Learning More Expressive General Policies for Classical Planning Domains

Simon Ståhlberg¹ Blai Bonet² Hector Geffner¹

¹RWTH Aachen University, Germany, ²Universitat Pompeu Fabra, Spain

Introduction

- General policies are strategies for solving many planning instances
- ► E.g., general policy for solving **all** Blocksworld problems
- Three main methods for learning such policies (no "synthesis" yet!)
- ▶ Combinatorial optimization using explicit pool of C_2 features obtained from domain predicates [B. et al., 2019; Francès et al., 2021]
- □ Transparent, can be proved correct, trouble scaling up
- ▶ Deep learning (DL) using domain predicates but no explicit pool [Toyer et al., 2020; Garg et al., 2020]
- □ Opaque, complex, but scalable
- ► DL exploiting relation between C₂ logic and GNNs [Barceló et al., 2020; Grohe, 2020; Ståhlberg et al., 2022]
- [□] R-GNN architecture adapted from Max-CSP[Γ] [Toenshoff *et al.*, 2021]
- □ More transparent and simple, scalable
- □ Supervised and non-supervised training
- □ **Problem:** insufficient expressivity for generalized planning

Contributions

- Novel relational architecture R-GNN[t], with parameter $t \geq 0$, that combines the R-GNN architecture with a parameterized encoding $A_t(S)$ of planning states S
- As t increases, the expressive power of R-GNN[t] increases, approaching the full expressivity of \mathcal{C}_3 logic
- Significant improvements obtained even with t = 1, as shown in experiments
- 2- or 3-GNNs and Edge Transformers unfeasible in practice and limited to binary relations:
- ▶ 2-GNNs: $\Theta(N^2)$ memory, $\Theta(N^3)$ time, C_2 expressivity (yet see below)
- ▶ 3-GNNs: $\Theta(N^3)$ memory, $\Theta(N^4)$ time, \mathcal{C}_3 expressivity
- ► ETs: $\Theta(N^2)$ memory, $\Theta(N^3)$ time, \mathcal{C}_3 expressivity
- ▶ Provably Powerful GNs [Maron et al., 2019]: C_3 expressivity, $\Theta(N^2)$ memory, $\Theta(N^3)$ time

Generalized Planning and First-Order STRIPS

- Generalized planning is about finding **general policies** that solve classes of planning problems
- Task is collection $\{P_1, P_2, \ldots\}$ of instances $P_i = \langle D, I_i \rangle$ over shared **first-order STRIPS** domain
- Each instance $P = \langle D, I \rangle$ consists of:
- ightharpoonup General (reusable) domain D specified with **action schemas** and **predicates**
- ightharpoonup Instance information I details **objects**, **init** and **goal** descriptions

Distinction between **general** domain D and **specific** instance $P = \langle D, I \rangle$ is important for **reusing** action models, and also for **learning** them

Example (Input): 2-Gripper Problem $P = \langle D, I \rangle$ in PDDL

```
(define (domain gripper)
                room ball gripper)
                left right - gripper)
                (at-robot ?r - room)
                 (at ?b - ball ?r - room)
                (free ?g - gripper)
                (carry ?o - ball ?g - gripper))
  (:action MOVE
      :parameters (?from ?to - room)
      :precondition (at-robot ?from)
                 (and (at-robot ?to) (not (at-robot ?from)))
  (:action PICK
      :parameters (?obj - ball ?room - room ?gripper - gripper)
      :precondition (and (at ?obj ?room) (at-robot ?room) (free ?gripper))
     :effect (and (carry ?obj ?gripper) (not (at ?obj ?room)) (not (free ?gripper)))
 (:action DROP
      :parameters (?obj - ball ?room - room ?gripper - gripper)
      :precondition (and (carry ?obj ?gripper) (at-robot ?room))
                 (and (at ?obj ?room) (free ?gripper) (not (carry ?obj ?gripper)))
(define (problem easy-2balls)
 (:domain gripper)
 (:objects roomA roomB - room B1 B2 - ball)
          (at-robot roomA) (free left) (free right) (at B1 roomA) (at B2 roomA))
           (and (at B1 roomB) (at B2 roomB)))
```

Relational GNN Architecture [Ståhlberg et al., 2022]

- ullet Planning state S over STRIPS domain D is a **relational structure**:
- ightharpoonup Relational symbols given by predicates in D; **shared** by all such states S
- ▶ Denotation of predicate p given by ground atoms $p(\bar{o})$ true at S
- Adapt architecture of [Toenshoff et al., 2021] for handling relational structures

