = right0, etc.
Once reflected paths are defined, requirement R1 simply

becomes a property of the symmetry with respect to the ini-
tial configuration:

Definition 1 (Admissible Symmetry) A symmetryD is ad-
missiblewith respect to an initial configurations0 if and
only if for everyvalid pathπ at s0, πD is alsovalid at s0.

The only admissible symmetries for the sliding-tile puz-
zles are reflections along its main diagonals for square puz-
zles, or horizontal reflections along the middle column for
puzzles with odd number of columns, or vertical reflections
along the middle row for puzzles with odd number of rows.
Furthermore, in each case, the blank in the initial configura-
tion must be on the reflection axis since, to achieve admissi-
bility, the blank must not be moved by the reflection. For any
such symmetryD, we haveD = D−1 and thus(aD)D = a
andaD = DaD for all operatorsa.

Finally, for the last requirement, ifs is reached byπ, then
to computesD (that is equal toπDs0 by definition) consider
an expression of the formsD = DsE:

πDs0 = DsE = D(πs0)E = πD(Ds0E) .



We needs0 = Ds0E and thusE must bes−1
0 D−1s0. Then,

sD can be computed in constant time, in the length ofπ, as
DsE. Similarly, forF = s−1

0 Ds0, s = D−1sDF .

Exploiting Symmetries
There seem to be three major application of symmetries
in sliding-tile puzzles. First, they are used to improve the
heuristic values that arise from pattern databases (Culberson
& Schaeffer 1998). Second, they can be used to reduce the
construction time and storage of large PDBs. (This is appli-
cation is mentioned in (Culberson & Schaeffer 1998) but we
have not found further references of it, even in papers that
deal with the compression of PDBs (Felneret al. 2004).)
Third, they are used to reduce the number of states written
to disk during a complete exploration of the puzzle’s state
space with an external search algorithm (Korf & Schultze
2005). In the last application, the number of written states
is reduced in half and thus the space requirements. Also, the
overall search time is also reduced in about half since the I/O
operations are the most critical during an external search.

In this section, we explain how to use symmetries in above
three applications.

Pattern Databases
The standard application of symmetries with PDBs con-
sists to improve the heuristic valueh(s) = PDB[s] as
h′(s) = max{PDB[s], PDB[sD]}, wherePDB[s] refers
to the value stored fors in the pattern database. If the PDB
is admissible, thenh′ is also admissible sinces andsD are
at the same depth in the search tree and thus at the same dis-
tance from the goal. This boosting have shown to be very ef-
fective in (Culberson & Schaeffer 1998; Korf & Felner 2002;
Felner, Korf, & Hanan 2004). Another type of boosting also
based on symmetries and called dual lookups is defined in
(Felneret al. 2005).

We can also apply symmetries to reduce the construction
time of PDBs. Typically, a PDB is computed by a retrograde
analysis with a breadth-first search that start at the goal pat-
tern and spans the whole pattern space. The symmetries be-
have similarly with states and patterns.

For example, consider an abstraction that replaces tiles 5,
6, 7 and 8 by a single constant ‘x’. If

p =
(

0 1 2 3 4 5 6 7 8
x 1 x 2 0 x 3 x 4

)
is a pattern, then

up4 · p =
(

0 1 2 3 4 5 6 7 8
x 0 x 2 1 x 3 x 4

)
is the pattern that results of moving the blank up.

The PDB can be constructed more efficiently with a di-
agonal symmetryD using a breadth-first search algorithm
seeded at the goal pattern(

0 1 2 3 4 5 6 7 8
0 1 2 3 4 x x x x

)
,

and thatdoes not explore patterns that have the blank in the
upper half of the puzzle(as defined byD); that is, that does

not insert such patterns into the queue. Then, whenever a
patternp is picked from the queue at depthd, not only the
valuePDB[p] = d is set but also the valuePDB[pD] = d.

