Universitat

upf Pompeu Fabra
Barcelona

Motivation and Contribution

Width-based search algorithms (e.g. IW, SIW, BFWS, etc) are
quite effective in planning. Why?

e Goal: Address this question by connecting notions of:

— Bounded width

— (General policies for collections of problems
— Decomposition of problems into subproblems

e Explanation: General policies underlie notion of width;
roughly, bounded number of features implies bounded width

o Also:

— General formulation of decomposition and serialized width
— General effective lenguage for expressing decompositions

Long paper (proofs + ext. discussions) in arXiv:2012.08033

Basic Algorithms: IW (1), IW(k), and ITW

o [W(1) is breadth-first search that prunes states that don’t make
a feature true for first time (from set F' of boolean features)

o TW(E) is like IW(1) but over set F'* of conjunctions of up to k
features in F'

o IW (k) expands up to |F|* nodes and runs in polytime
O(|F[*)

e Bounded search and exploration based on state structure

e (lassical Planning: F'is set of ground atoms

o IW runs IW(1), IW(2), ..., IW(k) until solved, or k = k42

Variations of IW

o SIW (Serialized TW): use IW greedily to decrease number of
unachieved goals #g¢ (assumes conjunctive top goal)

e BFWS(m): complete best-first guided by width-based novelty
measure 1m

e Dual-BFWS: incomplete BFWS followed by (complete) BEWS

Definition of Width

Width of P bounded by k, w(P) < k, if there is admissible chain of
atom tuples 0 = (o, t1,...,t,) such that |¢t;| < k, and:

— to holds at initial state sy of P

— any optimal plan for ¢; can be extended with an action into opt.
plan for ¢, 4

— any optimal plan for ¢,, is an optimal plan for P

Set w(P) := 0if goal can be reached in 0 or 1 step, and w(P) :== N+1
if P has no solution

Width of class Q bounded by k if w(P) < k for each P in Q

Theorem (Lipovetzky and G., 2012)

If w(P) < k, IW(k) solves P optimally

General Policies, Representations, and Planning Width

Blai Bonet! and Hector Geffner’
FUniversitat Pompeu Fabra, “ICREA & Universitat Pompeu Fabra

Generalized Planning: Features and Policies

Features over class O are state functions: Boolean p and numer-
ical n (assumed to be linear in number N of atoms)

Policy m¢ is set of policy rules C' — E over features o:

— Boolean conditions in C": p, =p, n=0, n>0

— Effects in E: p, —p, p?, nl, nt, n?

Transition (s, s’) in P compatible with 7y if for some C' +— E:

— feature valuation f(s) satisfies condition C
— pair (f(s), f(s')) is compatible with effect E

Definition (Solutions)

Policy mg solves P if all maximal trajectories that are compatible
with mg reach the goal. mg solves class Q if it solves each P in O

Example: Blocksworld

Policy g for solving Qjeqr of problems where goal is to get clear(x)

and hand-empty:
{—IH,n>O} —> {H,m}
{H} — {—-H}

(pick top block above x)
(put held block away)

Features & = { H,n} are 'holding” and 'number of blocks above z’
Policy g solves class Q.qr optimally: also:

— Features ® distinguish the goals: n=0 and —H iff goal

— 7 is Markovian (see paper)

Example: Delivery

Policy mg solves class Qp of problems with packages that have to be
delivered to target cell:

{—H,p>0} — {p,, 17}
{-=H,p=0} — {H}

{H,t>0} — {ts}
{H,t=0,n>0} — {-H,nl,p?}

(go to nearest pkg)
(pick package)

(go to target cell)
(drop package)

Features & = {H,p,t,n} are 'holding package’, 'distance to nearest
package’, 'distance to target’, and 'number of undelivered packages’

— Features ¢ distinguish the goals: n =0 iff goal state
— Policy optimal and Markovian in subclass Qp; C Op

{pd, 17} {pd, 17}
C (7 C D
H,p>0,t>0n>0 > H,p>0,t=0,n>0
{p\Lat?} '
(.} | Lok \g
v Y (L5] R
H,p=0,t>0,n>0 H,p=0,t=0,n>0 E
() |] Ly)L

{1}

H,p=0,t>0,n>0 > H,p=0,t=0,n>0

Ww(> ! [k
H,p> H,p=0,t=0,n=0

Policy graph for Delivery. Yellow/green nodes stand for initial /goal
states, and red nodes/edges for states/transitions that don’t arise in
instances. Graph is terminating and goal connected. Policy is
closed and sound for Qp and Qp,.

