
Flexible and Scalable Partially
Observable Planning with Linear Translations

Blai Bonet
Universidad Simón Bolı́var

Caracas, Venezuela
bonet@ldc.usb.ve

Hector Geffner
ICREA & DTIC Universitat Pompeu Fabra

08018 Barcelona, Spain
hector.geffner@upf.edu

Abstract
The problem of on-line planning in partially observable set-
tings involves two problems: keeping track of beliefs about
the environment and selecting actions for achieving goals.
While the two problems are computationally intractable in the
worst case, significant progress has been achieved in recent
years through the use of suitable reductions. In particular, the
state-of-the-art CLG planner is based on a translation that
maps deterministic partially observable problems into fully
observable non-deterministic ones. The translation, which
is quadratic in the number of problem fluents and gets rid
of the belief tracking problem, is adequate for most bench-
marks, and it is in fact complete for problems that have width
1. The more recent K-replanner uses translations that are lin-
ear, one for keeping track of beliefs and the other for select-
ing actions using off-the-shelf classical planners. As a result,
the K-replanner scales up better but it is not as general. In
this work, we combine the benefits of the two approaches –
the scope of the CLG planner and the efficiency of the K-
replanner. The new planner, called LW1, is based on a trans-
lation that is linear but complete for width-1 problems. The
scope and scalability of the new planner is evaluated exper-
imentally by considering the existing benchmarks and new
problems.

Introduction
The problem of planning with incomplete information and
partial sensing has received a great deal of attention in re-
cent years. In the logical setting, it is called contingent
or partially observable planning, while in the probabilistic
setting, it’s known as POMDP planning. In both cases,
off-line solutions can be regarded as policies mapping be-
lief states into actions, with beliefs referring to subsets of
states in the first case, and probability distributions over
states in the second (Ghallab, Nau, and Traverso 2004;
Geffner and Bonet 2013). In spite of significant progress,
however, a key obstacle to scalability is the size of off-
line solutions which may be exponential. Thus, one ap-
proach that has been pursued is to focus on the on-line
problem instead. In the on-line problem two tasks must
be addressed, belief tracking and action selection. While
both tasks are intractable in the worst case, effective meth-
ods have been developed in recent years for dealing with

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

them through the use of translations. In particular, the CLG
planner (Albore, Palacios, and Geffner 2009), which can be
used in off-line and on-line mode, is based on a transla-
tion that maps deterministic partially observable problems
into fully observable non-deterministic ones. The transla-
tion, which is quadratic in the number of problem fluents
and gets rid of the belief tracking problem, is adequate for
practically all benchmarks, and it is in fact complete for
problems characterized as having width one (Palacios and
Geffner 2009). The more recent K-replanner (Bonet and
Geffner 2011) uses two translations that are linear in the
number of problem fluents, one for keeping track of be-
liefs and the other for selecting actions using off-the-shelf
classical planners. As a result, the K-replanner scales up
better but it is not as general. Similar ideas appear in
two other recent on-line planners, SDR and MPSR, that
use translations for action selection, but these translations,
when sound, are not polynomial (Brafman and Shani 2012b;
2012a),

The goals of this work are twofold. From a theoretical
point of view, we introduce a translation for belief track-
ing that like the one used in the K-replanner is linear in the
number of problem fluents, and yet like the one used in CLG
is complete for width-1 problems. From a practical point of
view, we introduce a partially observable planner that ap-
pears to be practical enough: scalable as current classical
planners and expressive enough for handling all contingent
benchmarks and more. The difference between translations
that are linear and quadratic is critical for this goal: in prob-
lems with 500 boolean fluents pi, the linear translation re-
sults in a transformed problem with up to 2 × 500 = 1000
boolean fluents Kpi and K¬pi, while the quadratic transla-
tion results in a problem with up to (2×500)2 = 1, 000, 000
fluents Kpi/pk, K¬pi/pk, Kpi/¬pk, K¬pi/¬pk. The
paper is organized as follows: we review the language and
model of the new planner LW1 along with the notion of
width, and then consider the new translations, their formal
properties, their integration into LW1, and the experimental
results.

Planning with Sensing
We present the model and language associated with LW1
following mostly Bonet and Geffner (2012).