There is an important detail that must explained when
making such construction. Since every patternp typically
represents two pattern in the pattern space, i.e.p andpD,
special care is needed when the blank is on the diagonal (the
symmetry axis). In this case,p still can represent two dif-
ferent patterns both with the blank in the same position, and
thus when expanding such patterns, the reflectionpD should
also be computed and expanded during the search.

This technique may reduce in half the construction time of
the pattern database. As also noted in (Culberson & Scha-
effer 1998), we can even use symmetries to reduce the size
of the PDB by storing only the entries forp and not forpD.
This however needs special handling to permit compact and
efficient indexing into the PDB.

External Search

We explain how to use symmetries within an external fron-
tier search that avoid the re-generation of interior nodes.
Since the search space for the puzzle is undirected, i.e. each
operator has an inverse, it is enough to associate with each
state a list of forbidden operators. Thus, every time that state
s is reached from states′ through operatora, then the in-
verse operatora−1 is inserted into the forbidden list fors.
At expansion time, only operators that do not appear in the
forbidden list fors are applied ats.

An external frontier search works by processing the nodes
in the search tree layer by layer and never storing the interior
nodes of the tree. A typical iteration consists of an expansion
phase followed by a duplicate detection phase. The expan-
sion of all nodes in thekth layer generates the node at the
(k+1)th layer, duplicates included. Then, such duplicates at
the(k+1)th layer are removed either using sort-based dupli-
cate detection (Korf 2003), hash-based duplicate detection
(Korf 2004) or other (Zhou & Hansen 2004). Furthermore,
each non-duplicate node in the(k + 1)th layer is accounted
for in the statistics. At the end of the duplicate detection, the
nodes at layerk are deleted, and the algorithm moves on to
the expansion phase for the nodes at layerk + 1.

When using a single symmetryD, each nodes encoun-
tered during the search represents at most two states{s, sD}.
This set is called the class ofs moduloD and is denoted by
[s]D. SinceD = D−1, we have that for all statess, s′, either
[s]D = [s′]D or [s]D∩ [s′]D = ∅, and this is the fundamental
property that permit the successful exploitation of symme-
tries. Otherwise, double counting of states may occur if this
property does not hold.

The next step is to designate one and only one state in
[s]D as the class representative. For example, with the di-
agonal symmetryD, we have that ifs has the blank above
the diagonal, thensD has the blank below the diagonal. In
this case, states with the blank below the diagonal can be
designated as representatives. However, ifs has the blank
in the diagonal, thensD also has it in the diagonal. In this
case, the representative must be designated in another way,
e.g. lexicographically.



The idea is to substitute each state encountered during the
search by its representative. Thus, during expansion, each
generated node is replaced by its representative, and during
duplicate detection, each non-duplicate is accounted for the
number of nodes it represents, either 1 or 2 whethers = sD.
Moreover, during expansion, ifs is reached froms′ through
operatora, then operatora−1 is insert into the forbidden list
as well as(aD)−1 if s = sD.

Multiple Symmetries
A natural extension of above results is obtained by using
multiple symmetries instead of a single symmetry.

Let us consider the setG = {D,A} of the diagonal sym-
metries for the3× 3 puzzle; the reflectionD along the main
diagonal and the reflectionA along the main antidiagonal:

D =
(

0 1 2 3 4 5 6 7 8
0 3 6 1 4 7 2 5 8

)
,

A =
(

0 1 2 3 4 5 6 7 8
8 5 2 7 4 1 6 3 0

)
.

This time, for each states, the class ofs modulo G
is the set {s, sD, sA, sAD, sDA} which coincides with
{s, sD, sA, sAD} as the permutationsA and D commute.
As before, it is not difficult to show that for all statess, s′,
then either[s]G = [s′]G or [s]G ∩ [s′]G = ∅.

In order to use both symmetries concurrently, it is re-
quired that the initial state (or goal state in case of PDBs)
to be admissible with respect to both symmetries simultane-
ously, i.e. that the blank be in position 4. So, let us assume
that in this case the initial state is

s0 = s3×3 =
(

0 1 2 3 4 5 6 7 8
4 1 2 3 0 5 6 7 8

)
.

