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Introduction

• General policies represent strategies for solving many planning instances

. E.g., general policy for solving all Blocksworld problems

• Three main methods for learning such policies (no “synthesis” methods yet!)

. Combinatorial optimization using explicit pool of C2 features obtained from domain

predicates [B. et al., 2019; Francès et al., 2021]

. Deep learning (DL) using domain predicates but no explicit pool [Toyer et al., 2020;

Garg et al., 2020]

. DL exploiting relation between C2 logic and GNNs [Barceló et al., 2020; Grohe, 2020;

St̊ahlberg et al., 2022]

2 R-GNN architecture adapted from Max-CSP[Γ] [Toenshoff et al., 2021]

2 More transparent and simple, scalable

2 Supervised and non-supervised training

2 Problem: insufficient expressivity for generalized planning
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In this Work

• Novel relational architecture R-GNN[t], with parameter t ≥ 0, that combines the
R-GNN architecture with a parameterized encoding At(S) of planning states S

• As t increases, the expressive power of R-GNN[t] increases, approaching the full
expressivity of C3 logic

• Significant improvements obtained even with t = 1, as shown in experiments

• 2- or 3-GNNs and Edge Transformers unfeasible in practice and limited to binary
relations:

. 2-GNNs: Θ(N2) memory, Θ(N3) time, C2 expressivity (yet see below)

. 3-GNNs: Θ(N3) memory, Θ(N4) time, C3 expressivity

. ETs: Θ(N2) memory, Θ(N3) time, C3 expressivity [Müller et al., 2024]

. Provably Powerful GNs [Maron et al., 2019]: C3 expressivity, Θ(N2) memory, Θ(N3) time
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Generalized Planning and First-Order STRIPS

• Generalized planning is about finding general policies that solve classes of
planning problems

• Task is collection {P1, P2, P3, . . .} of ground instances Pi = 〈D, Ii〉 over common
first-order STRIPS domain D

• Each instance P = 〈D, I〉 consists of:

. General (reusable) domain D specified with action schemas and predicates

. Instance information I details objects, init and goal descriptions

Distinction between general domain D and specific instance P = 〈D, I〉 important
for reusing action models, and also for learning them
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Example (Input): 2-Gripper Problem P = 〈D, I〉 in PDDL

(define (domain gripper)
(:requirements :typing)
(:types room ball gripper)
(:constants left right - gripper)
(:predicates (at-robot ?r - room) (at ?b - ball ?r - room)

(free ?g - gripper) (carry ?o - ball ?g - gripper))

(:action MOVE
:parameters (?from ?to - room)
:precondition (at-robot ?from)
:effect (and (at-robot ?to) (not (at-robot ?from))))

(:action PICK
:parameters (?obj - ball ?room - room ?gripper - gripper)
:precondition (and (at ?obj ?room) (at-robot ?room) (free ?gripper))
:effect (and (carry ?obj ?gripper) (not (at ?obj ?room)) (not (free ?gripper))))

(:action DROP
:parameters (?obj - ball ?room - room ?gripper - gripper)
:precondition (and (carry ?obj ?gripper) (at-robot ?room))
:effect (and (at ?obj ?room) (free ?gripper) (not (carry ?obj ?gripper)))))

(define (problem easy-2balls)
(:domain gripper)
(:objects roomA roomB - room B1 B2 - ball)
(:init (at-robot roomA) (free left) (free right) (at B1 roomA) (at B2 roomA))
(:goal (and (at B1 roomB) (at B2 roomB))))
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Relational GNN Architecture for Planning [St̊ahlberg et al., 2022-2024]

• Planning state S over STRIPS domain D is a relational structure:

. Relational symbols given by predicates in D; shared by all such states S

. Denotation of predicate p given by ground atoms p(ō) true at S

• Adapt architecture of [Toenshoff et al., 2021] for handling relational structures

Relational GNN (R-GNN) Architecture

Input: Set of ground atoms S (state), and objects O
Output: Embeddings fffL(o) for each object o∈O

1. Initialize fff0(o) = 0k for each object o∈O
2. for i∈{0, 1, . . . , L− 1} do

3. for each atom q = p(o1, o2, . . . , om) ∈ S do

4. mq,oj :=
[
MLPp

(
fff i(o1), fff i(o2), . . . , fff i(om)

)]
j

5. end for

6. for each object o ∈ O do

7. fff i+1(o) := fff i(o)+MLPU
(
fff i(o), agg

(
{{mmmq,o | o∈ q, q ∈S}}

))
8. end for

9. end for

Parameters: embedding dimension k, rounds L, {MLPp : p ∈ D}, MLPU , and aggregator
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Final Readout, Value Functions, and Greedy Policies