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

2235



Model
The model for partially observable planning is characterized
by a tuple S = 〈S, S0, SG, A, f,O〉 where S is a finite state
space, S0 is a set of possible initial states, SG is a set of goal
states to be reached with certainty, A is a set of actions with
A(s) denoting the actions applicable in state s ∈ S, f is a
deterministic state-transition function such that s′ = f(a, s)
denotes the successor state that follows action a in state s,
a ∈ A(s), and O is a sensor model. We regard a sensor
model as a function o(s, a, b) that maps the state s resulting
from an action a in a belief state b into a observation token.
The addition of the belief state b of the agent as a parame-
ter is not standard but provides additional expressive power;
e.g., it is possible to express that the color of a room is ob-
served after applying an action when the agent knows that it
is in the room.

Executions are sequences of action-observation pairs
a0, o0, a1, o1, . . .. The initial belief is b0 = S0, and if bi
is the belief when the action ai is applied and oi is the token
that is then observed, the new belief bi+1 is

boa = {s | s ∈ ba and o = o(s, a, ba)} , (1)

where a = ai, o = oi, and ba is the belief after the action a
in the belief b = bi:

ba = {s′ | there is s ∈ b such that s′ = f(a, s)} . (2)

An execution a0, o0, a1, o1, . . . is possible in model S if
starting from the initial belief b0, each action ai is applicable
in the belief bi (i.e., ai ∈ A(s) for all s ∈ bi), and bi+1 is
non-empty. A policy π is a function mapping belief states
b into actions. The executions a0, o0, a1, o1, . . . induced by
the policy π are the possible executions in which ai = π(bi).
The policy solves the model if all such executions reach a
goal belief state, i.e., a belief state b ⊆ SG. Off-line methods
focus on the computation of such policies, on-line methods
focus on the computation of the action for the current belief.

Representation
The problems are represented in compact form through a set
of multivalued state variables. More precisely, a problem
is a tuple P = 〈V, I, A,G,W 〉 where V stands for a set of
state variables X , each one with a finite domain DX , I is
a set of X-literals defining the initial situation, G is a set
(conjunction) of X-literals defining the goal, and A is a set
of actions with preconditions Pre(a) and conditional effects
(rules) C → E where Pre(a) and C are sets of X-literals,
and E is a set of positive X-literals. Positive literals are ex-
pressions of the form X = x for X ∈ V and x ∈ DX . Neg-
ative literals ¬(X = x) are written as X 6= x, and negation
on literals is taken as complementation so that ¬¬L stands
for L. The states associated with a problem P refer to valu-
ations over the state variables X .

The sensing component W in P is a collection of observ-
able multivalued variables Y with domains DY , each one
with a state formula Pre(Y ), called the Y -sensor precon-
dition that encodes the conditions under the variable Y is
observable, and state formulas W (Y = y), one for each
value of y in DY , that express the conditions under which

the value of Y will be y. Since we assume that sensing
is deterministic, the formulas W (Y = y) must be mutu-
ally exclusive and jointly exhaustive in the states that make
Pre(Y ) true. That is, in such states, one and only one value
of Y is observed. An observable variable Y may be also an
state variable, and in such case, W (Y = y) is the formula
Y = y. We assume that Pre(Y ) and W (Y = y) are in Dis-
junctive Normal Form (DNF), and moreover, that the terms
C inW (Y = y) contain positiveX-literals only. If negative
literals likeX 6= x need to be used, they must be replaced by
the disjunction

∨
x′ X = x′ where x′ ranges over the pos-

sible values of X in DX different than x and the resulting
formula must be brought into DNF.

The planning problem P = 〈V, I,G,A,W 〉 defines the
model S(P ) = 〈S, S0, SG, A, f,O〉, where S is the set of
valuations over the variables in V , S0 and SG are the set of
valuations that satisfy I and G, A(s) is the set of actions
in P whose preconditions are true in s, and f(a, s) is the
state-transition function determined by the conditional ef-
fects associated with a. Likewise, the sensor model O is
such that o(s, a, b) stands for a valuation over the variables
Y in W such that Pre(Y ) is true in b. In this partial val-
uation, Y = y is true iff W (Y = y) is true in s. We will
assume throughout a state variable in V called LastA that
is affected by all the actions a in the problem which make
the literal LastA = a true. In order to say that a variable
Y is observable only after action a is executed, we just set
Pre(Y ) to LastA = a.

Examples
If X encodes the position of an agent, and Y encodes the
position of an object that can be detected by the agent when
X = Y , we can have an observable variable Z ∈ {yes, no}
with formulas Pre(Z) = true, meaning that Z is always
observable, and W (Z = yes) =

∨
l∈D(X = l ∧ Y = l),

meaning that value yes will be observed when X = Y .
Since the observable variable Z has two possible values, the
formula W (Z = no) is given by the negation of W (Z =
yes), which in DNF is

∨
l,l′∈D,l 6=l′(X = l ∧ Y = l′).