Relational GNN (R-GNN) Architecture

Input: Set of ground atoms S (state), and objects OOutput: Embeddings $\mathbf{f}_L(o)$ for each object $o \in O$ 1. Initialize $\mathbf{f}_0(o) = 0^k$ for each object $o \in O$

- 2. for $i \in \{0, 1, ..., L 1\}$ do
 3. for each atom $q = p(o_1, o_2, ..., o_m) \in S$ do
- 4. $m_{q,o_i} := \left[\mathbf{MLP}_p (\boldsymbol{f}_i(o_1), \boldsymbol{f}_i(o_2), \dots, \boldsymbol{f}_i(o_m)) \right]_i$
- $p(oldsymbol{j}_i, oldsymbol{j}_i(O_1), oldsymbol{j}_i(O_2), \dots, oldsymbol{j}_i(O_n), oldsymbol{j}_i(O_$
- 6. for each object $o \in O$ do
- 7. $\boldsymbol{f}_{i+1}(o) := \boldsymbol{f}_i(o) + \mathbf{MLP}_U(\boldsymbol{f}_i(o), \operatorname{agg}(\{\{\boldsymbol{m}_{q,o} \mid o \in q, q \in S\}\}))$
- 8. end for
 9. end for

Parameters: embedding dimension k, rounds L, $\{\mathbf{MLP}_p : p \in D\}$, \mathbf{MLP}_U , and aggregator

Final Readout, Value Functions, and Greedy Policies

• Final readout is additive readout that feeds into final MLP:

 $V(S) = \mathbf{MLP}(\Sigma_{o \in O} \mathbf{f}_L(o))$

- Training minimize loss $L(S) = |V^*(S) V(S)|$ given by **optimal value function** $V^*(\cdot)$ for small tasks in training set
- Greedy policy $\pi_V(S)$ chooses action $a = \operatorname{argmin}_{a \in A(S)} 1 + V(S_a)$:
- ▶ If V(S) = 0 for goals, and $V(S) = 1 + \min_a V(S_a)$ for non-goals, π_V is **optimal**
- ▶ If V(S) = 0 for goals, and $V(S) \ge 1 + \min_a V(S_a)$ for non-goals, π_V solves any state S
- where S_a is state that results of applying action a in state S

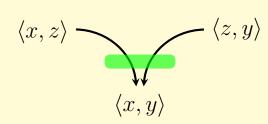
Successful approach for generalized planning, but subject to expressivity of GNNs...

Expressivity of GNNs

- R-GNNs are instances of (1-)GNNs over undirected graphs
- GNNs compute invariant (resp. equivariant) funcs on graphs (resp. vertices)
- \bullet Well-understood **expressivity limitations** in terms of **Weisfeiler-Leman** colorings and \mathcal{C}_2 logic (formulas with counting quantifiers, and at most 2 variables)
- Eg, join $W(x,y) = \exists z. [R(x,z) \land T(z,y)]$ of relations R and T cannot be captured!
- That is, no GNN can "track" such implicit relation W(x,y) on a graph where red and blue edges stand for R and T respectively
- \bullet We can augment expressivity by using k-GNNs, k>1, that embed k-tuples of vertices:
- ightharpoonup Expressivity characterized in terms of k-WL colorings
- ▶ Either k-OWL (less poweful) or k-FWL (more powerful) versions
- ▶ Related to, respectively, C_{k-1} and C_k logics: counting quant., and k variables
- ▶ Infeasible by num. objs. in planning problems: $\Theta(N^k)$ space, $\Theta(N^{k+1})$ time

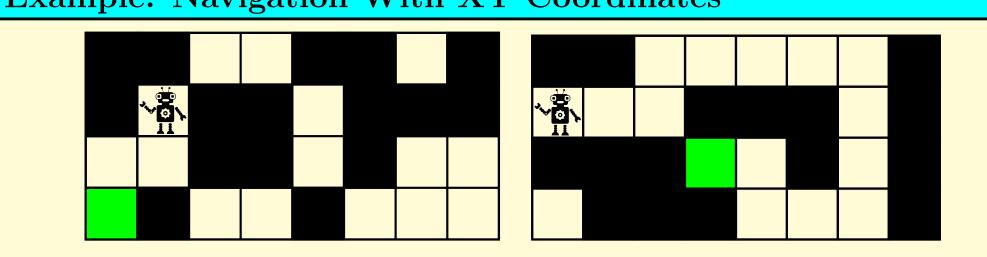
Parametric R-GNN[t] Architecture

- ullet Same R-GNN architecture, different encoding of planning states S
- Embedding of all objects pairs, like in 2-GNNs: $\Theta(N^2)$ space
- ▶ Objects in atoms replaced by pairs: $p(a,b) \to p(\langle a,a \rangle, \langle a,b \rangle, \langle b,a \rangle, \langle b,b \rangle)$
- ▶ Predicate arities expanded from k to k^2
- New composition predicate $\Delta(\langle x, z \rangle, \langle z, y \rangle, \langle x, y \rangle)$:



