





## Motivation and Contribution

Width-based search algorithms (e.g. IW, SIW, BFWS, etc) are quite effective in planning. Why?

- Goal: Address this question by connecting notions of:
- Bounded width
- General policies for collections of problems
- Decomposition of problems into subproblems
- **Explanation:** General policies underlie notion of width; roughly, bounded number of features implies bounded width
- Also:
- General formulation of decomposition and serialized width - General effective lenguage for expressing decompositions

Long paper (proofs + ext. discussions) in **arXiv:2012.08033** 

# Basic Algorithms: IW(1), IW(k), and IW

- IW(1) is breadth-first search that **prunes states** that don't make a feature true for first time (from set F of boolean features)
- IW(k) is like IW(1) but over set  $F^k$  of conjunctions of up to k features in F
- IW(k) expands up to  $|F|^k$  nodes and runs in polytime  $O(|F|^{2k-1})$
- Bounded search and exploration based on state structure
- Classical Planning: F is set of ground atoms
- IW runs IW(1), IW(2), ..., IW(k) until solved, or  $k = k_{max}$

### Variations of IW

- SIW (Serialized IW): use IW greedily to decrease number of unachieved goals #g (assumes conjunctive top goal)
- BFWS(m): complete best-first guided by width-based novelty measure m
- Dual-BFWS: **incomplete** BFWS followed by (complete) BFWS

# Definition of Width

Width of P bounded by  $k, w(P) \leq k$ , if there is admissible chain of atom tuples  $\theta = (t_0, t_1, \dots, t_n)$  such that  $|t_i| \leq k$ , and:

- $-t_0$  holds at initial state  $s_0$  of P- any optimal plan for  $t_i$  can be extended with an action into opt. plan for  $t_{i+1}$
- any optimal plan for  $t_n$  is an optimal plan for P

Set w(P) := 0 if goal can be reached in 0 or 1 step, and w(P) := N+1if P has no solution

Width of class  $\mathcal{Q}$  bounded by k if  $w(P) \leq k$  for each P in  $\mathcal{Q}$ 

Theorem (Lipovetzky and G., 2012) If  $w(P) \leq k$ , IW(k) solves P optimally

# General Policies, Representations, and Planning Width Blai Bonet<sup>1</sup> and Hector Geffner<sup>2</sup> <sup>1</sup> Universitat Pompeu Fabra, $^2$ ICREA & Universitat Pompeu Fabra

# **Generalized Planning: Features and Policies**

**Features** over class Q are **state functions**: Boolean p and numerical n (assumed to be linear in number N of atoms)

**Policy**  $\pi_{\Phi}$  is set of **policy rules**  $C \mapsto E$  over features  $\Phi$ :

- Boolean conditions in C:  $p, \neg p, n = 0, n > 0$
- Effects in  $E: p, \neg p, p?, n\downarrow, n\uparrow, n?$

Transition (s, s') in *P* compatible with  $\pi_{\Phi}$  if for some  $C \mapsto E$ :

- feature valuation f(s) satisfies condition C
- pair (f(s), f(s')) is compatible with effect E

#### Definition (Solutions)

Policy  $\pi_{\Phi}$  solves P if all maximal trajectories that are compatible with  $\pi_{\Phi}$  reach the goal.  $\pi_{\Phi}$  solves class  $\mathcal{Q}$  if it solves each P in  $\mathcal{Q}$ 

### Example: Blocksworld

Policy  $\pi_{\Phi}$  for solving  $\mathcal{Q}_{clear}$  of problems where goal is to get clear(x)and hand-empty:

- $\{\neg H, n > 0\} \mapsto \{H, n\downarrow\}$  $\{H\} \mapsto \{\neg H\}$
- (pick top block above x) (put held block away)

Features  $\Phi = \{H, n\}$  are 'holding' and 'number of blocks above x' Policy  $\pi_{\Phi}$  solves class  $\mathcal{Q}_{clear}$  optimally; also:

- Features  $\Phi$  distinguish the goals: n = 0 and  $\neg H$  iff goal
- $-\pi_{\Phi}$  is **Markovian** (see paper)