Relation of General Policies and Width

Let @ be set of features over Q that distinguish goals, and 7y
optimal and Markovian policy for Q. For any P in O:

— Wy solves P optimally in polytime O(N |CD|), where IWg is
like IW but works with feature valuations f(s) instead atoms

— w(P) < || if features in $ are represented in P

— w(P) < k if for any feature valuation f; reached by 7g,
there is atom tuple ¢; such that |t;| < k and optimal plans for
t; and f; are the same

Example: General plan for Qe + Theorem yields w(Qjeqr) =1

Admissible Chains from Policies

Let 6 = (ty, t1, ..., t,) be a chain of atom tuples
Features: t; is feature so that s E ¢, iff s E t; and s # tjfor j >4

Policy: my given by rules {#;} + {t;y1,~t;},i=0,1,...,n—1

Theorem (Characterization of admissible chains)

6 is admissible for P iff policy my is optimal and Markovian for
P, and 0 is feasible: ¢, holds in initial state and the optimal plans
for ¢, are of length n and also optimal for P

Let mg be an optimal policy for Q. If for any P in Q. there is feasible

chain 6 of size < k so that my is a projection of m¢ in P that is
Markovian, w(Q) < k

Example: General plan for Qp; + Theorem yields w(Qp,) = 2

Decomposition of Problems: Serializations

Definition (Serialization)

A serialization is pair ($, <) of features ® and strict partial
order < over ®-tuples that is well founded and goal valuations
“are <-minimal

Subproblem P|s, <|: problem of finding state s’ reachable from s
such that s’ is goal or f(s') < f(s) (i.e., state s" “improves” s)
Decomposition of P into collection of subproblems P|<]:

o Plsy, <] in P|<] for initial state s

o Pls' <] in P[<]if P[s,<] € P[<], f(s') < f(s), and no such §”
or goal is closer from s than s’

Serialized width of problem P: wg(P)
P’ in P[<]. Likewise, we(Q) < k if wg(P) <

If we(Q) < k, algorithm STWg (Serialized [Wg) solves any P in O
in polynomial time (exponential in k and |P|)

< kif w(P") <k for all
k tor all P in O

SIWsg: Improves state iteratively with [Wg until finding plan

Where do serializations come from?

arXiv:2012.08033

Serializations from (General Policies

Policy graph for m3: nodes for each Boolean feature valuation b,
edges b — b’ labeled with E iff (b,b") compatible with rule C' — E

Policy m¢ is terminating it for any cycle by, ..., b,, in graph, there
is a numerical feature n decremented but not incremented in cycle

A terminating policy mg with features that distinguish goals
determines a serialization (¥, <) where < is transitive closure of
pairs (f, f) such that (f, f’) is compatible with a policy rule.

Sound + goal-connected policy yields serialization of width 0

What about partially specified (incomplete) policies?

Policy Sketches: Language for Serializations

Partially specified policy is policy sketch: set of sketch rules C' +— FE
Sketch rules have same syntax but different semantics:

e Policy rules filter transitions (s, s’): (f(s),f(s’)) compatible
with some rule

e Sketch rules define subproblems: reach s’ from s such that
(f(s), f(s')) is compatible with some rule

Terminating sketches specify serializations: < is transitive closure
of pairs (f’, f) such that (f, f') is compatible with some sketch rule

e Width of induced serialization bounded by width of sketch
e Serializations of bounded width solved by SIW in polytime

Sketches (“Incomplete Policies”) in Delivery

Features ® = {H, p,t,n}: holding, distance to nearest package, dis-
tance to target, number of undelivered packages

weo(9p,) wa(Lp)

Sketch (“incomplete policy™)

oy = empty 2 unb
oo={{H}— {-H,p’t'}} 2 unb
oo ={{-H} — {H,p?’,t'}} 1 unb
O3 = 01 U) — —
g, ={{n>0} —{n, H?,p?,t7}} 2 2
os = 09U oy 1 1
os ={{-H,p>0} — {pl,t7}} 2 unb
or={{H,t>0} — {tl,p?}} 2 unb
0'8:02U04U06U0'7 0 0

Wrap Up, Conclusions, and Future Work

e Why so many domains with bounded width?

— General policies underlie notion of width
— Bounded number of features |¢| = bounded width
— Good features for IW are those used in general policies

e What about problems with unbounded width?

— Broad notion of serialization, serialized width, and SIW algorithm
— General policies and serialized width
— Sketches: a rich language for serializing problems

e Future work:

— Control knowledge by hand: Sketches vs. HT'Ns?
— Learn features and sketches from traces