- ▶ Set $A_t(S)$ of added Δ -atoms controlled by integer parameter $t \geq 0$
- $A_t(S) = A_0(S) \cup \{ \Delta(\langle o, o' \rangle, \langle o', o'' \rangle, \langle o, o'' \rangle) \mid \langle o, o' \rangle, \langle o', o'' \rangle \in R_t \}$
- $ightharpoonup \langle o, o' \rangle \in R_t \text{ iff } o \text{ and } o' \text{ in some atom in } S \ (t=1), \text{ or } \exists o''[\langle o, o'' \rangle, \langle o'', o' \rangle \in R_{t-1}] \ (t>1)$
- R-GNN[t](S, O) = R-GNN($A_t(S), O^2$)
- Final readout: $V(S) = \mathbf{MLP}(\Sigma_{o \in O} \mathbf{f}_L(o, o))$ aggregates |O| embeddings

Example: Navigation With XY Coordinates



- Navigation in rectangular grid with decoupled coordinates: cells and blocked cells with CELL(x, y) and BLOCKED(x, y), position with AT(x, y), and ADJ(i, i + 1)
- After 12 hours of training on 105 random $n \times m$ instances, mn < 30, greedy policies achieve coverages of **59.72%**, **80.55%**, and **100%** for R-GNN, R-GNN[0], and R-GNN[1] on instances with **different sets of blocked cells and** $nm \le 32$
- For computing goal distances (ie V^*), cells (x, y) must "communicate" with neighbors (x, y') and (x', y). In the plain R-GNN, there must be atoms involving $\{x, y, y'\}$ (similarly, $\{x, x', y\}$). No such atoms exists in S, except in R-GNN[t] where $A_t(S)$ includes $\Delta(\langle x, x' \rangle, \langle x', y \rangle, \langle x, y \rangle)$ and $\Delta(\langle x, y \rangle, \langle y, y' \rangle, \langle x, y' \rangle)$

Experiments: Setup

- A learned value function V for domain D defines a **general policy** π_V that at state S selects an unvisited successor state S' with lowest V(S') value
- Implemented in PyTorch. Trained on Nvidia A10s with 24Gb of memory over 12 hours, using Adam, lr=0.0002, batches of size 16, and no regularization. Embedding dimension of k=64, and L=30 layers
- For each domain and architecture, 3 models were trained, and best model on validation was selected.
- Standard benchmarks from International Planning Competition (IPC)
- Baselines: Edge Transformer (ET) [Bergen et al., 2021] designed to do triangulations on graphs, R-GNN₂ that adds all Δ atoms, and 2-GNNs that emulates 2-OWL

Expressivity of the R-GNN[t] Architecture

• The architecture R-GNN[t] has the capability to capture compositions of binary relations that can be expressed in \mathcal{C}_3

Definition (\mathcal{C}_3 -Joins). Let σ be relational language. The class $\mathcal{J}_3 = \mathcal{J}_3[\sigma]$ of relational joins is the smallest class of formulas that satisfies:

1. $\{R(x,y), \neg R(x,y)\} \subseteq \mathcal{J}_3$ for relation R in σ ,

2. \mathcal{J}_3 is closed under conjunctions and disjunctions, and

3. $\exists y [\phi(x,y) \land \phi(y,z)] \in \mathcal{J}_3 \text{ if } \{\phi(x,y),\phi(y,z)\} \subseteq \mathcal{J}_3.$

Notation $\phi(x,y)$: ϕ is a formula whose free variables are among $\{x,y\}$

Theorem. Let σ be relational language, and let $\mathcal{D} \subseteq \mathcal{J}_3$ be **finite collection** of \mathcal{C}_3 -joins. There is parameter $\langle t, k, L \rangle$, where k is embedding dimension and L is number of layers, and network N in $\text{R-GNN}[\sigma, t, k, L]$ that **computes** \mathcal{D}