On the other hand, if the agent cannot detect the presence
of the object at locations l ∈ D′, we will set Pre(Z) to∧

l∈D\D′(X 6= l), meaning that the sensor is active or as-
sumed to provide useful information when the agent knows
that it is not in D′. Benchmark domains like Medical or Lo-
calize feature one state variable only, representing the pa-
tient disease, in the first case, and the agent location in the
second. The possible test readings in Medical, and the pres-
ence or absence of contiguous walls in Localize can be en-
coded in terms of one observable variable in the first case,
and four observable variables in the second.

Problem Structure: Width
The width of a problem refers to the maximum number of
uncertain state variables that interact in a problem, either
through observations or conditional effects (Palacios and
Geffner 2009; Albore, Palacios, and Geffner 2009). In a
domain like Colorballs where m balls in uncertain locations
and with uncertain colors must be collected and delivered

2236



according to their color, problems have width 1, as the 2m
state variables do not interact. On the other hand, in a do-
main like Minesweeper, where each cell in the grid may con-
tain a bomb or not, the problem width is given by the num-
ber of cells, as all the state variables (potentially) interact
through the observations. We make the notion of width pre-
cise following the formulation of Bonet and Geffner (2012).
For this, we will say that a variable X is as an immediate
cause of X ′, written X ∈ Ca(X ′), if X 6= X ′, and either
X occurs in the body of a conditional effect C → E and
X ′ occurs in a head, or X occurs in W (X ′ = x′). Causal
relevance and plain relevance are defined as follows:

Definition 1 X is causally relevant to X ′ in P if X = X ′,
X ∈ Ca(X ′), or X is causally relevant to a variable Z that
is causally relevant to X ′.

Definition 2 X is evidentially relevant to X ′ in P if X ′ is
causally relevant to X and X is an observable variable.

Definition 3 X is relevant to X ′ if X is causally or eviden-
tially relevant to X ′, or X is relevant to a variable Z that is
relevant to X ′.

The width of a problem is then:

Definition 4 The width of a variable X , w(X), is the
number of state variables that are relevant to X and are
not determined. The width of the problem P , w(P ), is
maxX w(X), where X ranges over the variables that ap-
pear in a goal, or in an action or sensor precondition.

The variables that are determined in a problem refer to the
state variables whose value is always known; more precisely,
the set of determined variables is the largest set S of state
variables X that are initially known, such that every state
variable X ′ that is causally relevant to X belongs to the set
S. This set can be easily identified in low polynomial time.

Since domains like Medical and Localize involve a single
state variable, their width is 1. Other width-1 domains in-
clude Colorballs and Doors. On the other hand, the width in
a domain like Wumpus is given by the max number of mon-
sters or pits (the agent position is a determined variable),
while in Minesweeper, by the total number of cells.

Linear Translation for Belief Tracking
Belief tracking is time and space exponential in the problem
width (Bonet and Geffner 2012). In the planner CLG, belief
tracking is achieved by means of a translation that introduces
tagged literals KL/t for each literal L in the problem that
expresses that L is true if it is assumed that the tag formula
t is initially true. As the tags t used in the translation are
single literals, the translation is quadratic in the number of
problem fluents, and provably complete for width-1 prob-
lems. In the K-replanner, untagged KL literals are used
instead, resulting into a linear translations that is not width-
1 complete. The translation below combines the benefits of
the two approaches: it is linear and complete for width 1.

Basic Translation
We abbreviate the literals X = x and X 6= x as x and x̄,
leaving the variable name implicit. Kx and Kx̄ then stand

for KX = x and KX 6= x. Likewise, conditional effects
C → E for E = L1, . . . , Ln where Li is a literal, are de-
composed as effects C → Li. The basis of the new transla-
tion is:

Definition 5 For a problem P = 〈V, I,G,A,W 〉, the
translation X0(P ) outputs a classical problem P ′ =
〈F ′, I ′, G′, A′〉 and a set of axioms D′, where

• F ′ = {KL : L ∈ {X = x,X 6= x}, X ∈ V, x ∈ DX},
• I ′ = {KL : L ∈ I},
• G′ = {KL : L ∈ G},
• A′ = A but with each action precondition L replaced by
KL, and each conditional effect C → X = x replaced
by effects KC → Kx and ¬K¬C → ¬Kx̄,
• D′ = {Kx ⇒

∧
x′:x′ 6=xKx̄

′,
∧

x′:x′ 6=xKx̄
′ ⇒ Kx},

for all x ∈ DX and X ∈ V .

