Learning Features and Abstract Actions for Computing Generalized Plans

Blai Bonet1 Guillem Francès2 Hector Geffner3

1Universidad Simón Bolívar, Caracas, Venezuela
2University of Basel, Basel, Switzerland
3ICREA & Universitat Pompeu Fabra, Barcelona, Spain
Planning and Generalized Planning

• Planning is about solving **single planning instances**

• **Generalized planning** is about solving **multiple instances** at once

For example:

- Achieve goal $\text{on}(x, y)$ in Blocksworld (any number of blocks, any configuration)
- Go to target location (x^*, y^*) in empty square grid of any size
- Pick objects in grid (any number and location, any grid size)

Example: Plan for $\text{clear}(x)$ using Right Abstraction

• Get $\text{clear}(x)$, for designated block x, on any Blocksworld instance

• **Features:** $F = \{H, n\}$ where

 – H is **Boolean feature** that tells whether gripper is holding a block

 – n is **numerical feature** that counts number of blocks above x

• **Abstract actions:** $A_F = \{\text{Pick-above}-x, \text{Put-aside}\}$ given by

 – Pick-above-$x = \langle \neg H, n > 0; H, n \downarrow \rangle$

 – Put-aside $= \langle H; \neg H \rangle$

• **Solution:** If $\neg H \land n > 0$ then Pick-above-x; If H then Put-aside

• **Computed** with off-the-shelf FOND planner

Can we learn the RIGHT abstraction?
Features for Generalized Planning: Requirements

Features required for solving collection Q of instances:

– Must be **general**; i.e. well defined on any state for any instance in Q

– Must be **predictable**; i.e. effects of actions on features is predictable

– Must **distinguish** goal from non-goal states

Solving all instances in Q is mapped to solving **single FOND problem** over the features

FOND = Fully Observable Non-Deterministic
Learning Features and Abstract Actions using SAT

- **Input:**
 - \(S = \) sample of **state transitions** \((s, s')\) for some instances in \(Q \)
 - \(F = \) pool of features computed from primitive predicates in \(Q \)
Learning Features and Abstract Actions using SAT

- **Input:**
 - \(S \) = sample of *state transitions* \((s, s')\) for some instances in \(Q \)
 - \(F \) = *pool of features* computed from primitive predicates in \(Q \)

- **Propositional variables:**
 - \(\text{selected}(f) \) for each feature \(f \) (\(f \) in “final set” \(F \) iff \(\text{selected}(f) \) is true)
 - \(D_1(s, t) \) iff selected features *distinguish states* \(s \) and \(t \) in sample \(S \)
 - \(D_2(s, s', t, t') \) iff selected features *distinguish transitions* \((s, s')\) and \((t, t')\) in \(S \)
Learning Features and Abstract Actions using SAT

- **Input:**
 - $S =$ sample of state transitions (s, s') for some instances in Q
 - $F =$ pool of features computed from primitive predicates in Q

- **Propositional variables:**
 - $selected(f)$ for each feature f (f in “final set” F iff $selected(f)$ is true)
 - $D_1(s, t)$ iff selected features distinguish states s and t in sample S
 - $D_2(s, s', t, t')$ iff selected features distinguish transitions (s, s') and (t, t') in S

- **Formulas:**
 - $D_1(s, t) \iff \bigvee_f selected(f)$ (for f that make s and t different)
 - $D_2(s, s', t, t') \iff \bigvee_f selected(f)$ (for f that make (s, s') and (t, t') different)
Learning Features and Abstract Actions using SAT

- **Input:**
 - $S =$ sample of *state transitions* (s,s') for some instances in Q
 - $F =$ *pool of features* computed from primitive predicates in Q

- **Propositional variables:**
 - $\text{selected}(f)$ for each feature f (f in “final set” F iff $\text{selected}(f)$ is true)
 - $D_1(s,t)$ iff selected features distinguish states s and t in sample S
 - $D_2(s,s',t,t')$ iff selected features distinguish transitions (s,s') and (t,t') in S

- **Formulas:**
 - $D_1(s,t) \iff \bigvee_f \text{selected}(f)$ (for f that make s and t different)
 - $D_2(s,s',t,t') \iff \bigvee_f \text{selected}(f)$ (for f that make (s,s') and (t,t') different)
 - $\neg D_1(s,t)$ (for s and t such only one is goal)
Learning Features and Abstract Actions using SAT

- **Input:**
 - $S =$ sample of state transitions (s, s') for some instances in Q
 - $F =$ pool of features computed from primitive predicates in Q

- **Propositional variables:**
 - $\text{selected}(f)$ for each feature f (f in "final set” F iff $\text{selected}(f)$ is true)
 - $D_1(s, t)$ iff selected features distinguish states s and t in sample S
 - $D_2(s, s', t, t')$ iff selected features distinguish transitions (s, s') and (t, t') in S

- **Formulas:**
 - $D_1(s, t) \iff \bigvee_f \text{selected}(f)$ (for f that make s and t different)
 - $D_2(s, s', t, t') \iff \bigvee_f \text{selected}(f)$ (for f that make (s, s') and (t, t') different)
 - $\neg D_1(s, t)$ (for s and t such only one is goal)
 - $\bigwedge_{t'} D_2(s, s', t, t') \implies D_1(s, t)$ (for each (s, s') and t in S)

