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Introduction

e General policies represent strategies for solving many planning instances

> E.g., general policy for solving all Blocksworld problems

e Three main methods for learning such policies (no “synthesis” methods yet!)

> Combinatorial optimization using explicit pool of C, features obtained from domain
predicates [B. et al., 2019; Frances et al., 2021]

> Deep learning (DL) using domain predicates but no explicit pool [Toyer et al., 2020;
Garg et al., 2020]

> DL exploiting relation between C, logic and GNNs [Barcelé et al., 2020; Grohe, 2020;
Stéhlberg et al., 2022]

O R-GNN architecture adapted from Max-CSP[I'] [Toenshoff et al., 2021]
O More transparent and simple, scalable

O Supervised and non-supervised training
O

Problem: insufficient expressivity for generalized planning
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In this Work

e Novel relational architecture R-GNN[¢], with parameter ¢t > 0, that combines the
R-GNN architecture with a parameterized encoding A;(S) of planning states S

e As t increases, the expressive power of R-GNN|[t| increases, approaching the full
expressivity of C3 logic

e Significant improvements obtained even with ¢ = 1, as shown in experiments

e 2- or 3-GNNs and Edge Transformers unfeasible in practice and limited to binary
relations:
> 2-GNNs: ©(N?) memory, ©(N?) time, Cy expressivity (yet see below)
> 3-GNNs: ©(N?) memory, ©(N?) time, C3 expressivity
> ETs: ©(N?) memory, ©(N?) time, C3 expressivity [Miiller et al., 2024]
> Provably Powerful GNs [Maron et al., 2019]: Cs expressivity, © (N?) memory, ©(N?) time
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Generalized Planning and First-Order STRIPS

e Generalized planning is about finding general policies that solve classes of
planning problems

e Task is collection { Py, P5, Ps, ...} of ground instances P; = (D, I;) over common
first-order STRIPS domain D

e Each instance P = (D, I) consists of:

> General (reusable) domain D specified with action schemas and predicates

> Instance information I details objects, init and goal descriptions

Distinction between general domain D and specific instance P = (D, I) important
for reusing action models, and also for learning them
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Example (Input): 2-Gripper Problem P = (D, I) in PDDL

(define (domain gripper)
(:requirements :typing)
(:types room ball gripper)
(:constants left right - gripper)
(:predicates (at-robot ?r - room) (at ?b - ball ?r - room)
(free ?g - gripper) (carry ?0 - ball ?g - gripper))

(:action MOVE

:parameters (?from ?to - room)

:precondition (at-robot ?from)

:effect (and (at-robot ?to) (not (at-robot ?from))))
(:action PICK

:parameters (?0bj - ball ?room - room ?gripper - gripper)

:precondition (and (at ?obj ?room) (at-robot ?room) (free ?gripper))

:effect (and (carry ?0bj ?gripper) (not (at ?obj ?room)) (not (free ?gripper))))
(:action DROP

:parameters (?0bj - ball ?room - room ?gripper - gripper)

:precondition (and (carry ?obj ?gripper) (at-robot ?room))

:effect (and (at ?obj ?room) (free ?gripper) (not (carry ?obj ?gripper)))))

(define (problem easy-2balls)
(:domain  gripper)
(:objects roomA roomB - room B1 B2 - ball)
(:init (at-robot roomA) (free left) (free right) (at B1 roomA) (at B2 roomA))
(:goal (and (at B1 roomB) (at B2 roomB))))
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Relational GNIN Architecture for Planning [Stahlberg et al., 2022-2024]

e Planning state S over STRIPS domain D is a relational structure:

> Relational symbols given by predicates in D; shared by all such states S
> Denotation of predicate p given by ground atoms p(0) true at S

e Adapt architecture of [Toenshoff et al., 2021] for handling relational structures

Relational GNN (R-GNN) Architecture

Input: Set of ground atoms S (state), and objects O
Output: Embeddings f, (o) for each object o € O

1. Initialize fo(0) = OF for each object 0 € O

2. forie{0,1,...,L —1} do

3. for each atom g = p(01,09,...,0m) € S do

4. Mq,0; = [MLPy(fi(01), fi(02), ..., filom))],
5. end for

6. for each object o € O do

7. fit1(0) := fi(0) + MLPy (£(0), agg({mg,0 | 0€q,9€ S}))
8. end for

9. end for

Parameters: embedding dimension k, rounds L, {MLP, : p € D}, MLPy, and aggregator
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Final Readout, Value Functions, and Greedy Policies

e Final readout is additive readout that feeds into final MLP:

V(S) = MLP(Y,co fL(0))

e Training minimize loss L(S) = |V*(S)—V (.5)| given by optimal value function
V*(-) for small tasks in training set

 Greedy policy 7y (S) chooses action a = argmin,¢ 45y 1 + V(54):

