
General Policies, Representations, and Planning Width∗

Blai Bonet,1 Hector Geffner2

1 Universitat Pompeu Fabra, Barcelona, Spain
2 ICREA & Universitat Pompeu Fabra, Barcelona, Spain

bonetblai@gmail.com, hector.geffner@upf.edu

Abstract

It has been observed that in many of the benchmark planning
domains, atomic goals can be reached with a simple polyno-
mial exploration procedure, called IW, that runs in time ex-
ponential in the problem width. Such problems have indeed
a bounded width: a width that does not grow with the num-
ber of problem variables and is often no greater than two.
Yet, while the notion of width has become part of the state-
of-the-art planning algorithms like BFWS, there is still no
good explanation for why so many benchmark domains have
bounded width. In this work, we address this question by re-
lating bounded width and serialized width to ideas of gener-
alized planning, where general policies aim to solve multiple
instances of a planning problem all at once. We show that
bounded width is a property of planning domains that admit
optimal general policies in terms of features that are explicitly
or implicitly represented in the domain encoding. The results
are extended to the larger class of domains with bounded se-
rialized width where the general policies do not have to be
optimal. The study leads also to a new simple, meaningful,
and expressive language for specifying domain serializations
in the form of policy sketches which can be used for encod-
ing domain control knowledge by hand or for learning it from
traces. The use of sketches and the meaning of the theoretical
results are all illustrated through a number of examples.

Introduction
Pure width-based search methods exploit the structure of
states to enumerate the state space in ways that are dif-
ferent from standard methods like breadth-first, depth-first,
or random search (Lipovetzky and Geffner 2012). For this,
width-based methods appeal to a notion of novelty to estab-
lish a preference for first visiting states that are most novel.
Novelty-based methods have also been used in the context of
genetic algorithms where a greedy focus on the function to
optimize (fitness) often leads to bad local optima (Lehman
and Stanley 2011a,b), and in reinforcement learning to guide
exploration in large spaces where reward is sparse (Tang
et al. 2017; Pathak et al. 2017; Ostrovski et al. 2017).

In classical planning, i.e., planning in factored spaces for
achieving a given goal from a known initial state (Geffner

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

∗A longer version of this paper with all the proofs is available
(Bonet and Geffner 2020a).

and Bonet 2013; Ghallab, Nau, and Traverso 2016), the no-
tion of novelty is now part of state-of-the-art search algo-
rithms like BFWS (Lipovetzky and Geffner 2017b,a) and
has been applied successfully in purely exploratory settings
where no compact model of the actions or goals is assumed
to be known a priori (Francès et al. 2017; Bandres, Bonet,
and Geffner 2018). A key open question in the area is why
these width-based methods are effective at all, and in partic-
ular, why so many domains have a small width when atomic
goals are considered (Lipovetzky and Geffner 2012). Is this
a property of the domains? Is it an accident of the manual
representations used? In this work, we address these and
related questions. For this, we bring the notion of general
policies; policies that solve multiple instances of a planning
domain all at once (Srivastava, Immerman, and Zilberstein
2008; Bonet, Palacios, and Geffner 2009; Hu and De Gi-
acomo 2011; Belle and Levesque 2016; Segovia, Jiménez,
and Jonsson 2016), in some cases by appealing to a fixed
set Φ of general state features that we restrict to be linear.
A number of correspondences are then obtained connecting
the notions of width, the size of general policies as mea-
sured by the number of features used, and the more general
and useful notion of serialized width. The study also yields a
new meaningful and expressive language for specifying se-
rializations, called policy sketches, which can be used for
encoding domain control knowledge by hand or for learning
it from traces.

The paper is organized as follows. We review first the no-
tions of width, representations, and general policies, and re-
late width with the size of such policies. Then we introduce
serializations, the more general notion of serialized width,
the relation between general policies and serialized width,
and policy sketches. A longer version of this paper with all
the proofs is available (Bonet and Geffner 2020a).

Width
IW(1) is a simple search procedure that operates on a rooted
directed graph where the nodes represent states, and states
assign values v to a given set F of features f (Lipovetzky
and Geffner 2012). IW(1) performs a breadth-first search
starting at the root but pruning the states that do not make
an atom f=v true for the first time in the search. For clas-
sical planning problems expressed in languages such as
(grounded) STRIPS, the features f are the problem variables

which can take the values true or false. In other settings,
like the Atari games as supported in ALE (Bellemare et al.
2013), the features and their values are defined in other ways
(Lipovetzky, Ramirez, and Geffner 2015; Bandres, Bonet,
and Geffner 2018). The procedure IW(k) for k > 1 is IW(1)
but with a feature set given by F k.

A finding reported by Lipovetzky and Geffner (2012) and
exploited since in width-based algorithms is that the pro-
cedure IW(k) with k = 2 suffices to solve a wide variety
of planning problems. Indeed, Lipovetzky and Geffner con-
sider the 37,921 instances that result from all the domains
used in planning competitions until 2012, where each in-
stance with a goal made up of a conjunction of k atoms is
split into k instances, each one with a single atomic goal.
They report that IW(2) solves more than 88% of such in-
stances, and moreover, 100% of the instances from 26 of the
37 domains considered.

Underlying the IW algorithms is the notion of prob-
lem width, which borrows from similar notions developed
for constraint satisfaction problems and Bayesian networks
(Freuder 1982; Pearl 1988; Dechter 2013). For planning,
the notion introduced by Lipovetzky and Geffner takes this
form:1

Definition 1 (Based on Lipovetzky and Geffner, 2012). The
width w(P) of problem P is the minimum k for which there
is a sequence t0, t1, . . . , tm of atom tuples ti, each with at
most k atoms, such that:

1. t0 is true in the initial state of P ,
2. any optimal plan for ti can be extended into an optimal

plan for ti+1 by adding a single action, i = 1, . . . , n− 1,
3. any optimal plan for tm is an optimal plan for P .

The width is w(P) = 0 iff the initial state of P is a goal
state. For convenience, we set w(P) to 0 if the goal of P is
reachable in a single step, and to w(P) = N + 1 if P has
no solution where N is the number of atoms in P .

Chains of tuples θ = (t0, t1, . . . , tm) that comply with
conditions 1–3 are called admissible, and the size of the
chain is the size |ti| of the largest tuple in the chain. The
widthw(P) is thus the minimum size of an admissible chain
for P . The main properties of the IW(k) algorithm can then
be expressed as follows:2

Theorem 2 (Lipovetzky and Geffner, 2012). IW(k) expands
up toNk nodes, generates up to bNk nodes, and runs in time
and space O(bN2k−1) and O(bNk), respectively, where N
is the number of atoms and b bounds the branching factor in
problem P . IW(k) is guaranteed to solve P optimally (short-
est path) if w(P) ≤ k.

When the width of problem P is not known, the IW al-
gorithm can be run instead which calls IW(k) iteratively
for k= 0, 1, . . . , N until the problem is solved, or shown to

1For convenience, we set the width of problems that can be
solved in one step to zero.