We show how an external search algorithm (and similarly
the construction of a PDB) only needs to store states in
which the blank is in position 4, 6, 7 or 8, and can safely
discard all other states. For each states, define the represen-
tative of [s]G as a fixed state for which the blank is either in
position 4, 6, 7 or 8. Finding representatives for states that
have the blank in{0, 1, 2, 3, 5, 7} is easy as it can be done
with the application of a permutation, yet if the blank is in
{4, 6, 8}, then some of their images can have the blank also
in {4, 6, 8} and the computation might require lexicographic
ordering. Figure 1 shows both diagonalsD andA, and the
permutations needed to compute the representative when the
blank’s position is in{0, 1, 2, 3, 5, 7}.

During the expansion phase, each states is substituted by
its representative, and some of the operators are inserted into
the forbidden list fors: a−1 is always inserted, and(aD)−1,
(aA)−1 and(aAD)−1 are inserted whethers = sD, s = sA

ands = sAD (some of these may happen simultaneously).
The last three cases are only possible when the blank is over
some symmetry axis.

During duplicate detection, each non-duplicate is ac-
counted for the correct number of times. In this case, each
such state may represent either 1, 2 or 4 other states as given
in Table 1. The case of a unit count is interesting as this is
only possible when the blank is in the middle and all images

DA

DADA

A

876

543

210

I

D

Figure 1: The diagonal and antidiagonal reflections in the
3 × 3 puzzle. Only states that have the blank in positions 4,
6, 7 or 8 need to be written to disk in a complete exploration
of the state space. The right panel shows the symmetries that
need to be applied to transform a given state into one with
the blank in{4, 6, 7, 8}.

condition count
s = sD, s = sA 1
s = sD, s 6= sA 2
s 6= sD, s = sA 2

s 6= sD, s 6= sA, sA = sD 2
s 6= sD, s 6= sA, sA 6= sD 4

Table 1: Different possible counts for each states encoun-
tered during a complete exploration of the state space start-
ing with the blank at the middle and using two reflectionsD
andA.

are identical. In the3 × 3 puzzle with theD andA sym-
metries, there are only 7 such states (not counting the initial
state): 3 states at depth 24 and 4 states, in the last layer, at
depth 30. The following is one such state at depth 24(

0 1 2 3 4 5 6 7 8
4 5 2 7 0 1 6 3 8

)
.

We can also consider other sets of reflections. For ex-
ample, the setG = {H,V } for the horizontal and vertical
reflections

H =
(

0 1 2 3 4 5 6 7 8
2 1 0 5 4 3 8 7 6

)
,

V =
(

0 1 2 3 4 5 6 7 8
6 7 8 3 4 5 0 1 2

)
.

This case is very similar to the case of the diagonal re-
flections {A,D}. A more interesting case arises with
G = {D,H} as these symmetriesdo not commute(see
Fig. 2. Therefore, in order to guarantee the fundamen-
tal property, we need to consider elements other than
{s, sD, sH , sDH}. Indeed, one needs to consider the eight
elements {s, sD, sH , sHD, sDH , sDHD, sHDH , sDHDH}.
Nonetheless, once we have defined the classes moduloG,
the procedure is the same. During expansion, every time a
states is generated,s is replaced by a fixed representative
chosen from[s]G and the forbidden list is updated. Then,
during duplicate detection, each non-duplicate is accounted
for a fixed number of times.



876

543

210

DHD
HDH

H

D HD

DH

H
D

Figure 2: The diagonal and horizontal reflections in the3×3
puzzle. Only states that have the blank in positions 0, 1 or
4 need to be written to disk in a complete exploration of the
state space. The right panel shows the symmetries that to be
applied to transform a given state into one with the blank in
{0, 1, 4}.

Above discussion applies either to an external search al-
gorithm or the construction of PDBs. In the latter case, each
time a state is removed from the queue, not only it but all the
states in its class moduloG, obtain a value in the PDB. Like-
wise, only representative states are inserted into the queue.