• Final readout is additive readout that feeds into final MLP:

V (S) = MLP
(∑

o∈O fffL(o)
)

• Training minimize loss L(S) = |V ∗(S)−V (S)| given by optimal value function
V ∗(·) for small tasks in training set

• Greedy policy πV (S) chooses action a = argmina∈A(S) 1 + V (Sa):

. If V (S) = 0 for goals, and V (S) = 1 + mina V (Sa) for non-goals, πV is optimal

. If V (S) = 0 for goals, and V (S)≥ 1 + mina V (Sa) for non-goals, πV solves any state S

where Sa is result of applying action a in state S

Successful approach for GP, but subject to expressivity of GNNs...
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Example: Navigation With XY Coordinates

• Navigation in rectangular grid with decoupled coordinates: cells and blocked cells
with cell(x, y) and blocked(x, y), position with at(x, y), and adj(i, i+ 1)

• For computing goal distances (ie V ∗), cells (x, y) must “communicate” with
neighbors (x, y′) and (x′, y). In the plain R-GNN, there must be atoms involving
{x, y, y′} (similarly, {x, x′, y}). No such atoms exists in state S
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Expressivity of GNNs

• R-GNNs are instances of (1-)GNNs over undirected graphs

• GNNs compute invariant (resp. equivariant) funcs on graphs (resp. vertices)

• Well-understood expressivity limitations in terms of Weisfeiler-Leman color-
ings and C2C2C2 logic (formulas with counting quantifiers, and at most 2 variables)

• Eg, join W (x, y) =∃z.[R(x, z)∧T (z, y)] of relations R and T cannot be captured!

• That is, no GNN can “track” such implicit relation W (x, y) on a graph where
red and blue edges stand for R and T respectively

• Can augment expressivity with k-GNNs, k > 1, that embed k-tuples of vertices:

. Expressivity characterized in terms of k-WL colorings

. Either k-OWL (less poweful) or k-FWL (more powerful) versions

. Related to, respectively, Ck−1 and Ck logics: counting quant., k variables

. Infeasible by num. objs. in planning problems: Θ(Nk)/Θ(Nk+1) space/time
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Parametric R-GNN[t] Architecture

• Same R-GNN architecture, different encoding of planning states S

• Embedding of all objects pairs, like in 2-GNNs: Θ(N2) space

. Objects in atoms replaced by pairs: p(a, b)→ p(〈a, a〉, 〈a, b〉, 〈b, a〉, 〈b, b〉)

. Predicate arities expanded from k to k2

• New composition predicate ∆(〈x, z〉, 〈z, y〉, 〈x, y〉):

〈x, z〉 〈z, y〉

〈x, y〉

. Set At(S) of added ∆-atoms controlled by integer parameter t ≥ 0

. A0(S) = {p(〈w〉2) | p(w) ∈ S} for 〈w〉2 = 〈(o1, o1), . . . , (oi, oj), . . . , (om, om)〉

. At(S) =A0(S) ∪ {∆(〈o, o′〉, 〈o′, o′′〉, 〈o, o′′〉) | 〈o, o′〉, 〈o′, o′′〉 ∈ Rt}

. 〈o, o′〉 ∈Rt iff o and o′ in some atom in S (t=1), or ∃o′′[〈o, o′′〉, 〈o′′, o′〉 ∈Rt−1] (t>1)

• R-GNN[t](S,O) = R-GNN(At(S), O2)

• Final readout: V (S) = MLP
(∑

o∈O fffL(o, o)
)

aggregates |O| embeddings
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Example: Navigation With XY Coordinates

• Navigation in rectangular grid with decoupled coordinates: cells and blocked cells
with cell(x, y) and blocked(x, y), position with at(x, y), and adj(i, i+ 1)

• After 12 hours of training on 105 random n×m instances, mn< 30, greedy
policies achieve coverages of 59.72%, 80.55%, and 100% for R-GNN, R-GNN[0],
and R-GNN[1] on instances with different sets of blocked cells and nm≤ 32

• For computing goal distances (ie V ∗), cells (x, y) must “communicate” with
neighbors (x, y′) and (x′, y). In the plain R-GNN, there must be atoms involving
{x, y, y′} (similarly, {x, x′, y}). No such atoms exists in S, except in R-GNN[t]
where At(S) includes ∆(〈x, x′〉, 〈x′, y〉, 〈x, y〉) and ∆(〈x, y〉, 〈y, y′〉, 〈x, y′〉)
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Experiments: Setup

• A learned value function V for domain D defines a general policy πV that at
state S selects an unvisited successor state S′ with lowest V (S′) value

• We implemented in PyTorch, and trained on Nvidia A10s with 24Gb of memory
over 12 hours, using Adam, lr=0.0002, batches of size 16, and no regularization.
Embedding dimension of k = 64, and L = 30 layers were used.