> If V(S) =0 for goals, and V(S) =1 + min, V' (S,) for non-goals, 7y is optimal
> If V(S) =0 for goals, and V(S) > 1 + min, V(S,) for non-goals, 7y solves any state S

where S, is result of applying action a in state S

Successful approach for GP, but subject to expressivity of GNNs...
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Example: Navigation With XY Coordinates

e Navigation in rectangular grid with decoupled coordinates: cells and blocked cells
with CELL(x,y) and BLOCKED(x,y), position with AT(z,y), and ADJ(%,7 + 1)

e For computing goal distances (ie V*), cells (x,y) must “communicate” with
neighbors (x,y’) and (2, y). In the plain R-GNN, there must be atoms involving
{x,y,y'} (similarly, {x,2’,y}). No such atoms exists in state S
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Expressivity of GNNs
e R-GNNs are instances of (1-)GNNs over undirected graphs
e GNNs compute invariant (resp. equivariant) funcs on graphs (resp. vertices)

e Well-understood expressivity limitations in terms of Weisfeiler-Leman color-
ings and Cs logic (formulas with counting quantifiers, and at most 2 variables)

o Eg, join W(x,y)=3z.[R(z,2)\T(z,y)] of relations R and T cannot be captured!

e That is, no GNN can “track” such implicit relation W (x,y) on a graph where
red and blue edges stand for R and 1’ respectively

e Can augment expressivity with £-GNNs, £ > 1, that embed k-tuples of vertices:

> Expressivity characterized in terms of k-WL colorings
> Either k-OWL (less poweful) or k-FWL (more powerful) versions
> Related to, respectively, Cr_1 and Cj logics: counting quant., k variables

> Infeasible by num. objs. in planning problems: ©(N*)/©(N**1) space/time
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Parametric R-GNN|¢] Architecture

e Same R-GNN architecture, different encoding of planning states S
o Embedding of all objects pairs, like in 2-GNNs: ©(/N?) space

> Objects in atoms replaced by pairs: p(a,b) — p({a, a), (a, b), (b, a), (b, b))

> Predicate arities expanded from k to k*

e New composition predicate A({x, z), (z,y), {x, y)):

(, 2) (2,9)
b
z,y

> Set A4(S) of added A-atoms controlled by integer parameter t > 0

> Ao(S) = {p((w)*) | p(w) € S} for (w)* = ((01,01),---,(0505), - -, (Om; Om))
> At(S) — AO(S) U {A(<O’ O/>7 <0/7 O”>7 <07 OH>) | <O7 O,>7 <0/7 0//> € Rt}
> (0,0') € Ry iff o and 0 in some atom in S (t=1), or 30" [{0, 0"}, (0", 0") € R;_1] (t>1)

o R-GNNJt](S,0) = R-GNN(4,(S), O?)
o Final readout: V(S) = MLP(}_,_, fr(0,0)) aggregates |O] embeddings
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Example: Navigation With XY Coordinates

e Navigation in rectangular grid with decoupled coordinates: cells and blocked cells
with CELL(x,y) and BLOCKED(x,y), position with AT(z,y), and ADJ(¢,7 + 1)

e After 12 hours of training on 105 random n X m instances, mn < 30, greedy
policies achieve coverages of 59.72%, 80.55%, and 100% for R-GNN, R-GNN|[0],
and R-GNNJ1] on instances with different sets of blocked cells and nm <32

e For computing goal distances (ie V*), cells (x,y) must “communicate” with
neighbors (x,y’) and (2, y). In the plain R-GNN, there must be atoms involving
{x,y,y'} (similarly, {x,2z’,y}). No such atoms exists in S, except in R-GNN[t]
where Aq(S) includes A((z,2’), (x', ), (x,5)) and A((z, ), (4,9}, (2, 1/))
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Experiments: Setup

A learned value function V for domain D defines a general policy 7y that at
state S selects an unvisited successor state S’ with lowest V' (5”) value

We implemented in PyTorch, and trained on Nvidia A10s with 24Gb of memory
over 12 hours, using Adam, [r=0.0002, batches of size 16, and no regularization.
Embedding dimension of k& = 64, and L = 30 layers were used.

Standard benchmarks from International Planning Competition (IPC)

For each domain and architecture, 3 models were trained, and best model on
validation was selected.

Baselines:

> Edge Transformer (ET) [Bergen et al., 2021] designed to do triangulations on graphs
> R-GNNs that adds all A atoms
> 2-GNNs that emulates 2-OWL which captures C3
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Experiments: Results