It is important to remark that a group of symmetries can only
be applied to a search tree that is rooted in a state for which
all symmetries are admissible. This is the reason for placing
the blank at the middle for the groups{D,A}, {H,V } and
{D,H}. Observe that in the4 × 4 puzzle, there is no state
that makes more than one symmetry admissible since there
is no middle position. Thus, at the moment, we do not know
how to exploit multiple symmetries in the4× 4 puzzle.

The5× 5 puzzle is different as there is a middle position
and also the horizontal and vertical symmetries are admissi-
ble. Although, at the moment, it seems impossible to make a
complete exploration of the state space (even with multiple
symmetries), multiple symmetries can be used to reduce the
space needed to store PDBs for the5× 5 puzzle.

Preliminary Experiments
We have performed some preliminary experiments with
multiple symmetries. In a first experiment, we performed
a complete exploration of the3 × 3 puzzle with the group
of symmetries{D,A} starting at the states3×3 that has the
blank in the middle.

The results are shown in Table 2 that contains, per layer
in the search, the number of states in the layer, the number
of sterile states (i.e. those that have no children as their for-
bidden lists are full, and thus they do not need to be written
to disk), and the number of written states. Additionally, the
table presents the distribution of counts for every layer in the
tree. For example, at depth 18, there are11, 132 states from
which196 are sterile. The search algorithm generates at this
layer, 2, 795 representatives since2, 771 of them represent
4 states and the remaining24 represent 2 states for the total
11, 132 = 2, 599× 4 + 24× 2. In the table, all rows satisfy

#states = 4× (#×4) + 2× (#×2) + (#×1) ,

#sterile + #written = (#×4) + (#×2) + (#×1) .

The number of representatives that represent 4 states each
makes up99.74% of the total number of states. Observe the
ratio of21.70% of written nodes. The same complete explo-
ration without the use of symmetries needs to write86.10%
of states (recall that sterile states are not written), and the ex-
ploration with one symmetry needs to write43.41% of the
total number of states. Thus, the addition of an extra sym-
metry reduces the latter number by 2. We also performed
experiments with the symmetries{V,H} obtaining results
similar to Table 2.

A much larger experiment was conducted for the3 × 5
puzzle, the largest before the4 × 4 puzzle in which we can
apply multiple symmetries. In this case, since the puzzle is
rectangular, we applied vertical and horizontal symmetries
{V,H} starting with a state with the blank at the middle.
The results are shown in Table 3 (at the end of the paper)
with the same format as Table 2. This time the number of
representatives that represent 4 states each is99.99% of the
total number of states. Again, the number of nodes written
to disk is only21.89% of all states that means around 37GB
of space in the largest layer. The exploration with one sym-
metry writes43.79% of states and requires around 75GB
of space for the largest layer, while the exploration without
symmetries writes87.5% of the states.

Future Work
Our results show that the use of multiple symmetries can
have a profound impact on the performance of mainstream
techniques in heuristic search, at least for the sliding-tile
puzzles. Far from offering a definite answer on the role of
symmetries, we believe that this work raises more questions
than the answers it provides.

Among such questions, we are specially interested in the
following. First, there is the issue of using non-commutative
groups of symmetries, e.g. the group{D,H} in the3 × 3
puzzle shown in Fig. 2, which seems to have a great potential
to reduce the number of explored states. Furthermore, there
is also the question of using more than two symmetries on
the puzzle. These two issues are closely related.

Second, as mentioned earlier, we cannot directly use two
symmetries over the4 × 4 puzzle as there is no position for
the blank that makes both symmetries admissible. There-
fore, we are left with the question of how to exploit two
symmetries in this puzzle. This question is closely related
to the question of how to relax the admissibility requirement
on symmetries. Among other things, we think that the puz-
zle might be embedded or mapped into another instance for
which admissible symmetries exist.