- **Guarantee:**
 - Theory $T(S, F)$ is SAT iff there is sound and complete abstraction relative to sample S, abstraction is easily obtained from model
Learning Features and Abstract Actions using SAT

● Input:
 – $S = \text{sample of state transitions } (s, s')$ for some instances in Q
 – $\mathcal{F} = \text{pool of features}$ computed from primitive predicates in Q

● Propositional variables:
 – $\text{selected}(f)$ for each feature f (f in “final set” \mathcal{F} iff $\text{selected}(f)$ is true)
 – $D_1(s, t)$ iff selected features distinguish states s and t in sample S
 – $D_2(s, s', t, t')$ iff selected features distinguish transitions (s, s') and (t, t') in S

● Formulas:
 – $D_1(s, t) \iff \bigvee_f \text{selected}(f)$ (for f that make s and t different)
 – $D_2(s, s', t, t') \iff \bigvee_f \text{selected}(f)$ (for f that make (s, s') and (t, t') different)
 – $\neg D_1(s, t)$ (for s and t such only one is goal)
 – $\bigwedge_{t'} D_2(s, s', t, t') \implies D_1(s, t)$ (for each (s, s') and t in S)

● Guarantee: Theory $T(S, \mathcal{F})$ is SAT iff there is sound and complete abstraction relative to sample S (abstraction is easily obtained from model)
Pool of Features

- Pool \mathcal{F} obtained from primitive and newly defined predicates in \mathcal{Q}

- Numerical and Boolean features n and f defined from unary predicates $q(\cdot)$:
 - $n(s) = |\{x : s \vDash q(x)\}|$ (cardinality of set)
 - $f(s) = |\{x : s \vDash q(x)\}| > 0$ (whether set is empty or not)

- New unary predicates obtained with concept grammar

- "Distance notion" also defined with concept grammar using binary predicates

- Feature f has $\text{cost}(f)$ given by its "concept complexity"

- MaxSAT solver minimizes $\sum_{f: \text{selected}(f)} \text{cost}(f)$

We look for most economical abstraction!
Computational Workflow

For solving generalized problem Q:

1. Sample set of transition S from some instances in Q

2. Compute pool of features F from primitive predicates, grammar, and bounds

3. **MaxSAT** to find model of theory for (S, F) of min cost $\sum_{f: selected(f)} cost(f)$

4. Decode SAT model to extract abstraction

5. Solve abstraction with off-the-shelf FOND planner
Experimental Result: $Q_{gripper}$

- **Training:** 2 instances with 4 and 5 balls respectively

- **Features learned ($|S| = 403, |F| = 130$):**
 - $X = \text{“whether robby is in target room”}$
 - $B = \text{“number of balls not in target room”}$
 - $C = \text{“number of balls carried by robby”}$
 - $G = \text{“number of empty grippers (available capacity)”}$

- **Abstract actions learned:**
 - Drop-ball-at-target = $\langle C > 0, X; C \downarrow, G \uparrow \rangle$
 - Move-to-target-fully-loaded = $\langle \neg X, C > 0, G = 0; X \rangle$
 - Move-to-target-half-loaded = $\langle \neg X, B = 0, C > 0, G > 0; X \rangle$
 - Pick-ball-not-in-target = $\langle \neg X, B > 0, G > 0; B \downarrow, G \downarrow, C \uparrow \rangle$
 - Leave-target = $\langle X, C = 0, G > 0; \neg X \rangle$

- FOND solved in 171.92 secs; MaxSAT time is 0.01 secs

- Plan solves instances for **any number of grippers, any number of balls**
Experimental Result: Q_{reward}

- Pick rewards in grid with **blocked cells** (from *Towards Deep Symbolic RL*, Garnelo, Arulkumaran, Shanahan, 2016)

- STRIPS instances with predicates: $\text{reward}(\cdot), \text{at}(\cdot), \text{blocked}(\cdot), \text{adj}(\cdot, \cdot)$

- **Training:** 2 instances $4 \times 4, 5 \times 5$, diff. dist. of blocked cells and rewards

- **Features learned** ($|S| = 568, |F| = 280$):
 - $R =$ “number of remaining rewards”
 - $D =$ “min distance to closest reward along unblocked path”

- **Abstract actions learned:**
 - Collect $= \langle D = 0, R > 0; R\downarrow, D\uparrow \rangle$
 - Move-to-closest-reward $= \langle R > 0, D > 0; D\downarrow \rangle$

- FOND solved in 1.36 secs; MaxSAT time is 0.01 secs

- Plan solves **any grid size, any number of rewards, any dist. of blocked cells**
Summary and Future

- **Inductive framework** for generalized planning that mixes learning and planning
 - Learner needs to learn abstraction (not plans)
 - Planner uses abstraction, transformed, to compute general plans

- **Number of samples** is small as learner only identifies features to be tracked

- Unlike purely learning approaches:
 - Features and policies are transparent
 - **Scope and correctness** of plans can be formally characterized

- Relation to **dimensionality reduction** and **embeddings** in ML/Deep Learning

FOND translator: https://github.com/bonetblai/qnp2fond