2It is assumed that the number of atoms affected by an action
is bounded by a constant. When this is not the case, the time bound
in Theorem 2 becomes O(bN2k).

have no solution when IW(N) finds no plan. While these al-
gorithms are not aimed at being practical, some state-of-the-
art planners, make use of these ideas in a slightly different
way (Lipovetzky and Geffner 2017b,a).

Representations
The width of a planning problem is tied to the representa-
tion language and the encoding of the problem in the lan-
guage. In order to deal with a variety of possible languages
and encodings, and since width-based methods rely on the
structure of states but not on the structure of actions (i.e., ac-
tion preconditions and effects), we consider first-order lan-
guages for describing states but not actions. In addition,
the state language is extended with features f whose values
f(s) in a state s are determined by the state. The features
provide additional expressive power and ways for bridging
different state representation languages, although they are
logically redundant as their value is determined by the truth
value of the atoms in the state. The features extend the no-
tion of derived predicates as defined in PDDL, as they do not
have to be boolean, and they do not have to be defined in the
language of first-order logic or logic programs (Thiébaux,
Hoffmann, and Nebel 2005), but can be defined via proce-
dures. Domains, instances, and states are defined as follows:

Definition 3 (Domains, problems, and states). A domain is
a pair D = (R,F) where R is a set of primitive predi-
cate symbols with their corresponding arities, and F is a
set of features defined in terms of the primitive predicates
with their corresponding range of feature values. A problem
P over domain D = (R,F) is a tuple P = (D,O, I,G)
where O is a set of unique object names c (objects), and I
and G are sets of ground atoms that denote the initial and
goal states of P . A ground atom r(c1, . . . , ca(r)) is made of
a predicate r ∈ R and an object tuple in Oa(r) for the ar-
ity a(r) of r. A state s over problem P = (D,O, I,G) is a
collection of ground atoms. The state s is a goal if G ⊆ s. A
state s denotes a unique valuation for the ground atoms in
P ; s � r(c1, . . . , ck) iff r(c1, . . . , ck) is in s.

This is all standard except for the two details mentioned
before: there are no action schemas, and there are state fea-
tures. For the former, it is implicitly assumed that in each
problem P , there is a function that maps states s into the
set of possible transitions (s, s′). This implies, for example,
that the states may contain static atoms, like adjacency rela-
tions, whose truth value are not affected by any action. For
the features, we make the assumption that they are linear, in
the sense that they can be computed efficiently and span a
linear number of values only. More precisely:
Linear features assumption. The features f in F are ei-
ther boolean or numerical, ranging in the latter case over
the non-negative integers. The value of feature f in a state s
for problem P , f(s), can be computed in time bounded by
O(bN) where N is the number of atoms and b bounds the
branching factor in P . Numerical features can take up to N
values.

This assumption rules out features like V ∗(s) that stands
for the optimal cost (distance) from s to a goal which may

take a number of values that is not linear in the number of
problem atoms, and whose computation may take exponen-
tial time. In many cases, the features can be defined in the
language of first-order logic but this is not a requirement.
Example. Three state languages for Blocksworld are:
1. L1

BW with the binary predicate (symbol) on2 and the
unary ontable1 (superindex indicates arity),

2. L2
BW with predicates on2, ontable1, hold1, and clear1,

3. L3
BW with predicates on2 and hold1, and boolean fea-

tures ontable1 and clear1.
Example. Four languages for a domain Boxes, where boxes
b containing marbles ma must be removed from a table, and
for this, marble must be removed one by one first:
1. L1

B with predicates ontable1(b) and in2(ma, b),
2. L2

B with predicates ontable1, in2, and empty1(b),
3. L3

B with predicates ontable1 and in2, and features n(b)
that count the number of marbles in b,

4. L4
B with predicates ontable1 and in2, and featuresm and

n counting the number of marbles in a box with the least
number of marbles, and the number of boxes left.
By abstracting away the details of the domain dynamics

and the ability to introduce features, it is simple to move
from one state representation to another.

The notion of width and the IW algorithms generalize to
state languages containing features in a direct fashion. In
both cases, the set of atoms considered is extended to contain
the possible feature values f=v where f is a feature and v is
one of its possible values. Features are logically redundant
but can have drastic effect on the problem width.

The width for class Q of problems P over some domain
D is k, written as w(Q) = k, if w(P) = k for some P ∈ Q
and w(P ′) ≤ k for every other problem P ′ in Q.
Example. The width for the class of problemsQclear where
block x has to be cleared has width 1 in the state languages
LiBW , i = 1, 2, 3, while the class Qon has width 2 for the
three languages. On the other hand, for the class QB1 of
instances from Boxes with a single box, the width is not
bounded as it grows with the number of marbles when en-
coded in the languages L1

B and L2
B , but it is 1 when encoded

in the languages L3
B or L4

B . Likewise, for the class QB of
instances from Boxes with arbitrary number of boxes, the
encoding in the language L3

B has width that is not bounded
as it grows with the number of boxes, but remains bounded
and equal to 2 in L4

B .

Generalized policies
We want to show that bounded width is a property of do-
mains that admit a certain class of general policies. Differ-
ent language for expressing general policies have been de-
veloped, some of which can deal with relational domains
where different instances involve different (ground) actions.
Most closely to this work, general policies have been defined
in terms of qualitative numerical planning problems (QNPs)
(Srivastava et al. 2011; Bonet and Geffner 2018, 2020b). We
build on this idea but avoid the introduction of QNPs by
defining policies directly as mappings from boolean feature
conditions into feature value changes.

A boolean feature condition for a set of features Φ is a
condition of the form p or ¬p for a boolean feature p in Φ,
or n = 0 or n > 0 for a numerical feature n in Φ. Similarly,
a feature value change for Φ is an expression of the form p,
¬p, or p? for a boolean feature p in Φ, and n↓, n↑, or n? for a
numerical feature n in Φ. General policies are given by a set
of rules C 7→ E where C and E stands for boolean feature
conditions and feature changes respectively.
Definition 4 (Policies). A general policy πΦ for a domainD
over a set of features Φ is a set of rules of the form C 7→ E,
where C is a set of boolean feature conditions and E is a set
of feature value changes. The condition n > 0 is assumed in
rules with effects n↓ or n?.

The policy πΦ prescribes the possible actions a to be done
in a state s over a problem P indirectly, as the set of state
transitions (s, s′) that the actions in P make possible and
which are compatible with the policy:
Definition 5. A transition (s, s′) satisfies the effectE when:
1. if p (resp. ¬p) in E, p(s′) = 1 (resp. p(s′) = 0),
2. if n↓ (resp. n↑) in E, n(s) > n(s′) (resp. n(s) < n(s′)),
3. if p (resp. n) is not mentioned at all in E, p(s) = p(s′)

(resp. n(s) = n(s′)).
The transition (s, s′) is compatible with policy πΦ (or is a
πΦ-transition) if there is a policy rule C 7→ E such that s
makes true C and (s, s′) satisfies E.