A third open question is whether multiple symmetries can
also be applied to other permutation games. A very attrac-
tive domain is a variation of sliding-tile puzzles in which the
first row is “connected” with the last row, and the leftmost
column is also “connected” with the rightmost column, mak-
ing up a torus-shaped puzzle. In such game, all permutations
become admissible, since there are no restrictions on the op-
erators, and thus we can apply any number of symmetries
concurrently.

Another permutation game that seems attractive is Ru-
bik’s Cube. In the cube, all operators are applicable at every



d states sterile written ×1 ×2 ×4
0 1 0 1 1 0 0
1 4 0 1 0 0 1
2 8 0 2 0 0 2
3 8 0 2 0 0 2
4 16 0 4 0 0 4
5 32 0 8 0 0 8
6 60 2 14 0 2 14
7 72 0 18 0 0 18
8 136 0 36 0 4 32
9 200 0 50 0 0 50

10 376 4 90 0 0 94
11 512 0 128 0 0 128
12 964 6 236 0 2 240
13 1,296 0 324 0 0 324
14 2,368 18 576 0 4 590
15 3,084 0 771 0 0 771
16 5,482 51 1,323 0 7 1,367
17 6,736 4 1,680 0 0 1,684
18 11,132 196 2,599 0 24 2,771
19 12,208 33 3,019 0 0 3,052
20 18,612 482 4,179 0 16 4,645
21 18,444 112 4,499 0 0 4,611
22 24,968 1,107 5,149 0 28 6,228
23 19,632 327 4,581 0 0 4,908
24 22,289 1,432 4,174 3 63 5,540
25 13,600 385 3,015 0 0 3,400
26 11,842 1,206 1,773 0 37 2,942
27 4,340 272 813 0 0 1,085
28 2,398 377 238 0 31 584
29 472 30 88 0 0 118
30 148 45 0 4 10 31

181,440 6,089 39,390 8 228 45,244

Table 2: Complete exploration of the3 × 3 puzzle’s space
starting at the states3×3, with the blank in the middle, and
with the two diagonal symmetries{A,D}. The table con-
tains, per level, the number of total, sterile and written states,
and the distributions of how many states are represented per
each state. The ratio (#written/#states) is21.70%.

configuration and thus every possible symmetry is admissi-
ble. It seems that we can designate one corner of the cube
as the marked corner and then consider three orthogonal di-
agonal symmetries along each dimension so that only states
that have the marked corner “above” the diagonal should be
explored. In this case, it would be also interesting to try
non-commutative symmetries in the cube.

Conclusions
We have revisited the role of symmetries in the sliding-tile
puzzles with emphasis on their usage with PDBs and exter-
nal search. In our exposition, we formally derived the equa-
tions that are commonly used with symmetries and showed
how and when multiple symmetries can be used concur-
rently in some puzzles. Although the use of (single) sym-
metries has been around for some time, we were not able to
find a formal derivation of the equations that rule their usage.

Our first experiments showed that by using two symme-
tries in an external search of the3× 3 and3× 5 puzzle, the
total number of states written to disk decreased to roughly
22% of the total thus improving by a factor of 2 the previous
approach that uses a single symmetry. We believe that the
use of non-commutative symmetries and/or the use of more
symmetries can reduce this number even more.

Several main questions remain open such as to how to use
non-admissible symmetries, how to use symmetries in other
permutation games, and others.