### **Example: Delivery**

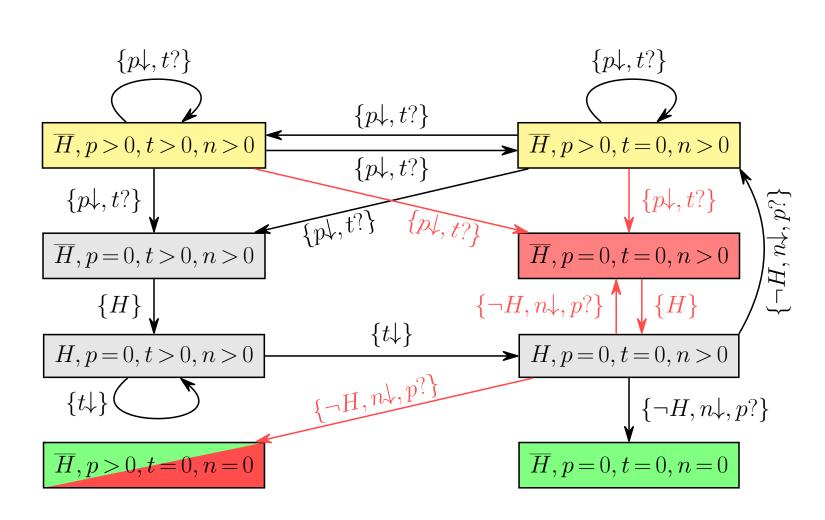
Policy  $\pi_{\Phi}$  solves class  $\mathcal{Q}_D$  of problems with packages that have to be delivered to target cell:

| $\{\neg H, p > 0\} \mapsto \{p \downarrow, t?\}$           | (go t |
|------------------------------------------------------------|-------|
| $\{\neg H, p = 0\} \mapsto \{H\}$                          | (pick |
| $\{H,t>0\}\mapsto\{t\!\!\downarrow\}$                      | (go t |
| $\{H, t = 0, n > 0\} \mapsto \{\neg H, n \downarrow, p?\}$ | (drop |

to nearest pkg) k package) to target cell) op package)

Features  $\Phi = \{H, p, t, n\}$  are 'holding package', 'distance to nearest package', 'distance to target', and 'number of undelivered packages'

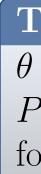
- Features  $\Phi$  distinguish the goals: n = 0 iff goal state - Policy optimal and Markovian in subclass  $\mathcal{Q}_{D1} \subset \mathcal{Q}_D$ 

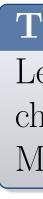


**Policy graph** for Delivery. Yellow/green nodes stand for initial/goal states, and red nodes/edges for states/transitions that don't arise in instances. Graph is **terminating** and **goal connected**. Policy is **closed** and **sound** for  $\mathcal{Q}_D$  and  $\mathcal{Q}_{D_1}$ .



Let  $\theta = (t_0, t_1, ..., t_n)$  be a chain of atom tuples **Features:**  $\tilde{t}_i$  is feature so that  $s \vDash \tilde{t}_i$  iff  $s \vDash t_i$  and  $s \nvDash t_j$  for j > i**Policy:**  $\pi_{\theta}$  given by rules  $\{\tilde{t}_i\} \mapsto \{\tilde{t}_{i+1}, \neg \tilde{t}_i\}, i = 0, 1, \dots, n-1$ 



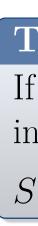


**Example:** General plan for  $\mathcal{Q}_{D1}$  + Theorem yields  $w(\mathcal{Q}_{D_1}) = 2$ 



**Subproblem**  $P[s, \prec]$ : problem of finding state s' reachable from s such that s' is goal or  $f(s') \prec f(s)$  (i.e., state s' "improves" s)

•  $P[s', \prec]$  in  $P[\prec]$  if  $P[s, \prec] \in P[\prec], f(s') \prec f(s)$ , and no such s''or goal is closer from s than s'



Where do serializations come from?

# **Relation of General Policies and Width**

#### Theorem

Let  $\Phi$  be set of features over  $\mathcal{Q}$  that **distinguish goals**, and  $\pi_{\Phi}$ **optimal** and **Markovian** policy for  $\mathcal{Q}$ . For any P in  $\mathcal{Q}$ :

- IW<sub> $\Phi$ </sub> solves P optimally in polytime  $O(N^{|\Phi|})$ , where IW<sub> $\Phi$ </sub> is like IW but works with feature valuations f(s) instead atoms  $-w(P) \leq |\Phi|$  if features in  $\Phi$  are **represented in** P -  $w(P) \leq k$  if for any **feature valuation**  $f_i$  reached by  $\pi_{\Phi}$ , there is **atom tuple**  $t_i$  such that  $|t_i| \leq k$  and optimal plans for  $t_i$  and  $f_i$  are the same

**Example:** General plan for  $\mathcal{Q}_{clear}$  + Theorem yields  $w(\mathcal{Q}_{clear}) = 1$ 

# Admissible Chains from Policies

### Theorem (Characterization of admissible chains)

 $\theta$  is admissible for P iff policy  $\pi_{\theta}$  is **optimal** and **Markovian** for P, and  $\theta$  is **feasible**:  $t_0$  holds in initial state and the optimal plans for  $t_n$  are of length n and also optimal for P

#### Theorem

Let  $\pi_{\Phi}$  be an optimal policy for  $\mathcal{Q}$ . If for any P in  $\mathcal{Q}$ , there is feasible chain  $\theta$  of size  $\leq k$  so that  $\pi_{\theta}$  is a **projection** of  $\pi_{\Phi}$  in P that is Markovian,  $w(\mathcal{Q}) \leq k$ 