Plan Length Plan Length
Domain Model Coverage (%) Total Median Mean Domain Model Coverage (%) Total Median Mean
Blocks-s R-GNN 17/17 (100 %) 674 38 39 Grid R-GNN 9/20 (45 %) 109 11 12
R-GNN[0] 17/17 (100 %) 670 36 39 R-GNNJ[0] 12/20 (60 %) 177 11 14
R-GNN[1] 17/17 (100 %) 684 36 40 R-GNNJ[1] 15/20(75 %) 209 13 13
R-GNN, 14717 (82 %) 922 35 65 R-GNN, 10 /20 (50 %) 124 11.5 12
2-GNN  17/17 (100 %) 678 36 39 2-GNN 6/20 (30 %) 82 11.5 13
ET 16/17 (94 %) 826 38 51 ET 1/20(5 %) 15 15 15
Blocks-m R-GNN  22/22 (100 %) 868 40 39 Logistics R-GNN 10/20 (50 %) 510 51 51
R-GNN[0] 22/22 (100 %) 830 39 37 R-GNNJ[0] 9/20 (45 %) 439 48 48
R-GNNJ[1] 22/22(100 %) 834 39 37 R-GNN[1] 20/20 (100 %) 1,057 52 52
R-GNN, 22/22 (100 %) 936 39 42 R-GNNy 15/20 (75 %) 799 52 53
2-GNN 20/22 091 %) 750 40 37 2-GNN 0/20 (0 %) - — -
ET 18/22 (82 %) 966 39 53 ET 0/20 (0 %) - - —
Gripper R-GNN 18/18 (100 %) 4,800 231 266 Rovers R-GNN 9/20(45%) 2,599 280 288
R-GNN[0] 18/18 (100 %) 1,764 98 08 R-GNN[0] 14/20(70 %) 2,418 153 172
R-GNN[1] 11/18 (61 %) 847 77 77 R-GNNJ[1] 14/20(70 %) 1,654 55 118
R-GNN, 18/18 (100 %) 1,764 98 98 R-GNN;  11/20(55 %) 2,225 239 202
2-GNN 1/18 (6 %) 53 53 53 2-GNN ) . .
ET 4718 (22 %) 246 61 61 ET Unsuitable domain: ternary predicates
Miconic ~ R-GNN  20/20 (100 %) 1,342 67 67 Vacuum R-GNN  20/20 (100 %) 4,317 141 215
R-GNN[0] 20/20 (100 %) 1,566 71 78 R-GNNI[0] 20/20 (100 %) 183 9 9
R-GNN[1] 20/20 (100 %) 2,576 71 128 R-GNN[1] 20/20 (100 %) 192 9 9
R-GNN, 20/20 (100 %) 1,342 67 67 R-GNN, 20/20 (100 %) 226 9 11
2-GNN 12720 (60 %) 649 54.5 54 2-GNN : - :
ET 20720 (100 %) 1,368 68 68 ET Unsuitable domain: ternary predicates
Visitall R-GNN  18/22(82 %) 636 29 35 Visitall-xy ~ R-GNN 5/20(25 %) 893 166 178
R-GNN[0] 21/22(95%) 1,128 35 53 R-GNN[0] 15/20(75%) 1461 84 97
R-GNN[1] 22/22 (100 %) 886 35 40 R-GNN[1] 20/20(100 %) 1,829 83 91
R-GNN2  20/22(91 %) 739 33 36 R-GNN;  19/20(95 %) 2428 116 127
2-GNN  18/22(82 %) 626 32 34 2-GNN  12/20(60 %) 1435 115 119
ET 18/22 (82 %) 670 29 37 ET 3/20(15%) 455 138 151
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Experiments: #O0bjects in Training / Validation, and Test Sets

Domain Training / Validation Test
Blocks 4-9 10-20
Gripper 2—-14 16-50
Logistics 2-5 / 3-b 15-19 / 8-11
Miconic 2-20 / 1-10 11-30 / 22-60
Rovers 2-3 / 3-8 3 /21-39
Vaccum 8-38 / 11-6 40-93 / 6-10
Visitall 1-21 100
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Expressivity of the R-GNN|t| Architecture

e The architecture R-GNN|[¢| has the capability to capture compositions of binary
relations that can be expressed in Cs

Definition (Cs-Joins). Let o be relational language. The class J3 = J3lo| of
relational joins is the smallest class of formulas that satisfies:

1. {R(x,y),~R(x,y)} C Js3 for relation R in o,

2. J3 1s closed under conjunctions and disjunctions, and

3. ylo(x,y) Aoy, 2)] € T3 if {d(x,y), é(y, 2)} € Ts.

Notation ¢(x,y): ¢ is a formula whose free variables are among {z,y}

Theorem. Let o be relational language, and let D C J3 be finite collection of
Cs-joins. There is parameter (t,k, L), where k is embedding dimension and L
is number of layers, and network N in R-GNN|o,t, k, L] that computes D

Stahlberg, Bonet, and Geffner. Learning More Expressive General Policies for Classical Planning Domains. AAAI-2025. 15



Conclusions

e Novel parametric architecture R-GNN[¢] that provably increases the expressivity
of the relational R-GNN architecture

o R-GNN{[t] embeds all pair of objects but does a bounded number of triangulations,
determined by the value of parameter ¢ > 0

e In benchmarks, a small value of ¢t = 1 achieves best results

e Other ways to increase expressivity, like k-GNNs for k& > 2, in either the OWL
or FWL setting are infeasible in practice due to high number of objects: ©(N¥)
space, O(N*T1) time

e Future work: consider use of indexicals/markers that can be moved around as
an alternative to increase the expressivity in GNN architectures for planning
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