References
Culberson, J., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence14(3):318–334.
Edelkamp, S. 2001. Planning with pattern databases.Proc.
6th European Conf. on Planning, 13–24.
Felner, A.; Meshulam, R.; Holte, R. C.; and Korf, R. E.
2004. Compressing pattern databases.Proc. 19th National
Conf. on Artificial Intelligence, 638–641.
Felner, A.; Zahavi, U.; Schaeffer, J.; and Holte, R. C. 2005.
Dual lookups in pattern databases.Proc. 19th International
Joint Conf. on Artificial Intelligence, 103–108.
Felner, A.; Korf, R. E.; and Hanan, S. 2004. Additive pat-
tern database heuristics.Journal of Artificial Intelligence
Research22:279–318.
Holte, R. C.; Felner, A.; Newton, J.; Meshulam, R.;
and Furcy, D. 2006. Maximizing over multiple pattern
databases speeds up heuristic search.Artificial Intelligence
170:1123–1136.
Korf, R. E., and Felner, A. 2002. Disjoint pattern database
heuristics.Artificial Intelligence134:9–22.
Korf, R. E., and Schultze, P. 2005. Large-scale, parallel
breadth-first search.Proc. 20th National Conf. on Artificial
Intelligence, 1380–1385.
Korf, R. E. 1997. Finding optimal solutions to rubik’s
cube using pattern databases.Proc. 14th National Conf. on
Artificial Intelligence, 700–705.
Korf, R. E. 2003. Delayed duplicate detection: Extended
abstract.Proc. 18th International Joint Conf. on Artificial
Intelligence, 1539–1541.
Korf, R. E. 2004. Best-first frontier search with delayed
duplicate detection.Proc. 19th National Conf. on Artificial
Intelligence, 650–657.
Zahavi, U.; Felner, A.; Holte, R.; and Schaeffer, J. 2008.
Duality in permutation space and the dual search algorithm.
Artificial Intelligence172(4–5):514–540.
Zhou, R., and Hansen, E. 2004. Structured duplicate detec-
tion in external-memory graph search.Proc. 19th National
Conf. on Artificial Intelligence, 683–688.



d states sterile written ×1 ×2 ×4
0 1 0 1 1 0 0
1 4 0 2 0 2 0
2 10 0 3 0 1 2
3 20 0 5 0 0 5
4 32 0 8 0 0 8
5 72 0 18 0 0 18
6 144 0 36 0 0 36
7 304 1 75 0 0 76
8 548 0 138 0 2 136
9 1,160 1 289 0 0 290

10 2,108 0 527 0 0 527
11 4,336 10 1,074 0 0 1,084
12 7,568 0 1,895 0 6 1,889
13 15,456 39 3,828 0 6 3,861
14 27,244 4 6,809 0 4 6,809
15 54,748 170 13,519 0 4 13,685
16 93,984 20 23,487 0 22 23,485
17 186,832 587 46,127 0 12 46,702
18 317,026 115 79,158 0 33 79,240
19 619,784 2,395 152,566 0 30 154,931
20 1,029,048 580 256,719 0 74 257,225
21 1,978,016 8,779 485,745 0 40 494,484
22 3,215,064 2,351 801,464 0 98 803,717
23 6,063,064 31,807 1,483,988 0 58 1,515,737
24 9,626,543 9,020 2,397,719 3 202 2,406,534
25 17,798,478 108,695 4,340,984 0 119 4,449,560
26 27,552,286 33,718 6,854,511 2 312 6,887,915
27 49,826,898 358,321 12,098,483 0 159 12,456,645
28 75,028,026 118,148 18,639,112 2 504 18,756,754
29 132,527,350 1,116,718 32,015,244 0 249 33,131,713
30 193,676,616 393,493 48,026,130 2 935 48,418,686
31 333,410,942 3,299,918 80,053,035 0 435 83,352,518
32 471,843,720 1,220,078 116,741,606 2 1,505 117,960,177
33 790,021,118 9,202,202 188,303,428 0 701 197,504,929
34 1,079,752,930 3,547,695 266,391,792 4 2,503 269,936,980
35 1,753,248,266 24,093,048 414,219,597 0 1,157 438,311,488
36 2,305,427,741 9,623,979 566,734,785 7 3,647 576,355,110
37 3,618,206,568 58,718,411 845,833,996 0 1,530 904,550,877
38 4,558,643,762 24,050,358 1,115,613,487 2 5,806 1,139,658,037
39 6,890,001,516 131,896,668 1,590,604,857 0 2,292 1,722,499,233
40 8,280,693,048 54,852,287 2,015,324,934 6 7,909 2,070,169,306
41 12,013,997,414 269,509,279 2,733,991,680 0 3,211 3,003,497,748
42 13,723,004,388 112,500,822 3,318,255,840 4 11,124 3,430,745,534
43 19,070,493,398 495,582,240 4,272,043,164 0 4,109 4,767,621,295
44 20,653,531,394 205,844,319 4,957,545,295 16 13,507 5,163,376,091
45 27,459,536,790 815,584,838 6,049,301,983 0 5,247 6,864,881,574
46 28,162,697,917 334,918,175 6,705,765,068 9 17,514 7,040,665,720
47 35,811,545,160 1,199,089,520 7,753,800,039 0 6,538 8,952,883,021
48 34,766,871,474 485,116,342 8,206,611,650 24 20,211 8,691,707,757
49 42,278,061,352 1,577,446,491 8,992,072,660 0 7,626 10,569,511,525
50 38,833,813,137 627,907,289 9,080,557,152 13 22,294 9,708,442,134
51 45,136,428,198 1,860,677,113 9,423,434,085 0 8,297 11,284,102,901
52 39,185,445,148 728,534,556 9,067,838,565 18 23,641 9,796,349,462
53 43,485,466,670 1,968,710,216 8,902,660,729 0 8,555 10,871,362,390
54 35,625,894,156 758,308,713 8,148,176,566 18 23,453 8,906,461,808
55 37,680,035,252 1,867,284,351 7,552,728,573 0 8,222 9,420,004,702
56 29,061,983,265 706,769,763 6,558,737,071 11 22,019 7,265,484,804
57 29,218,691,400 1,583,534,032 5,721,142,710 0 7,784 7,304,668,958