• Standard benchmarks from International Planning Competition (IPC)

• For each domain and architecture, 3 models were trained, and best model on
validation was selected.

• Baselines:

. Edge Transformer (ET) [Bergen et al., 2021] designed to do triangulations on graphs

. R-GNN2 that adds all ∆ atoms

. 2-GNNs that emulates 2-OWL which captures C3
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Experiments: Results

Plan Length

Domain Model Coverage (%) Total Median Mean

Blocks-s R-GNN 17 / 17 (100 %) 674 38 39
R-GNN[0] 17 / 17 (100 %) 670 36 39
R-GNN[1] 17 / 17 (100 %) 684 36 40
R-GNN2 14 / 17 (82 %) 922 35 65
2-GNN 17 / 17 (100 %) 678 36 39

ET 16 / 17 (94 %) 826 38 51

Blocks-m R-GNN 22 / 22 (100 %) 868 40 39
R-GNN[0] 22 / 22 (100 %) 830 39 37
R-GNN[1] 22 / 22 (100 %) 834 39 37
R-GNN2 22 / 22 (100 %) 936 39 42
2-GNN 20 / 22 (91 %) 750 40 37

ET 18 / 22 (82 %) 966 39 53

Gripper R-GNN 18 / 18 (100 %) 4,800 231 266
R-GNN[0] 18 / 18 (100 %) 1,764 98 98

) R-GNN[1] 11 / 18 (61 %) 847 77 77
R-GNN2 18 / 18 (100 %) 1,764 98 98
2-GNN 1 / 18 (6 %) 53 53 53

ET 4 / 18 (22 %) 246 61 61

Miconic R-GNN 20 / 20 (100 %) 1,342 67 67
R-GNN[0] 20 / 20 (100 %) 1,566 71 78
R-GNN[1] 20 / 20 (100 %) 2,576 71 128
R-GNN2 20 / 20 (100 %) 1,342 67 67
2-GNN 12 / 20 (60 %) 649 54.5 54

ET 20 / 20 (100 %) 1,368 68 68

Visitall R-GNN 18 / 22 (82 %) 636 29 35
R-GNN[0] 21 / 22 (95 %) 1,128 35 53
R-GNN[1] 22 / 22 (100 %) 886 35 40
R-GNN2 20 / 22 (91 %) 739 33 36
2-GNN 18 / 22 (82 %) 626 32 34

ET 18 / 22 (82 %) 670 29 37

Table 1: Coverage and plan lengths for C2 domains. In these
domains, R-GNNs performs best, and R-GNN[1] is compet-
itive, except in Gripper.

of messages that are exchanged, which slows down training
and may result in incomplete convergence. The plan quality
across all approaches is comparable for the C2 domains, ex-
cept in the Gripper domain, where R-GNN produces longer
plans. This is not due to a lack of expressiveness; rather, we
believe that the additional expressiveness provided by the
other approaches result in a more stable general policy.

For the C3 domains, shown in Table 2, we observe that
R-GNN has limited coverage across all domains except Vac-
uum, where it generates very long plans. The Vacuum do-
main requires C3 expressiveness, as each robot has its own
traversal capabilities, necessitating the network to determine
which agent is closest relative to their capabilities. While
R-GNN achieves high coverage, actions are executed with-
out clear intention, and goal states are reached inciden-
tally. This is reflected in the long plan lengths for R-GNN,
whereas other approaches produce optimal or near-optimal
plans.

In the other C3 domains, R-GNN[1] consistently outper-
forms R-GNN in coverage due to its increased expressive-
ness. The performance difference between R-GNN[0] and
R-GNN[1] depends on the need for composition. In Grid,

Plan Length

Domain Model Coverage (%) Total Median Mean

Grid ) R-GNN 9 / 20 (45 %) 109 11 12
) R-GNN[0] 12 / 20 (60 %) 177 11 14

R-GNN[1] 15 / 20 (75 %) 209 13 13
R-GNN2 10 / 20 (50 %) 124 11.5 12

) 2-GNN 6 / 20 (30 %) 82 11.5 13
ET 1 / 20 (5 %) 15 15 15

Logistics) R-GNN 10 / 20 (50 %) 510 51 51
) R-GNN[0] 9 / 20 (45 %) 439 48 48

R-GNN[1] 20 / 20 (100 %) 1,057 52 52
) R-GNN2 15 / 20 (75 %) 799 52 53

2-GNN 0 / 20 (0 %) – – –
ET 0 / 20 (0 %) – – –

Rovers ) R-GNN 9 / 20 (45 %) 2,599 280 288
R-GNN[0] 14 / 20 (70 %) 2,418 153 172
R-GNN[1] 14 / 20 (70 %) 1,654 55 118