The expressions KC and ¬K¬C, for a set C of literals
L1, . . . , Ln, represent the conjunctionsKL1, . . . ,KLn, and
¬K¬L1, . . . ,¬K¬Ln respectively. The deductive rules or
axioms (Thiébaux, Hoffmann, and Nebel 2005) in D′ en-
force the exclusivity (MUTEX) and exhaustivity (OR) of the
values of multivalued variables. The translation X0(P ) is
otherwise similar to the basic incomplete translation K0 for
conformant planning (Palacios and Geffner 2006), which is
also the basis for the translation used by the K-replanner.
These translations are linear as they introduce no assump-
tions or ‘tags’, but are complete only when the bodies C of
the conditional effects feature no uncertainty. In the partially
observable setting, this translation is incomplete in another
way as it ignores sensing. The extensions below address
these two limitations.

Action Progression and Compilation
Consider an agent in a 1 × n grid, and an action right that
moves the agent one cell to the right. The action can be en-
coded by means of conditional effects i → i + 1 where i is
an abbreviation of X = i, 1 ≤ i < n. If the initial loca-
tion is completely unknown, it’s clear, however, that after a
single right move, X = 1 will be false. Yet, in X0(P ), the
right action would feature ‘support’ effectsKi→ K(i+1)
that map knowledge of the current location into knowledge
of the next location, but cannot obtain knowledge from igno-
rance. The problem features indeed conditional effects with
uncertain bodies and its width is 1. The translation used in
CLG achieves completeness through the use of tagged liter-
alsKL/t for tags of size 1. It is possible however to achieve
width-1 completeness without tags at all using a generaliza-
tion of a ‘trick’ originally proposed by Palacios and Geffner
(2006) for making a basic conformant translation more pow-
erful. The idea, called action compilation, is to make ex-
plicit some implicit conditional effects:

Definition 6 (Action Compilation) Let a be an action in P
with conditional effect C, x → x′ with x′ 6= x. The com-
piled effects associated with this effect are all the rules of
the form KC,K¬L1, . . . ,K¬Lm → Kx̄ where Ci → x,
for i = 1, . . . ,m, are all the effects for the action a that
lead to x, and Li is a literal in Ci. If m = 0, the compiled
effects consist in just the rule KC → Kx̄. The compiled

2237



effects associated with an action a refers to the compiled ef-
fects associated which each of its original effects C, x→ x′

for x, x′ ∈ DX with x′ 6= x, and X ∈ V .

In the above example for the 1×n grid, for x = 1, there is
a single effect of the form C, x→ x′ where C is empty and
x′ = 2, and there are no effects of the form Ci → x. Hence,
the compilation of this effect yields the rule true → K1̄.
The compilation of the other effects for the action yields the
rules Kī→ Ki+ 1 for i = 1, . . . , n− 1.

This compilation is sound, and in the worst case, expo-
nential in the number of effects C → X = x associated with
the same action and the same literal X = x. This number
is usually bounded and small, and hence, it doesn’t appear
to present any problems. The translation X(P ) is the basic
translation X0(P ) extended with these implicit effects:

Definition 7 For a problem P = 〈V, I,G,A,W 〉, the trans-
lation X(P ) is X0(P ) but with the effects of the actions ex-
tended with their compiled effects

The semantics of this extension can be expressed in terms
of the relation between the progression of beliefs in P and
the progression of states in X(P ). States in X(P ) are val-
uations over the KL literals which are represented by the
literals that they make true, and are progressed as expected:

Definition 8 (Action Progression) The state sa that results
from a state s and an action a in X(P ) that is applicable
in s, is the state sa obtained from s and a in the classical
problem P ′, closed under the deductive rules in D′.

The deductive closure is polynomial and fast, as it just
has to ensure that if a literal Kx is in sa so are the literals
Kx̄′ for the other values x′ of the same variable X , and
conversely, that if these literals are in sa, so is Kx. The
completeness of this form of belief progression in width-1
problems in the absence of observations, follows from the
result below and the fact that beliefs in width-1 problems can
be decomposed in factors or beams, each of which contains
at most one uncertain variable (Bonet and Geffner 2012):

Theorem 9 (Width-1 Action Progression) Let b be a be-
lief over a width-1 problem P with no uncertainty about
variables other than X , and let s be the state in X(P ) that
represents b; i.e., s makes KL or K¬L true iff b makes L
true or false resp. Then, an action a is applicable in b iff it
is applicable in s, and ba makes L true iff the state sa makes
KL true.