d states sterile written ×1 ×2 ×4
58 21,141,855,595 587,271,682 4,698,202,055 9 19,663 5,285,454,065
59 20,131,181,830 1,194,423,082 3,838,375,819 0 6,887 5,032,792,014
60 13,595,850,697 432,097,571 2,966,873,499 17 16,766 3,398,954,287
61 12,197,319,766 794,647,715 2,254,685,071 0 5,689 3,049,327,097
62 7,632,079,418 278,717,293 1,629,309,341 14 13,538 1,908,013,082
63 6,401,776,150 460,656,376 1,139,789,920 0 4,517 1,600,441,779
64 3,668,776,766 155,339,254 761,859,941 14 9,986 917,189,195
65 2,844,069,196 228,033,432 482,985,551 0 3,368 711,015,615
66 1,467,539,543 73,048,506 293,839,873 13 6,967 366,881,399
67 1,033,405,322 93,457,540 164,894,913 0 2,245 258,350,208
68 467,731,154 27,953,665 88,981,390 16 4,509 116,930,530
69 291,118,998 30,218,810 42,561,735 0 1,591 72,778,954
70 110,894,118 8,197,202 19,527,575 12 2,477 27,722,288
71 58,368,580 7,111,516 7,481,064 0 870 14,591,710
72 17,504,309 1,660,764 2,715,934 7 1,231 4,375,460
73 7,239,640 1,057,758 752,357 0 410 1,809,705
74 1,544,203 192,720 193,566 3 466 385,817
75 452,388 77,709 35,466 0 156 113,019
76 63,732 10,186 5,798 4 96 15,884
77 12,138 2,242 810 0 35 3,017
78 1,285 228 108 1 28 307
79 202 24 30 0 7 47
80 41 4 8 1 2 9
81 20 0 5 0 0 5
82 10 0 3 0 1 2
83 4 0 2 0 2 0
84 1 1 0 1 0 0

653,837,184,000 20,294,182,955 143,165,285,845 256 345,216 163,459,123,328

Table 3: Complete exploration of the3 × 5 puzzle’s space starting at the states3×5, with the blank in the
middle, and with horizontal and vertical symmetries. The table contains, per level, the number of total,
sterile and written states, and the distributions of how many states are represented per each state. The ratio
(#written/#states) is21.89%.