) R-GNN2 11 / 20 (55 %) 2,225 239 202
2-GNN Unsuitable domain: ternary predicatesET

Vacuum R-GNN 20 / 20 (100 %) 4,317 141 215
R-GNN[0] 20 / 20 (100 %) 183 9 9
R-GNN[1] 20 / 20 (100 %) 192 9 9
R-GNN2 20 / 20 (100 %) 226 9 11
2-GNN Unsuitable domain: ternary predicatesET

Visitall-xy R-GNN 5 / 20 (25 %) 893 166 178
R-GNN[0] 15 / 20 (75 %) 1,461 84 97
R-GNN[1] 20 / 20 (100 %) 1,829 83 91
R-GNN2 19 / 20 (95 %) 2,428 116 127
2-GNN 12 / 20 (60 %) 1,435 115 119

ET 3 / 20 (15 %) 455 138 151

Table 2: Coverage and plan lengths for C3 domains. In these
domains, R-GNN[1] performs best, but both R-GNN[0] and
R-GNN2 outperform R-GNN and ET.

Logistics, and Visitall-xy, at least one level of composi-
tion is required, and by including these atoms, we observe
improved coverage. In Rovers, although the necessity for
composition is unclear, the plan quality is significantly im-
proved. Optimal planning in Grid (Helmert 2003) is NP-
hard, and it seems to be challenging in Rovers as well, and
this appears to be the reason why less than 100 % coverage
was achieved.

The baseline R-GNN2 surpasses ET in all domains except
Blocks-s. We believe this is due to the aggregation function:
the output of the softmax in the attention mechanism de-
pend on the number of objects, leading to value magnitudes
that differ from those encountered during training. This is
not an issue in R-GNN2, where a smooth maximum is used
as an aggregation function. While R-GNN2 performs better
than R-GNN in C3 domains, it underperforms compared to
R-GNN[1]. This discrepancy is not due to expressiveness, as
R-GNN2 is theoretically more expressive. Rather, it may be
easier to identify the relevant compositions since R-GNN[1]
has far fewer compositions in its input.

The baseline 2-GNN consistently performs worse than
R-GNN[0] in our experiments, even though both models use
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Experiments: #Objects in Training / Validation, and Test Sets

Domain Training / Validation Test

Blocks 4–9 10–20
Gripper 2–14 16–50
Logistics 2–5 / 3–5 15–19 / 8–11
Miconic 2–20 / 1–10 11–30 / 22–60
Rovers 2–3 / 3–8 3 / 21–39
Vaccum 8–38 / 11–6 40–93 / 6–10
Visitall 1–21 100
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Expressivity of the R-GNN[t] Architecture

• The architecture R-GNN[t] has the capability to capture compositions of binary
relations that can be expressed in C3

Definition (C3-Joins). Let σ be relational language. The class J3 = J3[σ] of
relational joins is the smallest class of formulas that satisfies:

1. {R(x, y),¬R(x, y)} ⊆ J3 for relation R in σ,

2. J3 is closed under conjunctions and disjunctions, and

3. ∃y[φ(x, y) ∧ φ(y, z)] ∈ J3 if {φ(x, y), φ(y, z)} ⊆ J3.

Notation φ(x, y): φ is a formula whose free variables are among {x, y}

Theorem. Let σ be relational language, and let D ⊆ J3 be finite collection of
C3-joins. There is parameter 〈t, k, L〉, where k is embedding dimension and L
is number of layers, and network N in R-GNN[σ, t, k, L] that computes D
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Conclusions

• Novel parametric architecture R-GNN[t] that provably increases the expressivity
of the relational R-GNN architecture

• R-GNN[t] embeds all pair of objects but does a bounded number of triangulations,
determined by the value of parameter t ≥ 0

• In benchmarks, a small value of t = 1 achieves best results

• Other ways to increase expressivity, like k-GNNs for k ≥ 2, in either the OWL
or FWL setting are infeasible in practice due to high number of objects: Θ(Nk)
space, Θ(Nk+1) time

• Future work: consider use of indexicals/markers that can be moved around as
an alternative to increase the expressivity in GNN architectures for planning
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