Adding Observations
Theorem 9 establishes a correspondence between the belief
ba that results from a belief b and an action a in P , and the
state sa that results from the compiled action a in X(P )
from the state s encoding the literals true in b. We extend
this correspondence to the beliefs boa and states soa that re-
sult from observing o after executing the action a. Recall
that an observation is a valuation over the observable vari-
ables whose sensor preconditions hold, and that states s are
represented by the true KL literals.

Definition 10 (Progression through observations) Let sa
be the state following the execution of an action a in state

s in the translation X(P ). Then the state soa that results
from obtaining the observation o is:

soa = UNIT(sa ∪D′ ∪Ko) (3)

where UNIT(C ′) stands for the set of unit literals in the unit
resolution closure of C ′, D′ is the set of deductive rules,
andKo stands for the codification of the observation o given
the sensing model W . That is, for each term Ci ∪ {Li} in
W (Y = y) such that o makes Y = y false, Ko contains the
formula KCi ⇒ K¬Li. If the empty clause is obtained in
(3), soa is ⊥.

We establish next the correspondence between the literals
L true in the beliefs boa in P and the literals KL true in the
states soa in X(P ) when the width of P is 1. For this, let
us say that an execution a0, o0, a1, o1, . . . , ak, ok is possible
in X(P ) iff the preconditions of action ai hold in the state
si and the observation oi is then possible, i = 0, . . . , k − 1,
where s0 is I ′ and si+1 is soa for s = si, a = ai, and o = oi.
Likewise, observation o is possible in sa iff o assigns a value
to each observable variable Y such that KC is true in s for
some term C in Pre(Y ), and soa 6= ⊥. Since unit resolu-
tion is very efficient, the computation of the updated state soa
from s is efficient too. Still, this limited form of deduction,
suffices to achieve completeness over width-1 problems:

Theorem 11 (Completeness for Width-1 Problems) Let
P be a partial observable problem of width 1. An execution
a0, o0, a1, o1, . . . , ai, oi is possible and achieves the goal G
in P iff the same execution is possible and achieves the goal
KG in X(P ).

While we cannot provide a full proof due to lack of space,
the idea is simple. We have the correspondence between sa
and ba, we just need to extend it to soa and boa. For this, if
literal x̄ makes it into boa, we need to show that literal Kx̄
makes into soa. In width-1 problems, this can only happen
when C ∪ {x} is a term in the DNF formula W (Y = y′)
such that o makes Y = y′ false, and C is known to be true
in ba. In such a case, KC will be true in sa, andKC ⇒ Kx̄
will be a deductive rule in Ko, from which unit resolution
in (3) yields Kx̄. The proof of the theorem relies on the as-
sumption that the sensor modelW is made of DNF formulas
whose terms contain only positive literals.

Translation H(P ) for Action Selection
The translation X(P ) provides an effective way for track-
ing beliefs over P through classical state progression and
unit resolution. The classical problem P ′, however, can-
not be used for action selection as the sensing and deduc-
tion are carried out outside P ′. Following the idea of the
K-replanner, we bring sensing and deduction into the clas-
sical problem by adding suitable actions to P ′: actions for
making assumptions about the observations (optimism in the
face of uncertainty), and actions for capturing the deductions
(OR constraints) in D′. On the other hand, the exclusivity
constraints in D′ (mutex constraints) are captured by adding
the literalsKx̄′ to all the effects that containKx for x 6= x′.

Definition 12 (Heuristic Translation H(P )) For a prob-
lem P = 〈V, I,G,A,W 〉, and translation X(P ) resulting

2238



into the classical problem P ′ = 〈F ′, I ′, G′, A′〉 and deduc-
tive rules D′, H(P ) is defined as the problem P ′ with the
three extensions below:

1. D-Mutex: Effects containing a literalKx are extended to
contain Kx̄′ for x′ 6= x, x, x′ ∈ DX , X ∈ V .

2. D-OR: A deductive action is added with conditional ef-
fects

∧
x′:x′ 6=xKx̄

′ → Kx, X ∈ V , x, x′ ∈ DX .
3. Sensing: Actions aY=y are added with preconditionsKL

for each literal L in Pre(Y ), and effects KCi,¬Kx →
Kx̄ for each term C ∪ {x} in the DNF formulas W (Y =
y′) for y′ 6= y.

The heuristic translation H(P ) mimics the execution
translation X(P ) except that it incorporates the deductive
componentD′, and a suitable relaxation of the sensing com-
ponent into the classical problem itself so that successful ex-
ecutions in X(P ) are captured as classical plans for H(P ).