Policy rules provide a description of how the value of
the features must change along the state trajectories that are
compatible with the policy.
Example. A policy for solving the class Qclear can be ex-
pressed in terms of the features Φ = {H,n}, where H is
true if a block is being held, and n counts the number of
blocks above x. The policy can be expressed with two rules:

{¬H,n> 0} 7→ {H,n↓} ; {H,n> 0} 7→ {¬H} . (1)

The first rule says that when the gripper is empty and there
are blocks above x, an action that decreases n and makes H
true must be chosen, while the second rule says that when
the gripper holds a block and there are blocks above x, an
action that makes H false and does not affect n must be
selected.

The conditions under which a general policy πΦ solves an
instance P and class Q are:
Definition 6 (Trajectories and solutions). A state trajectory
s0, . . . , sn for problem P is compatible with policy πΦ over
features Φ (or is πΦ-trajectory), iff s0 is the initial state of
P , no state si is goal, 0 ≤ i < n, and each pair (si, si+1)
is a possible state transition in P that is compatible with
πΦ. It is maximal if either sn is a goal state, no transition
(sn, sn+1) in P is compatible with πΦ, or the trajectory is
infinite (i.e., n = ∞). A policy πΦ solves a problem P if
all maximal state trajectories s0, . . . , sn compatible with πΦ

are goal reaching (i.e., sn is a goal state in P). πΦ solves a
collection Q of problems if it solves each problem in Q.

It is easy to show that the policy captured by the rules
in (1) solves Qclear. The verification and synthesis of gen-
eral policies of this type have been addressed by Bonet and

Geffner (2020b) in the context of qualitative numerical plan-
ning, and by Bonet, Frances, and Geffner (2019) where the
set of features Φ and QNP model are learned from traces.

Generalized Policies and Width
The first results establish a relation between the width of
classes of problems Q and the size |Φ| of certain optimal
policies that solve Q. A policy πΦ over the features Φ is is
said to be Markovian when the features provide a suitable
abstraction of the states; i.e., when the possible next feature
valuations are not just a function of the current state, but of
the feature valuation in the state. More precisely, if we say
that a state s is optimal for a feature valuation f in a problem
P when f = f(s) and there is no state s′ with the same
feature valuation f = f(s′) that is reachable in P in less
number of steps than s, the Markovian property is defined
as follows:
Definition 7 (Markovian). A policy πΦ is Markovian for a
problem P iff the existence of a transition (s, s′) compatible
with πΦ with feature valuations f = f(s) and f ′ = f(s′),
implies the existence of transitions (s1, s

′
1) with the same

feature valuations f = f(s1) and f ′ = f(s′1), in all states
s1 that are optimal for f in P . The policy is Markovian for
a class of problems Q if it is so for each P in Q.

The states s1 on which the Markovian condition is re-
quired are not necessarily among those which are reachable
with the policy.

The features must also distinguish goals from non-goals:
Definition 8 (Separation). The features Φ separate goals
from non-goals in Q iff there is a set of boolean feature
valuations κ such that for any problem P in Q and any
reachable state s in P , s is a goal state iff f(s) is in κ. The
valuations in κ are called goal valuations.

The boolean feature valuations determined by state s re-
fer to the truth valuations of the expressions p and n = 0
for the boolean and numerical features p and n in Φ, respec-
tively. While the number of feature valuations is not bounded
as the size of the instances in Q is not bounded in general,
the number of boolean feature valuations is always 2|Φ|.

The last notion required is the notion of optimality:
Definition 9 (Optimal policies). A policy πΦ that solves a
class of problems Q is optimal if any plan ρ induced by πΦ

over a problem P in Q is optimal for P .
If the policy πΦ solves a problem P , the plans induced by

the policy are the action sequences ρ that yield the goal-
reaching trajectories that are compatible with πΦ. These
plans are optimal for P if there are no shorter plans for P .

Under these conditions, the width of the instances in Q
can be bounded by the number of features |Φ| in the policy
πΦ, provided that the features are represented explicitly in
the instances:3

Theorem 10. Let πΦ be a Markovian policy that solves a
class of problems Q optimally, where the features Φ sepa-
rate goals. If the features in Φ are explicitly represented in
the instances P in Q, w(P) ≤ |Φ|.

3Proofs in (Bonet and Geffner 2020a).

Indeed, if a policy πΦ solvesQ optimally under the given
conditions, an admissible chain t0, t1, . . . , tn of size k = |Φ|
can be formed for solving each problem P in Q optimally,
where ti is the valuation of the features in Φ at the i-th state
of any state trajectory that results from applying the policy.

If we let IWΦ refer to the variant of IW that replaces tu-
ples of atoms by feature valuations and thus deems a state s
novel in the search (unpruned) when f(s) has not been seen
before, one can show that:

Theorem 11. Let πΦ be a Markovian policy that solves a
class of problemsQ optimally with features Φ that separate
the goals. The procedure IWΦ solves any instance P in Q
optimally in time O(N |Φ|) where N is the number of atoms
in P .

Example. A general policy for Boxes is given by the rules:
{m> 0} 7→ {m↓} and {m= 0, n> 0} 7→ {n↓,m?} where
m and n are two features that count the number of marbles
in a box with a least number of marbles, and the number
of boxes left on the table. Since the policy complies with
the conditions in Theorem 10 and the two features are rep-
resented explicitly in the language L4

B , it follows that the
width of instances of Boxes in such encoding is 2.
Example. Similarly, the policy πΦ with features Φ =
{H,n} forQclear given by the two rules in (1) is Markovian,
solvesQclear optimally, and the features separate goals. Yet
there are no atoms representing the counter n explicitly.
Still, Theorem 11 implies that IWΦ solves the instances in
Qclear optimally in quadratic time.

Theorem 10 relates the number of features in a general
policy πΦ that solves Q with the width of the class Q pro-
vided that the features are part of the problem encodings.
This, however, is not strictly necessary:

Theorem 12. Let πΦ be an optimal and Markovian policy
that solves a class Q of problems over some domain D for
which Φ separates the goals. The width of the problems P is
bounded by k if for any sequence of feature valuations {fi}i
generated by the policy πΦ in the way to the goal, there is a
sequence of sets of atoms {ti}i in P of size at most k such
that the optimal plans for ti and the optimal plans for fi
coincide.

Example. Consider an instance P in Qclear where
B1, . . . , Bm are the blocks above x initially, from top to
bottom, m > 0. The feature valuations in the way to the
goal following the Markovian policy πΦ are fi = {H,n =
m − i}, i = 1, . . . ,m, and gi = {¬H,n = m − i},
i = 0, . . . ,m − 1. The policy is optimal, Markovian, and
the features separate the goals. The tuples of atoms in P
that capture these valuations as expressed in Theorem 12 are
tfi = {hold(Bi)} and tgi = {ontable(Bi)} for i > 0,
and tg0 = {clear(B1)}. Since these tuples have size 1, the
widths w(P) and w(Qclear) are both equal to 1.

