
General Policies, Representations, and Planning Width
Blai Bonet1 and Hector Geffner2

1 Universitat Pompeu Fabra, 2 ICREA & Universitat Pompeu Fabra
arXiv:2012.08033

Motivation and Contribution

Width-based search algorithms (e.g. IW, SIW, BFWS, etc) are
quite effective in planning. Why?

• Goal: Address this question by connecting notions of:
– Bounded width
– General policies for collections of problems
– Decomposition of problems into subproblems

• Explanation: General policies underlie notion of width;
roughly, bounded number of features implies bounded width

• Also:
– General formulation of decomposition and serialized width
– General effective lenguage for expressing decompositions

Long paper (proofs + ext. discussions) in arXiv:2012.08033

Basic Algorithms: IW(1), IW(k), and IW

• IW(1) is breadth-first search that prunes states that don’t make
a feature true for first time (from set F of boolean features)

• IW(k) is like IW(1) but over set F k of conjunctions of up to k
features in F
• IW(k) expands up to |F |k nodes and runs in polytime
O(|F |2k−1)
• Bounded search and exploration based on state structure
• Classical Planning: F is set of ground atoms
• IW runs IW(1), IW(2), . . . , IW(k) until solved, or k = kmax

Variations of IW

• SIW (Serialized IW): use IW greedily to decrease number of
unachieved goals #g (assumes conjunctive top goal)

• BFWS(m): complete best-first guided by width-based novelty
measure m

• Dual-BFWS: incomplete BFWS followed by (complete) BFWS

Definition of Width

Width of P bounded by k, w(P) ≤ k, if there is admissible chain of
atom tuples θ = (t0, t1, . . . , tn) such that |ti| ≤ k, and:
– t0 holds at initial state s0 of P
– any optimal plan for ti can be extended with an action into opt.
plan for ti+1

– any optimal plan for tn is an optimal plan for P

Set w(P) := 0 if goal can be reached in 0 or 1 step, and w(P) := N+1
if P has no solution

Width of class Q bounded by k if w(P) ≤ k for each P in Q

Theorem (Lipovetzky and G., 2012)
If w(P) ≤ k, IW(k) solves P optimally

Generalized Planning: Features and Policies

Features over class Q are state functions: Boolean p and numer-
ical n (assumed to be linear in number N of atoms)

Policy πΦ is set of policy rules C 7→ E over features Φ:
– Boolean conditions in C: p, ¬p, n= 0, n> 0
– Effects in E: p, ¬p, p?, n↓, n↑, n?

Transition (s, s′) in P compatible with πΦ if for some C 7→ E:
– feature valuation f (s) satisfies condition C
– pair (f (s), f (s′)) is compatible with effect E

Definition (Solutions)
Policy πΦ solves P if all maximal trajectories that are compatible
with πΦ reach the goal. πΦ solves class Q if it solves each P in Q

Example: Blocksworld

Policy πΦ for solving Qclear of problems where goal is to get clear(x)
and hand-empty:

{¬H,n> 0} 7→ {H,n↓} (pick top block above x)
{H} 7→ {¬H} (put held block away)

Features Φ = {H,n} are ’holding’ and ’number of blocks above x’
Policy πΦ solves class Qclear optimally; also:
– Features Φ distinguish the goals: n= 0 and ¬H iff goal
– πΦ is Markovian (see paper)

Example: Delivery

Policy πΦ solves class QD of problems with packages that have to be
delivered to target cell:
{¬H, p> 0} 7→ {p↓, t?} (go to nearest pkg)
{¬H, p= 0} 7→ {H} (pick package)
{H, t> 0} 7→ {t↓} (go to target cell)
{H, t= 0, n> 0} 7→ {¬H,n↓, p?} (drop package)

Features Φ = {H, p, t, n} are ’holding package’, ’distance to nearest
package’, ’distance to target’, and ’number of undelivered packages’

– Features Φ distinguish the goals: n= 0 iff goal state
– Policy optimal and Markovian in subclass QD1 ⊂ QD

H, p> 0, t= 0, n> 0

H, p= 0, t= 0, n> 0

H, p= 0, t= 0, n> 0

H, p= 0, t= 0, n= 0

H, p> 0, t > 0, n> 0

H, p= 0, t > 0, n> 0

H, p= 0, t > 0, n> 0

H, p> 0, t= 0, n= 0

{p↓, t?}

{p↓, t?}

{p↓, t?}
{p↓, t?}

{H}

{¬H,n↓, p?}

{¬H,n↓, p?}

{¬H,n
↓, p?}

{¬
H
,n
↓ ,
p?
}

{p↓, t?}

{p↓, t?}

{p↓, t?}
{p↓, t?}

{H}
{t↓}

{t↓}

Policy graph for Delivery. Yellow/green nodes stand for initial/goal
states, and red nodes/edges for states/transitions that don’t arise in
instances. Graph is terminating and goal connected. Policy is
closed and sound for QD and QD1.