The LW1 Planner
The LW1 planner (Linear translations for Width-1 problems)
is an on-line partially observable planner that works like
the K-replanner: it computes a classical plan from H(P )
and executes the plan until the first (relaxed) sensing action
aY=y . At that point, Pre(Y ) must hold, and the true value
y′ of Y is observed. If y′ = y, the execution proceeds, skip-
ping the non-executable action aY=y until the next sensing
action is encountered . On the other hand, if y′ 6= y, a new
classical plan is computed usingH(P ) from the current state
and the process iterates. The observations that are obtained
in the execution come from a hidden initial state that is given
as part of the problem, and is progressed through the actions
executed.

The classical plans obtained from the heuristic translation
H(P ) are sound, and hence are executable in X(P ) until
the first (relaxed) sensing action. For completeness, it’s pos-
sible to prove a key explore-exploit property similar to the
one achieved by the K-replanner but in the broader class of
width-1 problems:
Theorem 13 (Goal Achievement for Width-1 Problems)
In width-1 problems P with no dead-ends, LW1 reaches the
goal in a number of replanning iterations that is bounded
by the sum of the cardinalities of the beliefs over each of the
state variables.

The no dead-end condition has nothing to do with partial
observability, as the same applies to on-line algorithms in
the classical setting, where the only way to ensure not being
trapped in states that are not connected to the goal is by com-
puting a full plan. The theorem ensures that the replanning
algorithm will not be trapped into loops in width-1 prob-
lems. This is because in these problems, beliefs over each
of the variables cannot increase in cardinality, and must de-
crease when the execution of a plan from H(P ) reaches a
relaxed sensing action aY=y whose assumption Y = y is
refuted by the actual observation.

Extensions
The LW1 planner accommodates two extensions that, while
not needed in width-1 problems, are useful in more chal-

lenging domains like Minesweeper or Wumpus. The first
involves adding the literals KY = y to the problem for ob-
servable variables Y . Notice that such literals do not appear
in either X(P ) or H(P ) unless Y is a state variable. These
literals, however, can be important in problems where some
of the observations have no immediate effect on state liter-
als. These literals are added to X(P ) and H(P ) by enforc-
ing the invariants W (Y = y)⇒ Y = y over the K-literals.
In addition, deductive rules and actions are added to X(P )
and H(P ) so that KY = y implies KC when C is one of
the terms in the formula W (Y = y) and the other terms
are known to be false. This is a polynomial operation that
involves adding variables for each of the terms.

Experiments
We implemented LW1 on top of the K-replanner. For com-
paring the two planners, we also added a front-end to the
K-replanner so that it can handle the syntax of contingent
benchmarks. For LW1, we converted these benchmarks by
hand into the syntax based on multivalued state and observ-
able variables. The experiments were performed using the
classical planner FF (Hoffmann and Nebel 2001) on a clus-
ter made of AMD Opteron 6378 CPUs with 4Gb of mem-
ory, running at 2.4 Ghz. The third on-line planner con-
sidered in the experiments is HCP; we took the data from
Shani et al. (2014), where HCP is compared with CLG,
SDR, and MPSR. HCP can be understood as extending the
K-replanner with a subgoaling mechanism: in each replan-
ning episode, rather than planning for the top goal, the plan-
ner looks for a closer subgoal; namely, the preconditions of
a first sensing action that is selected heuristically.

Table 1 compares LW1, the K-replanner with the front
end, and HCP. For the first two planners, the table shows
the number of randomly generated hidden initial states con-
sidered for each problem (#sim), the number of instances
solved, the average number of calls to the classical planner,
the average length of executions, and the average times. The
times are expressed as total time, time taken by FF loading
the PDDL files in each invocation (preprocessing), and exe-
cution time (the difference between the previous two). The
execution time is the key to scalability. The preprocessing
time can actually be cut down substantially by loading the
PDDL files once per problem. Shani et al. don’t report the
number of simulations (#sim) nor whether the reported times
include preprocessing, but from the fact that HCP also uses
FF as its underlying (re)planner, most likely, such time is
not included. It is easy to see from the table that, in terms of
execution times, LW1 scales up as well as the K-replanner,
producing in general shorter executions. LW1 also appears
faster than HCP in most of the domains, producing also
shorter executions, with the exceptions of Rocksample and
Unix. In terms of coverage, the K-replanner is unable to deal
with two of the domains, Localize and Rocksample, while
HCP is unable to deal with the former.