Admissible Chains and Projected Policies
Theorem 12 relates the width of Q to the size of the atom
tuples ti that capture the values of the features fi in all opti-
mal trajectories compatible with an optimal policy for Q. It

is often sufficient, however, if the tuples ti capture the value
of the features fi in some of those trajectories only. Let us
start with the notion of feasible chains:

Definition 13 (Feasible chain). Let θ = (t0, t1, . . . , tn) be
a chain of tuples of atoms from P . The chain θ is feasible in
problem P if t0 is true in the initial state, the optimal plans
for tn have length n, and they are all optimal for P .

An admissible chain, as used in the definition of width,
is a feasible chain that satisfies an extra condition; namely,
that every optimal plan ρ for the tuple ti in the chain can
be extended with a single action into an optimal plan for
the tuple ti+1, i = 0, 1, . . . , n − 1. In order to account for
this key property, we map feasible chains into features and
policies as follows:

Definition 14. Let θ = (t0, t1, . . . , tn) be a chain of atom
tuples from P , and let t̃i(s) denote the boolean state feature
that is true in s when ti is true in s and tj is false for all
i < j ≤ n, i = 1, . . . , n. The chain defines a policy πθ over
P with rules {t̃i} 7→ {t̃i+1,¬t̃i}, i = 0, . . . , n− 1.

The first result gives necessary and sufficient conditions
for a chain θ to be admissible.

Theorem 15. Let θ = (t0, t1, . . . , tn) be a chain of tuples
for a problem P . θ is admissible in P if and only if θ is feasi-
ble and the policy πθ solves P optimally and is Markovian.

This result connects admissible chains with policies that
are optimal and Markovian, but does not connect admissi-
ble chains with general policies. This is done next. We first
define when a policy π1 can be regarded as a projection of
another policy π2:

Definition 16 (Projection). Let πΦ be a policy over a class
Q and let πΦ′ be a policy for a problem P in Q. The policy
πΦ′ is a projection of πΦ in P if every maximal state trajec-
tory compatible with πΦ′ in P is a maximal state trajectory
in P compatible with πΦ.

Notice that it is not enough for the state trajectories
s0, . . . , si compatible with πΦ′ to be state trajectories com-
patible with πΦ; it is also required that if si is a final state
in the first trajectory that it is also a final state in the second
one. This rules out the possibility that there is a continuation
of the first trajectory that is compatible with πΦ but not with
πΦ′ . A result of this is that if πΦ is optimal for Q, the pro-
jected policy πΦ′ must be optimal for P . From this, the main
theorem of this section follows:

Theorem 17. Let πΦ be an optimal policy for a class Q
of problems. If for any problem P in Q, there is a feasible
chain θ of size at most k such that πθ is a projection of πΦ

in P that is Markovian, then w(Q) ≤ k.

While the proof of this theorem is a direct consequence of
Theorem 15, the result is important as it renders explicit the
logic underlying all proofs of bounded width for meaningful
classes of problemsQ that we are aware of. In all such cases,
the proofs have been constructed by finding feasible chains
with tuples ti that are a function of the instance P ∈ Q,
and whose role is to capture suitable projections of some
general optimal policy πΦ.

Example. In the Delivery (D) domain an agent moves
in a grid to pick up packages and deliver them to a tar-
get cell, one by one; Delivery-1 (D1) is the version with
one package. A general policy πΦ for D and D1 is given
in terms of four rules that capture: move to the (near-
est) package, pick it up, move to the target cell, and drop
the package, in a cycle, until no more packages are left.
The rules can be expressed in terms of the features Φ =
{H, p, t, n} that express holding, distance to the nearest
package (zero if agent is holding a package or no package
to be delivered remains), distance to the target cell, and the
number of undelivered packages respectively. Hence, n= 0
identifies the goal states for the problems in the classes
QD and QD1

for the problems D and D1 respectively.
The rules that define the policy πΦ are {¬H, p> 0} 7→
{p↓, t?}, {¬H, p= 0} 7→ {H}, {H, t> 0} 7→ {t↓}, and
{H,n> 0, t= 0} 7→ {¬H,n↓, p?}.4

Let us consider a problem P in the class QD1
. If the en-

coding of P contains atoms like at(celli), atp(pkgi, cellj),
hold(pkgi), and empty, it can be shown that QD1

has
width 2. Indeed, without loss of generality, let us assume
that in P , the package is initially at celli and has to
be delivered at cellt, and the agent is initially at cell0,
and let θ = (t0, t1, . . . , tn) be the chain made of tu-
ples of the form {at(cellk)} for the cells on a shortest
path from cell0 to celli, followed by tuples of the form
{at(cellk), hold(pkgj)}, with cellk now ranging over a
shortest path from celli up to cellt, and a last tuple tn of
the form {at(pkgj , cellt)}. It is easy to show that the chain
θ is feasible, and πθ is the projection of the general policy πΦ

that in D1 is both optimal and Markovian (although not in
D). Then, by Theorems 15 and 17, it follows that the chain
θ is admissible, and w(QD1) ≤ 2.

Serialized Width
Theorem 17 suggests that bounded width is often the result
of general policies that project on suitable tuples of atoms.
We extend this relation now to the larger class of problems
that have bounded serialized width where problems are de-
composed in subproblems and the general policies do not
have to be optimal or Markovian. A serialization is a strict
partial order (an irreflexive and transitive binary relation)
over the feature valuations (Φ-tuples) over a whole class of
problem Q:

Definition 18 (Serializations). LetQ be a class of problems,
let Φ be a set of goal-separating features for Q, and let ≺
be a strict partial order over Φ-tuples. The pair (Φ,≺) is a
serialization overQ if 1) the ordering≺ is well-founded; i.e.
there is no infinite descending chain f1 � f2 � f3 � · · ·
where fi � fi+1 stands for fi+1 ≺ fi, and 2) the goal

4A different formulation involves packages that need to be de-
livered to target cells that depend on the package. The set of fea-
tures is the same Φ = {H, p, t, n} except that t is defined as the
distance to the current target cell (zero if agent holds nothing or
there are no more packages to deliver). A policy for this formula-
tion has the rules {¬H, p> 0} 7→ {p↓}, {¬H, p= 0} 7→ {H, t↑},
{H, t> 0} 7→ {t↓}, and {H,n> 0, t= 0} 7→ {¬H,n↓, p?}.

feature valuations f are ≺-minimal; i.e., no f ′ ≺ f for any
feature valuation f ′.