Conclusions

- ullet Novel parametric architecture R-GNN[t] that **provably** increases the expressivity of the relational R-GNN architecture
- R-GNN[t] embeds all pair of objects but does a bounded number of triangulations, determined by the value of parameter $t \ge 0$
- In benchmarks, a small value of t = 1 achieves best results
- Other ways to increase expressivity, like k-GNNs for $k \geq 2$, in either the OWL or FWL setting are infeasible in practice due to high number of objects: $\Theta(N^k)$ space, $\Theta(N^{k+1})$ time
- Future: consider use of indexicals/markers that can be moved around as an alternative to increase the expressivity in GNN architectures for planning

Experiments: Results

			Plan Length		1				Plan Length		
Domain	Model	Coverage (%)	Total	Median	Mean	Domain	Model	Coverage (%)	Total	Median	Mean
Blocks-s	R-GNN	17 / 17 (100 %)	674	38	39	Grid	R-GNN	9 / 20 (45 %)	109	11	12
	R-GNN [0]	17 / 17 (100 %)	670	36	39		R-GNN [0]	12 / 20 (60 %)	177	11	14
	R-GNN[1]	17 / 17 (100 %)	684	36	40		R-GNN[1]	15 / 20 (75 %)	209	13	13
	R - GNN_2	14 / 17 (82 %)	922	35	65		R - GNN_2	10 / 20 (50 %)	124	11.5	12
	2-GNN	17 / 17 (100 %)	678	36	39		2-GNN	6 / 20 (30 %)	82	11.5	13
	ET	16 / 17 (94 %)	826	38	51		ET	1 / 20 (5 %)	15	15	15
Blocks-m	R-GNN	22 / 22 (100 %)	868	40	39	Logistics)	R-GNN	10 / 20 (50 %)	510	51	51
	R-GNN [0]	22 / 22 (100 %)	830	39	37		R-GNN [0]	9 / 20 (45 %)	439	48	48
	R-GNN[1]	22 / 22 (100 %)	834	39	37		R-GNN[1]	20 / 20 (100 %)	1,057	52	52
	R - GNN_2	22 / 22 (100 %)	936	39	42		R - GNN_2	15 / 20 (75 %)	799	52	53
	2-GNN	20 / 22 (91 %)	750	40	37		2-GNN	0 / 20 (0 %)	_	_	_
	ET	18 / 22 (82 %)	966	39	53		ET	0 / 20 (0 %)	_	_	_
Gripper	R-GNN	18 / 18 (100 %)	4,800	231	266	Rovers	R-GNN	9 / 20 (45 %)	2,599	280	288
	R-GNN [0]	18 / 18 (100 %)	1,764	98	98		R-GNN [0]	14 / 20 (70 %)	2,418	153	172
	R-GNN[1]	11 / 18 (61 %)	847	77	77		R-GNN[1]	14 / 20 (70 %)	1,654	55	118
	R - GNN_2	18 / 18 (100 %)	1,764	98	98		R - GNN_2	11 / 20 (55 %)	2,225	239	202
	2-GNN	1 / 18 (6 %)	53	53	53		2-GNN	Unsuitable domain: ternary predicates			cates
	ET	4 / 18 (22 %)	246	61	61		ET	Offsultable domain, ternary predicates			
Miconic	R-GNN	20 / 20 (100 %)	1,342	67	67	Vacuum	R-GNN	20 / 20 (100 %)	4,317	141	215
	R-GNN [0]	20 / 20 (100 %)	1,566	71	78		R-GNN [0]	20 / 20 (100 %)	183	9	9
	R-GNN[1]	20 / 20 (100 %)	2,576	71	128		R-GNN[1]	20 / 20 (100 %)	192	9	9
	R - GNN_2	20 / 20 (100 %)	1,342	67	67		R - GNN_2	20 / 20 (100 %)	226	9	11
	2-GNN	12 / 20 (60 %)	649	54.5	54		2-GNN	Unsuitable dom	ain· tern	arv predic	cates
	ET	20 / 20 (100 %)	1,368	68	68		ET			ary predic	
Visitall	R-GNN	18 / 22 (82 %)	636	29	35	Visitall-xy	R-GNN	5 / 20 (25 %)	893	166	178
	R-GNN [0]	21 / 22 (95 %)	1,128	35	53	·	R-GNN [0]	15 / 20 (75 %)	1,461	84	97
	R-GNN[1]	22 / 22 (100 %)	886	35	40		R-GNN[1]	20 / 20 (100 %)	1,829	83	91
	R - GNN_2	20 / 22 (91 %)	739	33	36		R - GNN_2	19 / 20 (95 %)	2,428	116	127
	2-GNN	18 / 22 (82 %)	626	32	34		2-GNN		1,435	115	119
	ET	18 / 22 (82 %)	670	29	37		ET	3 / 20 (15 %)	455	138	151