We also ran LW1 on two more challenging domains: a
fuller version of Wumpus, and Minesweeper. In Wumpus,
the number of (hidden) monsters and pits per increasing
board size are 1+1, 2+2, and 4+4 respectively, while in Min-
sweeper, the number of mines per increasing board size are

2239



LW1 K-Replanner with Front End HCP

average avg. time in seconds average avg. time in seconds

domain problem #sim solved calls length total prep exec solved calls length total prep exec length time

clog 7 12 12 2.2 17.8 0.0 0.0 0.0 12 10.0 39.3 0.2 0.1 0.1 nd nd
clog huge 3125 3125 7.0 45.6 3.5 2.8 0.7 3125 44.6 156.6 6.7 3.6 3.0 53.5 1.8

colorballs 9-5 1000 1000 65.6 126.8 468.2 454.0 14.2 1000 210.4 481.2 725.0 687.9 37.0 320 57.7
colorballs 9-7 1000 1000 69.8 146.1 632.7 615.5 17.1 1000 292.4 613.3 1719.0 1645.9 73.1 425 161.5

doors 17 1000 1000 54.2 114.1 495.3 490.1 5.1 1000 65.0 213.6 88.3 77.1 11.2 143 17.7
doors 19 1000 1000 67.2 140.1 928.2 920.5 7.6 1000 82.7 269.2 143.5 128.5 14.9 184 46.1
ebtcs 50 50 50 25.5 26.5 2.5 1.7 0.7 50 25.5 27.5 1.3 0.9 0.4 nd nd
ebtcs 70 70 70 35.5 36.5 5.2 4.2 1.0 70 35.5 37.5 3.2 2.4 0.7 34.5 0.3
elog 5 8 8 1.9 19.5 0.0 0.0 0.0 8 14.5 67.6 0.4 0.2 0.2 nd nd
elog 7 12 12 2.2 17.8 0.0 0.0 0.0 12 14.0 66.8 0.4 0.2 0.1 19.9 0.0

localize 15 134 134 9.3 15.2 21.8 5.5 16.3 — — — — — — — —
localize 17 169 169 10.7 17.2 69.9 20.1 49.7 — — — — — — — —
medpks 150 151 151 2.0 2.0 10.9 10.0 0.9 151 2.0 2.0 1.3 1.2 0.0 nd nd
medpks 199 200 200 2.0 2.0 26.0 23.5 2.4 200 2.0 2.0 3.2 3.1 0.1 nd nd

rocksample 8-12 1000 1000 6.9 191.5 124.2 1.4 122.7 — — — — — — 115 0.5
rocksample 8-14 1000 1000 10.2 272.3 22.5 2.7 19.7 — — — — — — 135 0.6

unix 3 28 28 17.0 46.5 1.9 1.4 0.4 28 17.0 46.5 1.2 1.0 0.2 42.0 0.6
unix 4 60 60 33.0 93.7 23.0 21.6 1.4 60 33.0 93.7 16.4 15.3 1.1 76.5 7.2

wumpus 5d 8 8 2.2 16.2 0.1 0.0 0.0 8 3.8 25.0 0.2 0.1 0.0 nd nd
wumpus 10d 256 256 4.4 33.8 2.2 2.0 0.2 256 5.3 46.2 1.6 1.0 0.6 nd nd
wumpus 15d 1000 1000 5.3 47.2 27.2 26.4 0.8 1000 6.2 61.0 7.9 6.2 1.6 65.0 2.3
wumpus 20d 1000 1000 5.3 57.2 162.6 160.5 2.0 1000 5.8 69.2 28.9 25.8 3.0 90 5.1
wumpus 25d 1000 1000 5.4 67.3 729.7 724.5 5.1 1000 6.1 80.9 73.5 68.4 5.1 nd nd

Table 1: Comparison of LW1, K-replanner with front end, and HCP on range of contingent benchmarks. Dash (—) means that the planner
cannot solve a domain, and ‘nd’ means that no data is reported for the instance. Key columns are highlighted in gray.

average avg. time in seconds

domain prob. #sim solved calls length total prep exec

mines 3x4 100 11 3.5 14.0 1.0 0.8 0.1
mines 3x5 100 15 4.0 17.0 2.0 1.8 0.2
mines 4x4 100 35 5.1 18.0 11.3 10.7 0.6
mines 5x5 100 48 6.5 27.0 93.4 90.1 3.3
mines 6x6 100 37 9.6 38.0 522.4 506.6 15.8
mines 7x7 100 45 11.0 51.0 1320.7 1278.3 42.3
mines 8x8 100 43 13.1 66.0 3488.2 3365.4 122.7

wumpus 5x5 100 100 12.2 15.2 1.4 0.9 0.4
wumpus 10x10 100 100 54.1 60.5 182.5 173.2 9.2
wumpus 15x15 100 100 109.7 121.0 3210.3 3140.3 70.0

Table 2: LW1 on Minesweeper and richer version of Wumpus.