A serialization decomposes each problem P in Q into
subproblems that define the width of the serialization:

Definition 19 (Subproblems). Let (Φ,≺) be a serialization.
The subproblem P [s,≺] is the problem of finding a state s′
reachable from s such that s′ is goal in P or f(s′) ≺ f(s);
i.e., the goal states in P [s,≺] are the goal states in P and
the states s′ such that f(s′) ≺ f(s). The collection P [≺] of
subproblems for problem P is the smallest subset of prob-
lems P [s,≺] that comply with:

1. if the initial state s0 in P is not goal, P [s0,≺] ∈ P [≺],

2. P [s′,≺] ∈ P [≺] if P [s,≺] ∈ P [≺] and s′ is a non-goal
state in P that is at shortest distance from s such that
f(s′) ≺ f(s), and no goal state of P is strictly closer
from s than s′

Definition 20 (Serialized width). Let (Φ,≺) be a serializa-
tion for a collection Q of problems. The serialized width of
problem P relative to (Φ,≺) is k, written as wΦ(P) = k
with the ordering “≺” left implicit, if there is a subproblem
P [s,≺] in P [≺] that has width k, and every other subprob-
lem in P [≺] has width at most k. The serialized width forQ
is k, written aswΦ(Q) = k, ifwΦ(P) = k for some problem
P ∈ Q, and wΦ(P) ≤ k every other problem P ′ ∈ Q.

If a class of problemsQ has bounded serialized width and
the ordering f ≺ f ′ can be tested in polynomial time, each
problem P in Q can be solved in polynomial time using a
variant SIWΦ of the SIW algorithm: starting at the state s =
s0, SIWΦ performs an IW search from s to find a state s′
that is a goal state or that renders the precedence constraint
f(s′) ≺ f(s) true. If s′ is not a goal state, s is set to s′,
s := s′, and the loop repeats until a goal state is reached. The
result below follows from the observations by Lipovetzky
and Geffner (2012) once the goal counter is replaced by a
partial order, and the notion of serialized width is suitably
formalized:

Theorem 21. Let Q be a collection of problems and let
(Φ,≺) be a serialization for Q with width wΦ(Q) ≤ k.
Any problem P in Q is solved by SIWΦ in time and space
bounded by O(bN |Φ|+2k−1Λ) and O(bNk + N |Φ|+k) re-
spectively, where b bounds the branching factor in P , N is
the number of atoms in P , and Λ bounds the time to test the
order ≺ for the Φ-tuples that arise from the states in P .

The class QVA of instances for the problem VisitAll,
where all cells in a grid must be visited, has serialized width
wΦ(QVA) = 1 for Φ = {#g} where #g counts the num-
ber of unvisited cells (unachieved goals), with the obvious
ordering (’≺’ set to ’<’). The class QBW of Blocksworld
instances cannot be serialized into subproblems of bounded
width with Φ′ = {#g} because achieved goals may have to
be undone, yet with Φ = {#m}where #m counts the num-
ber of misplaced blocks (i.e., not on their targets or above
one such block), wΦ(QBW) = 2. The result above implies
that SIWΦ solves these problems in polynomial time.

From General Policies to Serializations
We show next how serializations can be inferred from gen-
eral policies, a result that paves the way to introduce a conve-
nient language for defining serializations. For this, however,
we focus on the policies πΦ that solve a class of problems
Q structurally; i.e., by virtue of the effects of the actions
on the features as expressed in the policy rules in πΦ. We
use ideas developed in the context of QNPs (Srivastava et al.
2011; Bonet and Geffner 2020b).

The key idea is the notion of terminating policy graph.
Recall that every feature valuation f defines a projected
boolean valuation b(f) over the expressions p and n = 0
for the boolean and numerical features p and n in Φ, where
p and n = 0 are true in b(f) iff p and n = 0 are true in f
respectively. The policy graph for policy πΦ is:

Definition 22 (Policy graph). The policy graph G(πΦ) for
policy πΦ has nodes b, one for each of the 2|Φ| boolean fea-
ture valuations over Φ, and edges b→ b′ labeled with E if b
is not a goal valuation and (b, b′) is compatible with a rule
C → E in the policy.

The edge b→ b′ is compatible with a rule C → E if C is
true in b, and (b, b′) is compatible with E; namely, if p (resp.
¬p) is in E, p (resp. ¬p) must be true in b′, and if n↑ is in
E, n= 0 must be false in E. Effects p?, n?, and n↓ in E put
no constraints on b′. In particular, in the latter case, n = 0
can be either true or false in b′, meaning that after a decre-
ment, a numerical feature may remain positive or have value
0. Notice that the policy graph associated with a policy πΦ

does not take the class of problems Q into account. Indeed,
the policy graph may have an edge b → b′ even if there
is no state transition (s, s′) in an instance in Q where this
transition between these boolean valuations arises. The pol-
icy graph and the notion of termination below are purely
structural as they depend on the form of the policy rules
only:

Definition 23 (Termination). A policy πΦ and a policy
graph G(πΦ) are terminating if for every cycle in the graph
G(πΦ), i.e., any sequence of edges bi → bi+1 with labels Ei
that start and end in the same node, there is a numerical fea-
ture n in Φ that is decreased along some edge and increased
in none. That is, n↓ ∈ Ek for some k-th edge in the cycle,
and n↑ 6∈ Ej and n? 6∈ Ej for all others edges in the cycle.

The termination condition can be checked in time that is
polynomial in the size of the policy graph by a procedure
called SIEVE that looks at the strongly connected compo-
nents in the graph (Srivastava et al. 2011; Bonet and Geffner
2020b).5 A key property of terminating policies is that they
give rise to state trajectories that are finite.

Theorem 24. Let πΦ be a terminating policy with features
Φ overQ that separate the goals. Then, πΦ cannot give rise
to infinite state trajectories in instances P in Q.

5See Bonet and Geffner (2020b) for more details on the formal
properties of termination in QNPs. Our setting is slightly different
as our numerical features are linear and cannot grow without bound
as in QNPs, but we do not use this property to define termination.

Since terminating policies induce state trajectories with a
final state, a sufficient condition for a terminating policy to
solve a class Q is to be closed:

Definition 25 (Closed policy). A policy πΦ is closed over a
class of problems Q if for any non-goal state s in a problem
P inQ that is πΦ-reachable, there is a transition (s, s′) that
is compatible with πΦ.

Theorem 26. If πΦ is closed over Q, the features in Φ sep-
arate goals in Q, and πΦ is terminating, πΦ solves Q.

We are interested in the conditions under which general
policies determine serializations, and in particular, serializa-
tions with bounded width. For the first part, we do not need
the policy to be closed or solveQ, but just to be terminating:

Theorem 27. A terminating policy πΦ with features Φ over
Q that separate goals determines a serialization (Φ,≺) of
Q where ‘≺’ is the minimal strict partial relation (i.e., the
transitive closure) that satisfies f ′ ≺ f for a non-goal valu-
ation f , if (f, f ′) is compatible with a policy rule in πΦ.