# **Decomposition of Problems: Serializations**

### **Definition** (Serialization)

A serialization is pair  $(\Phi, \prec)$  of features  $\Phi$  and strict partial order  $\prec$  over  $\Phi$ -tuples that is well founded and goal valuations are **≺-minimal** 

Decomposition of P into collection of subproblems  $P[\prec]$ :

•  $P[s_0, \prec]$  in  $P[\prec]$  for initial state  $s_0$ 

Serialized width of problem  $P: w_{\Phi}(P) \leq k$  if  $w(P') \leq k$  for all P' in  $P[\prec]$ . Likewise,  $w_{\Phi}(\mathcal{Q}) \leq k$  if  $w_{\Phi}(P) \leq k$  for all P in  $\mathcal{Q}$ 

#### Theorem

If  $w_{\Phi}(\mathcal{Q}) \leq k$ , algorithm  $SIW_{\Phi}$  (Serialized IW<sub> $\Phi$ </sub>) solves any P in  $\mathcal{Q}$ in **polynomial time** (exponential in k and  $|\Phi|$ )  $SIW_{\Phi}$ : Improves state iteratively with IW<sub> $\Phi$ </sub> until finding plan

Policy  $\pi_{\Phi}$  is **terminating** if for any cycle  $b_1, \ldots, b_m$  in graph, there is a numerical feature n decremented but not incremented in cycle

A terminating policy  $\pi_{\Phi}$  with features that distinguish goals determines a serialization  $(\Phi, \prec)$  where  $\prec$  is transitive closure of pairs (f', f) such that (f, f') is compatible with a policy rule.

Sketch rules have **same syntax** but **different semantics**:

Terminating sketches specify **serializations**:  $\prec$  is transitive closure of pairs (f', f) such that (f, f') is compatible with some sketch rule

# Sketches ("Incomplete Policies") in Delivery

Features  $\Phi = \{H, p, t, n\}$ : holding, distance to nearest package, distance to target, number of undelivered packages

# Wrap Up, Conclusions, and Future Work

- Future work:



### Serializations from General Policies

**Policy graph** for  $\pi_{\Phi}$ : nodes for each Boolean feature valuation b, edges  $b \to b'$  labeled with E iff (b, b') compatible with rule  $C \mapsto E$ 

| rem | Ŋ |
|-----|---|

**Sound** + **goal-connected** policy yields serialization of width 0

What about partially specified (incomplete) policies?

**Policy Sketches: Language for Serializations** 

Partially specified policy is **policy sketch**: set of sketch rules  $C \mapsto E$ 

• Policy rules filter transitions (s, s'): (f(s), f(s')) compatible with some rule

• Sketch rules **define subproblems:** reach s' from s such that (f(s), f(s')) is compatible with some rule

• Width of induced serialization bounded by width of sketch • Serializations of bounded width solved by SIW in **polytime** 

| Sketch ("incomplete policy")                                    | $w_\Phi(\mathcal{Q}_{D_1})$ | $w_{\Phi}(\mathcal{Q}_D)$ |
|-----------------------------------------------------------------|-----------------------------|---------------------------|
| $\sigma_0 = empty$                                              | 2                           | unb                       |
| $\sigma_1 = \{\{H\} \mapsto \{\neg H, p?, t?\}\}$               | 2                           | unb                       |
| $\sigma_2 = \{\{\neg H\} \mapsto \{H, p?, t?\}\}$               | 1                           | unb                       |
| $\sigma_3 = \sigma_1 \cup \sigma_2$                             |                             |                           |
| $\sigma_4 = \{\{n > 0\} \mapsto \{n\downarrow, H?, p?, t?\}\}$  | 2                           | 2                         |
| $\sigma_5 = \sigma_2 \cup \sigma_4$                             | 1                           | 1                         |
| $\sigma_6 = \{\{\neg H, p > 0\} \mapsto \{p\downarrow, t?\}\}$  | 2                           | unb                       |
| $\sigma_7 = \{\{H, t > 0\} \mapsto \{t\downarrow, p?\}\}$       | 2                           | unb                       |
| $\sigma_8 = \sigma_2 \cup \sigma_4 \cup \sigma_6 \cup \sigma_7$ | 0                           | 0                         |

• Why so many domains with bounded width? - General policies underlie notion of width - Bounded number of features  $|\Phi| \implies$  bounded width - Good features for IW are those used in general policies • What about problems with unbounded width?

- Broad notion of serialization, serialized width, and SIW algorithm - General policies and serialized width - Sketches: a rich language for serializing problems

- Control knowledge by hand: Sketches vs. HTNs? – Learn features and sketches from traces