2, 2, 3, 4, 6, 8 and 10. We are not aware of other planners
able to deal with these domains. Minesweeper is NP-hard
(Kaye 2000). We used the problem generator by Bonet and
Geffner (2013), keeping the instances that their belief track-
ing algorithm, wrapped in a hand-crafted policy, was able
to solve. Table 2 shows the results of LW1 on 100 random
hidden initial states for instances of different size. Figure 1
shows two solved instances for Minesweeper and Wumpus.
While LW1 manages to solve many of the large, non-trivial
instances, it doesn’t solve all of them. This is because some
of these problems require forms of inference that are more
sophisticated than unit resolution.

Conclusions
We have developed a new on-line planner for deterministic
partially observable domains, LW1, that combines the flex-
ibility of CLG with the scalability of the K-replanner. This
is achieved by using two linear translations: one for keep-
ing track of beliefs while ensuring completeness for width-
1 problems; the other for selecting actions using classical
planners. We have also shown that LW1 manages to solve

1 2

1 1 1 2 3

1 1 1

1 2 1 1

1 1

1 2 2 2 2 2 1

1 2 2 2 1

1 1 2 3 3 1

P I T

P I T

8× 8 minesweeper 10× 10 wumpus

Figure 1: Example of instances solved by LW1. Left: an 8 × 8
Minesweeper instance where the star marks the first cell opened.
Right: a 10 × 10 Wumpus instance with 2 monsters, 2 pits, and
unknown position of gold. The trace shows the path walked by the
agent when looking for the gold, beginning at the lower left corner.

the problems solved by other planners, and more challeng-
ing problems as well. Width-1 completeness is important for
two reasons: it ensures that the simplest problems where ac-
tions propagate uncertainty will be handled, and it provides
a solid basis for dealing with more complex problems. For
example, more powerful forms of deduction can be accom-
modated, and in certain cases, subsets of variables may be
aggregated into one variable if required. Regarding deduc-
tion, the belief tracking algorithm called beam tracking per-
forms much better than LW1 in Minesweeper and it is also
polynomial (Bonet and Geffner 2013). The reason is that it
uses arc-consistency rather than unit resolution. Yet nothing
prevents us from replacing one by the other in the inner loop
of the LW1 planner.

2240



Acknowledgments
This work was partially supported by EU FP7 Grant
# 270019 (Spacebook) and MICINN CSD2010-00034
(Simulpast).

References
Albore, A.; Palacios, H.; and Geffner, H. 2009. A
translation-based approach to contingent planning. In Proc.
IJCAI, 1623–1628.
Bonet, B., and Geffner, H. 2011. Planning under partial ob-
servability by classical replanning: Theory and experiments.
In Proc. IJCAI, 1936–1941.
Bonet, B., and Geffner, H. 2012. Width and complexity of
belief tracking in non-deterministic conformant and contin-
gent planning. In Proc. AAAI, 1756–1762.
Bonet, B., and Geffner, H. 2013. Causal belief decompo-
sition for planning with sensing: Completeness results and
practical approximation. In Proc. IJCAI, 2275–2281.
Brafman, R. I., and Shani, G. 2012a. A multi-path compila-
tion approach to contingent planning. In Proc. AAAI, 9–15.
Brafman, R. I., and Shani, G. 2012b. Replanning in do-
mains with partial information and sensing actions. Journal
of Artificial Intelligence Research 45:565–600.
Geffner, H., and Bonet, B. 2013. A Concise Introduction
to Models and Methods for Automated Planning. Morgan &
Claypool Publishers.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: theory and practice. Morgan Kaufmann.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Kaye, R. 2000. Minesweeper is NP-Complete. Mathemati-
cal Intelligencer 22(2):9–15.
Palacios, H., and Geffner, H. 2006. Compiling uncertainty
away: Solving conformant planning problems using a clas-
sical planner (sometimes). In Proc. AAAI, 900–905.
Palacios, H., and Geffner, H. 2009. Compiling Uncertainty
Away in Conformant Planning Problems with Bounded
Width. Journal of Artificial Intelligence Research 35:623–
675.
Shani, G.; Karpas, E.; Brafman, R. I.; and Maliah, S. 2014.
Partially observable online contingent planning using land-
mark heuristics. In Proc. ICAPS.
Thiébaux, S.; Hoffmann, J.; and Nebel, B. 2005. In defense
of PDDL axioms. Artificial Intelligence 168(1-2):38–69.

2241