Here a pair of feature valuations (f, f ′) is compatible with
a rule C → E, if C is true in f and the change in values
from f to f ′ is compatible withE. Notice that if a state tran-
sition (s, s′) is compatible with C → E, the pair of feature
valuations (f(s), f(s′)) is compatible with the rule, but the
existence of such a state transition is not a requirement for
the pair (f, f ′) to be compatible with the policy rule; they
can be arbitrary feature valuations over Φ.

There are simple syntactic criteria that ensure that a pol-
icy is terminating. For example, a policy that uses numerical
features only is terminating if there is an ordering on the fea-
tures such that every rule C 7→ E that increases a feature ni
decreases a feature nj later in the ordering. Such policies are
called regular (Bonet and Geffner 2020b).
Example. The policy πΦ for Boxes with rules {m> 0} 7→
{m↓} and {m= 0, n> 0} 7→ {n↓,m?} and goal n= 0 is
closed and regular. It is closed since for any state s where
n> 0, there is a transition (s, s′) that is compatible with πΦ:
if m= 0, s′ results from an action that puts an empty box
away, while if m> 0, s′ results from an action that puts a
marble away from a box with a least number of marbles.
Theorem 26 implies that πΦ solves QB .

If a terminating policy for the class Q defines a serializa-
tion overQ, a terminating policy that solvesQ should define
a serialization over Q with zero width. Two conditions are
needed for this though. The first is the notion of goal con-
nectedness:
Definition 28 (Goal connected). A policy πΦ for Q with
goal separating features and its policy graph are said to be
goal connected when all nodes b(f(s0)) associated with the
initial states s0 of instances P in Q are connected only to
nodes b that are connected with goal nodes.

Clearly, a policy πΦ forQ is not closed if its policy graph
is not goal-connected, but goal-connectedness does not im-
ply that the policy is closed. For this, we need a condition
that goes beyond the structure of the policy graph:6

6The notion of soundness is similar to action soundness in

Definition 29 (Sound policy). A policy πΦ over Q is sound
if for any reachable non-goal state s in an instance P in Q
where the policy rule C 7→ E is applicable (i.e., where C
holds), there is a transition (s, s′) in P that is compatible
with πΦ.

Soundness and goal connectedness imply that a policy is
closed, and both are critical for establishing the conditions
under which the serialization induced by a terminating pol-
icy has zero width:

Theorem 30. If πΦ is sound and goal-connected in Q, then
πΦ is closed in Q.

From Theorem 26, it follows that a terminating policy πΦ

that is sound and goal-connected in Q, solves Q. In such
a case, we say that the policy πΦ solves the class of prob-
lems Q structurally, as two of the conditions, termination
and goal-connectedness, can be tested on the policy graph.
Soundness, on the other hand, is the condition that ensures
that only sink nodes in the policy graph over any instance
P ∈ Q are the goal nodes.

As expected, if a terminating policy πΦ solves Q, the
width of Q under the serialization determined by the policy
(Theorem 27) is zero, provided however, that certain struc-
tural conditions hold:

Theorem 31. Let πΦ be a policy that solves Q structurally
and let (Φ,≺) be the serialization overQ determined by πΦ.
If πΦ is sound and goal connected, wΦ(Q) = 0.

Example. The policy for Boxes in the previous example is
closed, goal connected, and sound. By Theorem 31, it de-
termines a serialization (Φ,≺) of width zero, where f(s) =
[n(s),m(s)] ≺ f(s′) = [n(s′),m(s′)] iff n(s) < n(s′) or
n(s) = n(s′) and m(s) < m(s′).
Example. In Delivery, we use the features Φ = {H, p, t, n}
and the policy πΦ defined by the rules {¬H, p> 0} 7→
{p↓, t?}, {¬H, p= 0} 7→ {H}, {H, t> 0} 7→ {t↓}, and
{H,n> 0, t= 0} 7→ {¬H,n↓, p?}. It is easy to check that
πΦ is sound for the classesQD andQD1

since for any reach-
able non-goal state s in a problem P , there is a transition
(s, s′) that is compatible with πΦ. On the other hand, the
policy graph for πΦ, depicted in Fig. 1, is clearly terminating
and goal connected. Since Φ separates goals for the classes
QD andQD1 , by Theorem 26, πΦ solves both classes struc-
turally, and the induced serialization (Φ,≺) has width zero
for the classes QD and QD1

by Theorem 31.

Sketches: A Language for Serializations
We make use of the results above for introducing a conve-
nient language for specifying serializations. The language
can be used either to encode serializations by hand for ex-
tending the scope of width-based algorithms such as SIWΦ,
or for learning serializations from traces.

A policy sketch or simply sketch RΦ, for a class of prob-
lems Q, is a set of policy rules over the features Φ that dis-
tinguish the goals ofQ. The sketch RΦ can be a full fledged
policy over Q, part of it, or just set of policy rules C → E,

QNPs when QNPs are used to abstract classes of problems (Bonet
and Geffner 2018; Bonet, Frances, and Geffner 2019).

H, p> 0, t= 0, n> 0

H, p= 0, t= 0, n> 0

H, p= 0, t= 0, n> 0

H, p= 0, t= 0, n= 0

H, p> 0, t > 0, n> 0

H, p= 0, t > 0, n> 0

H, p= 0, t > 0, n> 0

H, p> 0, t= 0, n= 0

{p↓, t?}

{p↓, t?}

{p↓, t
?} {p↓, t?}

{H}

{¬H,n↓, p?}

{¬H,n↓, p?}

{¬H,n↓, p?}

{¬
H
,n
↓ ,
p
?}

{p↓, t?}

{p↓, t?}
{p↓, t?}{p↓, t?}

{H}
{t↓}

{t↓}

Figure 1: Policy graph for Delivery for the policy defined by
the rules {¬H, p> 0} 7→ {p↓, t?}, {¬H, p= 0} 7→ {H},
{H, t> 0} 7→ {t↓}, and {H,n> 0, t= 0} 7→ {¬H,n↓, p?}.
Yellow and green nodes denote initial and goal nodes respec-
tively. Red nodes and edges stand for nodes and transitions
in the policy graph that do not arise in the instances. The
graph is terminating and goal connected, and the policy is
closed and sound for the classes QD and QD1

.

including the empty set. By interpreting RΦ as a policy, we
can transfer previous results that involve policy graphs and
termination. We call the rules in a sketch RΦ, sketch rules
because their semantics is different from the semantics of
policy rules.

Definition 32 (Sketch). A sketch forQ is a set RΦ of sketch
rules C → E over features Φ that separate goals in Q. The
sketch RΦ is well-formed if the set of rules RΦ interpreted
as a policy is terminating.

Notice that the definition of terminating policies does not
require the policy to be closed or even to solve Q. Theo-
rem 27 directly yields:

Theorem 33. A well-formed sketch RΦ for Q defines a se-
rialization (Φ,≺) over Q where ‘≺’ if the smallest strict
partial order that satisfies f ′ ≺ f if the pair of feature valu-
ations (f, f ′) is compatible with a sketch rule in RΦ.