Relation of General Policies and Width

Theorem
Let Φ be set of features over Q that distinguish goals, and πΦ
optimal and Markovian policy for Q. For any P in Q:

– IWΦ solves P optimally in polytime O(N |Φ|), where IWΦ is
like IW but works with feature valuations f (s) instead atoms

– w(P) ≤ |Φ| if features in Φ are represented in P

– w(P) ≤ k if for any feature valuation fi reached by πΦ,
there is atom tuple ti such that |ti| ≤ k and optimal plans for
ti and fi are the same

Example: General plan for Qclear + Theorem yields w(Qclear)=1

Admissible Chains from Policies

Let θ = (t0, t1, ..., tn) be a chain of atom tuples
Features: t̃i is feature so that s � t̃i iff s � ti and s 2 tj for j > i

Policy: πθ given by rules {t̃i} 7→ {t̃i+1,¬t̃i}, i = 0, 1, . . . , n− 1

Theorem (Characterization of admissible chains)
θ is admissible for P iff policy πθ is optimal and Markovian for
P , and θ is feasible: t0 holds in initial state and the optimal plans
for tn are of length n and also optimal for P

Theorem
Let πΦ be an optimal policy forQ. If for any P inQ, there is feasible
chain θ of size ≤ k so that πθ is a projection of πΦ in P that is
Markovian, w(Q) ≤ k

Example: General plan for QD1 + Theorem yields w(QD1) = 2

Decomposition of Problems: Serializations

Definition (Serialization)
A serialization is pair (Φ,≺) of features Φ and strict partial
order ≺ over Φ-tuples that is well founded and goal valuations
are ≺-minimal

Subproblem P [s,≺]: problem of finding state s′ reachable from s
such that s′ is goal or f (s′) ≺ f (s) (i.e., state s′ “improves” s)

Decomposition of P into collection of subproblems P [≺]:
• P [s0,≺] in P [≺] for initial state s0

• P [s′,≺] in P [≺] if P [s,≺] ∈ P [≺], f (s′) ≺ f (s), and no such s′′
or goal is closer from s than s′

Serialized width of problem P : wΦ(P) ≤ k if w(P ′) ≤ k for all
P ′ in P [≺]. Likewise, wΦ(Q) ≤ k if wΦ(P) ≤ k for all P in Q

Theorem
If wΦ(Q) ≤ k, algorithm SIWΦ (Serialized IWΦ) solves any P in Q
in polynomial time (exponential in k and |Φ|)
SIWΦ: Improves state iteratively with IWΦ until finding plan

Where do serializations come from?

Serializations from General Policies

Policy graph for πΦ: nodes for each Boolean feature valuation b,
edges b→ b′ labeled with E iff (b, b′) compatible with rule C 7→ E

Policy πΦ is terminating if for any cycle b1, . . . , bm in graph, there
is a numerical feature n decremented but not incremented in cycle

Theorem
A terminating policy πΦ with features that distinguish goals
determines a serialization (Φ,≺) where ≺ is transitive closure of
pairs (f ′, f) such that (f, f ′) is compatible with a policy rule.

Sound + goal-connected policy yields serialization of width 0

What about partially specified (incomplete) policies?

Policy Sketches: Language for Serializations

Partially specified policy is policy sketch: set of sketch rules C 7→ E

Sketch rules have same syntax but different semantics:

• Policy rules filter transitions (s, s′): (f (s),f (s′)) compatible
with some rule
• Sketch rules define subproblems: reach s′ from s such that

(f (s), f (s′)) is compatible with some rule

Terminating sketches specify serializations: ≺ is transitive closure
of pairs (f ′, f) such that (f, f ′) is compatible with some sketch rule

• Width of induced serialization bounded by width of sketch
• Serializations of bounded width solved by SIW in polytime

Sketches (“Incomplete Policies”) in Delivery

Features Φ = {H, p, t, n}: holding, distance to nearest package, dis-
tance to target, number of undelivered packages

Sketch (“incomplete policy”) wΦ(QD1) wΦ(QD)
σ0 = empty 2 unb
σ1 = {{H} 7→ {¬H, p?, t?}} 2 unb
σ2 = {{¬H} 7→ {H, p?, t?}} 1 unb
σ3 = σ1 ∪ σ2 — —
σ4 = {{n> 0} 7→ {n↓, H?, p?, t?}} 2 2
σ5 = σ2 ∪ σ4 1 1
σ6 = {{¬H, p> 0} 7→ {p↓, t?}} 2 unb
σ7 = {{H, t> 0} 7→ {t↓, p?}} 2 unb
σ8 = σ2 ∪ σ4 ∪ σ6 ∪ σ7 0 0

Wrap Up, Conclusions, and Future Work

• Why so many domains with bounded width?
– General policies underlie notion of width
– Bounded number of features |Φ| =⇒ bounded width
– Good features for IW are those used in general policies

• What about problems with unbounded width?
– Broad notion of serialization, serialized width, and SIW algorithm
– General policies and serialized width
– Sketches: a rich language for serializing problems

• Future work:
– Control knowledge by hand: Sketches vs. HTNs?
– Learn features and sketches from traces