The distinction between policy and sketch rules is seman-
tical, not syntactical. A policy πΦ defines a filter on state
transitions and a serialization (Theorem 27). A sketch RΦ,
on the other hand, defines just a serialization. Namely, each
sketch rule C 7→ E defines the subproblem of going from
a state s where C holds in f(s) to a state s′ such that the
pair of feature valuations (f(s), f(s′)) is compatible with
the rule. It is not a requirement that s′ should be reachable
in one step from s. Sketches thus provide a language for
decomposing a problem into subproblems and thus for re-
ducing its width, which goes well beyond the language of
goal counters and variations, as the language for sketches
includes the language of general policies.
Example. The serialization given by the single feature #g
that counts the number of unachieved (top) goals is captured
with the sketch that only contains the rule {#g > 0} 7→

{#g↓} when there are no other features, and the rule
{#g > 0} 7→ {#g↓, p?, n?} when p and n are other fea-
tures. The rules say that it is “good” to decrease the goal
counter independently of the effects on other features.

Our last results are about the width of the serializations
defined by sketches, and the modifications in the SIWΦ al-
gorithm to work with sketches:

Definition 34 (Sketch width). Let RΦ be a well-formed
sketch for a class of problems Q such that Φ separates the
goals, and let s be a reachable state in some instance P
of Q. The width of the sketch RΦ at state s of problem P ,
wR(P [s]), is the width of the subproblem P [s] that is like
P but with initial state s and goal states s′ such that s′ is a
goal state of P , or the pair (f(s), f(s′)) is compatible with
a sketch rule C 7→ E. The width of the sketch RΦ, wR(Q),
is the maximum width wR(P [s]) for any reachable state s in
any problem P in Q.

Theorem 35. Let RΦ be a well-formed sketch for a classQ
of problems, and let (Φ,≺) be the serialization determined
by RΦ from Theorem 33. The width wΦ(Q) of the serializa-
tion is bounded by the width wR(Q) of the sketch.

If a well-formed sketch RΦ has bounded width for a class
of problems Q, then the problems in Q can be solved in
polynomial time by an algorithm SIWR that is like SIWΦ,
with the difference that the precedence test f ≺ f ′ among
pairs of feature valuations f and f ′ is replaced by the test of
whether the feature valuation pair (f, f ′) is compatible with
a rule in RΦ. In other words, SIWR start at the state s := s0,
where s0 is the initial state of P , and then performs an IW
search from s to find a state s′ that is a goal state or such the
pair (f(s), f(s′)) is compatible with a sketch rule in RΦ.
Then if s′ is not a goal state, s is set to s′, s := s′, and the
loop repeats until a goal state is reached. The precedence test
in RΦ can be done in constant time unlike the general test
f ′ ≺ f in SIWΦ.7 The runtime properties of SIWR are thus
similar to those of SIWΦ, as captured in Theorem 21, with
precedence tests that can be done in constant time:

Theorem 36. Let RΦ be a well-formed sketch for a class
Q of problems. If the sketch width wR(Q) is bounded by k,
SIWR solves any problem P in Q in O(bN |Φ|+2k−1) time
and O(bNk + N |Φ|+k) space, where b and N bound the
branching factor and number of atoms in P respectively.

Example. Different and interesting sketches are given in
Table 1 for the two classes of problems for Delivery: the

7For testing if f ′ ≺ f is true, one needs to check if there
is a sequence {fi}ni=0 of feature valuations such that f = f0,
f ′ = fn, and each pair (fi, fi+1) is compatible with a sketch rule,
i = 0, 1, . . . , n−1. Actually, this test can be done in constant time
too, provided that the binary relation ’≺’ for each instance P is pre-
compiled in a boolean hash table with Nk rows and Nk columns
where N is the number of atoms in P , Nk is the number of feature
valuations in P , and k is the number of features. Unlike the proce-
dure SIWR, this precompilation however is not practical in general.
The efficiency of SIWR comes at a price: by testing “progress” with
the sketch rules directly and not with the serializations that results
from such rules, SIWR is not using the serialization fully, as it ig-
nores the transitive closure of the precedence relations.

Policy sketch QD1
QD

σ0 = {} 2 unb
σ1 = {{H} 7→ {¬H, p?, t?}} 2 unb
σ2 = {{¬H} 7→ {H, p?, t?}} 1 unb
σ3 = σ1 ∪ σ2 — —
σ4 = {{n> 0} 7→ {n↓, H?, p?, t?}} 2 2
σ5 = σ2 ∪ σ4 1 1
σ6 = {{¬H, p> 0} 7→ {p↓, t?}} 2 unb
σ7 = {{H, t> 0} 7→ {t↓, p?}} 2 unb
σ8 = σ2 ∪ σ4 ∪ σ6 ∪ σ7 0 0

Table 1: Upper bounds on the width of different sketches for
the classes QD1

and QD of Delivery problems. The entries
unb and ‘—’ mean, respectively, unbounded width and ill-
defined sketch. For sketches of bounded width, SIWR solves
any instance in the class in polynomial time.

class QD of problems with an arbitrary number of pack-
ages and the class QD1 of problems with a single package.
In the table, the entries in the columns QD1 and QD upper
bound the width of the different sketches in the table for the
two classes of Delivery problems. The entries unb and ‘—’
stand respectively for unbounded width and ill-defined (non-
terminating) sketch. The features used are: (boolean) H for
holding a package, p is distance to nearest package (zero if
holding a package or no package to be delivered remains,
t is distance to current target cell (zero if holding nothing),
and n is number of packages still to be delivered.

We briefly explain the entries in the table without pro-
viding formal proofs (such proofs can be obtained with
Theorem 17). σ0 is the empty sketch whose width is the
same as the plain width, 2 for D1 and unbounded for D,
as no problem P is decomposed into subproblems. The rule
{H} 7→ {¬H, p?, t?} in σ1 does not help in initial states
that do not satisfy H , and hence the width of D1 remains
2. For σ2, the rule {¬H} 7→ {H, p?, t?} says that a state
s where ¬H holds can be “improved” by finding a state s′
whereH holds, while possibly affecting p, t, or both. Hence,
any problem P inD1 is split in two subproblems: achieveH
first and then the goal, reducing the sketch width of D1 to 1
but not the sketch width of D. The sketch σ3 is not well-
formed as it is not terminating, and indeed, the resulting or-
dering is not a strict partial order. The sketch σ4 decomposes
the problems using the feature n that counts the number of
undelivered packages, reducing width of D to 2 but not af-
fecting that of D1. The sketch σ5 combines the rules in σ2

and σ4, decomposing D into two subproblems, the first of
which corresponds to D1, which is further decomposed into
two subproblems. The sketch width of both D and D1 be-
comes then 1: the first subproblem is to collect the nearest
package, the second one to drop it at the target cell, and the
same sequence of subproblems gets repeated. The sketches
σ6 and σ7 simply some of the subproblems but do not reduce
the widths of either D1 or D. Finally, the sketch σ8 yields
a serialization of width zero, and hence a full policy. where
each subproblem is solved in a single step.

Thm Notes

2 Performance and guarantees of IW(k).
10 Optimal, Markov policies bound width if features encoded.
11 Markovian policies guarantee optimal solutions with IWΦ.
12 Bounded width also when tuples capture the features in all

optimal trajectories.
17 Bounded width when tuples capture features in a projection.
21 Performance and guarantees of SIWΦ.
24 Conditions for termination of policies.
26 Closed and terminating policies define structural solutions.
27 Terminating policies define serializations.
31 Structural solutions that are sound and closed define serial-

izations of zero width.
33 Well-formed sketches define serializations.
35 Sketch width bounds width of induced serialization.
36 Performance and guarantees of SIWR given sketches.

Table 2: Summary of main formal results.

Conclusions
We have established a number of connections between the
notions of width, as developed and used in classical plan-
ning, and the notion of generalized plans, which are summa-
rized in Table 2. The results suggest a deep connection be-
tween these two notions and that bounded width for infinite
collections of problems Q is often the result of simple gen-
eral policies that solve Q optimally in terms of features that
are partially represented in the problem encodings. When
this is not the case, we have shed light on the representa-
tions that deliver such properties, and hence, polynomial-
time searches. We have also formalized and generalized the
notion of serialized width by appealing to an explicit and ab-
stract notion of serializations, and established connections
between generalized policies and serialized width by bor-
rowing notions from QNPs. From this connection, we in-
troduced policy sketches which make use of the language
of policy rules but with a different semantics for provid-
ing a convenient and powerful language for specifying sub-
problems and serializations that can be exploited by algo-
rithms such as SIW. The language can be used for encoding
domain-specific knowledge by hand, or as a target language
for learning domain serializations automatically from traces.
These are interesting challenges that we would like to ad-
dress in the future.

Acknowledgments
The research is partially funded by an ERC Advanced Grant
(No 885107), by grant TIN-2015-67959-P from MINECO,
Spain, and by the Knut and Alice Wallenberg (KAW) Foun-
dation through the WASP program. H. Geffner is a also Wal-
lenberg Guest Professor at Linköping University, Sweden.

References
Bandres, W.; Bonet, B.; and Geffner, H. 2018. Planning with
Pixels in (Almost) Real Time. In Proc. AAAI, 6102–6109.

Belle, V.; and Levesque, H. J. 2016. Foundations for Gener-
alized Planning in Unbounded Stochastic Domains. In Proc.
KR, 380–389.

Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2013. The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research 47: 253–279.
Bonet, B.; Frances, G.; and Geffner, H. 2019. Learning fea-
tures and abstract actions for computing generalized plans.
In Proc. AAAI, 2703–2710.
Bonet, B.; and Geffner, H. 2018. Features, Projections, and
Representation Change for Generalized Planning. In Proc.
IJCAI, 4667–4673.
Bonet, B.; and Geffner, H. 2020a. General Policies, Serial-
izations, and Planning Width. arXiv:2012.08033.
Bonet, B.; and Geffner, H. 2020b. Qualitative Numeric Plan-
ning: Reductions and Complexity. Journal of Artificial In-
telligence Research (JAIR) 69: 923–961.
Bonet, B.; Palacios, H.; and Geffner, H. 2009. Automatic
Derivation of Memoryless Policies and Finite-State Con-
trollers Using Classical Planners. In Proc. ICAPS, 34–41.
Dechter, R. 2013. Reasoning with probabilistic and deter-
ministic graphical models: Exact algorithms. Morgan &
Claypool Publishers.
Francès, G.; Ramı́rez, M.; Lipovetzky, N.; and Geffner, H.
2017. Purely Declarative Action Representations are Over-
rated: Classical Planning with Simulators. In Proc. IJCAI,
4294–4301.
Freuder, E. C. 1982. A sufficient condition for backtrack-
free search. Journal of the ACM 29(1): 24–32.
Geffner, H.; and Bonet, B. 2013. A Concise Introduction to
Models and Methods for Automated Planning. Morgan &
Claypool Publishers.
Ghallab, M.; Nau, D.; and Traverso, P. 2016. Automated
planning and acting. Cambridge U.P.
Hu, Y.; and De Giacomo, G. 2011. Generalized planning:
Synthesizing plans that work for multiple environments. In
Proc. IJCAI, 918–923.
Lehman, J.; and Stanley, K. O. 2011a. Abandoning objec-
tives: Evolution through the search for novelty alone. Evo-
lutionary computation 19(2): 189–223.
Lehman, J.; and Stanley, K. O. 2011b. Evolving a diversity
of virtual creatures through novelty search and local com-
petition. In Proc. 13th annual conference on Genetic and
evolutionary computation, 211–218.
Lipovetzky, N.; and Geffner, H. 2012. Width and serializa-
tion of classical planning problems. In Proc. ECAI, 540–
545.
Lipovetzky, N.; and Geffner, H. 2017a. Best-First Width
Search: Exploration and Exploitation in Classical Planning.
In Proc. AAAI, 3590–3596.
Lipovetzky, N.; and Geffner, H. 2017b. A polynomial plan-
ning algorithm that beats LAMA and FF. In Proc. ICAPS,
195–199.
Lipovetzky, N.; Ramirez, M.; and Geffner, H. 2015. Clas-
sical Planning with Simulators: Results on the Atari Video
Games. In Proc. IJCAI, 1610–1616.

Ostrovski, G.; Bellemare, M. G.; Oord, A.; and Munos, R.
2017. Count-Based Exploration with Neural Density Mod-
els. In Proc. ICML, 2721–2730.
Pathak, D.; Agrawal, P.; Efros, A. A.; and Darrell, T. 2017.
Curiosity-driven exploration by self-supervised prediction.
In Proc. IEEE Conf. Computer Vision and Pattern Recogni-
tion, 16–17.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems. Morgan Kaufmann.
Segovia, J.; Jiménez, S.; and Jonsson, A. 2016. General-
ized planning with procedural domain control knowledge.
In Proc. ICAPS, 285–293.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2008.
Learning generalized plans using abstract counting. In Proc.
AAAI, 991–997.
Srivastava, S.; Zilberstein, S.; Immerman, N.; and Geffner,
H. 2011. Qualitative Numeric Planning. In Proc. AAAI,
1010–1016.
Tang, H.; Houthooft, R.; Foote, D.; Stooke, A.; Chen, O. X.;
Duan, Y.; Schulman, J.; DeTurck, F.; and Abbeel, P. 2017.
exploration: A study of count-based exploration for deep
reinforcement learning. In Advances in neural information
processing systems, 2753–2762.
Thiébaux, S.; Hoffmann, J.; and Nebel, B. 2005. In defense
of PDDL axioms. Artif. Intell. 168(1-2): 38–69.

