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Generalized Planning: The Challenge

Generalized planning is about obtaining a general plan or strategy for
solving collections of planning problems

For example, find general strategy to achieve fixed goal in all Blocksworld
problems, independently of number or initial configuration of blocks

Get A clear Get Aon B Get tower A, B,C,D, E

Challenges:
— How to formulate and represent the problem formally?
— What's the form of solutions?

— How to solve it?
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Motivation

Why solve individual problems from scratch if it’s possible to learn
general plan in one shot?

Lots of current research in deep (reinforcement) learning is about
computation of general plans or policies; e.g. [Espeholt et al., 2018; Groshev et
al., 2018; Chevalier-Boisvert et al., 2019; Francois-Lavet et al. 2019]

Generalized planning gives us a crisp vocabulary to talk about general plans
[Levesque, 2005; Hu & De Giacomo, 2011; B. & Geffner, 2015; Belle & Levesque, 2016;
Jiménez et al., 2019; lllanes & Mcllraith, 2019]

Planning

Generalized
Planning

Learning Representation
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Outline

. Non deterministic abstractions for families of classical planning problems

. Qualitative Numerical Planning (QNP): concrete language for abstractions
. First-order relational planning instances

. Solving QNPs via reduction to FOND planning

. Learning QNP abstractions from traces

. Wrap Up
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Problem P,: agent moves in 1 X n grid, starts at p =1 and goal isp=n

Example

Agent can move right and left, and senses R when in last cell

Collection of problems: Q ={P,:n=1,2,...}

(Generalized) plan 7:

While R not sensed do move right

What'’s the relation between the solution and

the collection Q7
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Abstraction: Observable Projection

Policy 7 solves a single abstract problem that is fully observable and
non-deterministic (FOND)

H.
H

Left, Right
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Fairness Assumptions in FOND problems

Solutions for FOND problems are either [Cimatti et al., 2003]:
— Strong solutions: acyclic and suitable for adversarial planning

— Strong cyclic solutions: assume ”strong fairness” and suitable for
MDPs when goal is to be reached with probability 1

Fairness assumptions in the projection doesn't correspond to either

Indeed, policy that interleaves Right and Left solves projection but doesn’t
solve any P; as the agent won't get past the second cell

Right
Left, Right ‘E x| B
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Local vs. Global Properties

Projection captures local properties of instances: each transition represents
one or more transition in one or more instances

Global properties are lost in projection

Example: there is no trajectory (in some P) where Right applied infinitely
often, Left only finitely, and goal isn't reached, but there is such in projection

Right
Left, Right . = 1|
eft
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Trajectory Constraints

Global properties can be captured with trajectory constraints that filter out
non-realizable trajectories [B. et al, 2017]

Example: if Right is applied infinitely often and Left only a finite number of
times, goal is eventually reached

Right
Left, Right . HEERER
eft

Solutions for Q are strong-cyclic policies whose induced trajectories that
comply with the constraints are goal reaching

Different from standard fairness
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Qualitative Numerical Planning

Simple and expressive language [Srivastava et al., 2011]:

directly express the projection in compact form

transparently adds the needed trajectory constraints

after proper reduction to FOND, solved with off-the-shelf FOND planner

models can be learned from sampled trajectories

A QNP problem is similar to STRIPS problem but extended with numerical
variables that can be incremented or decremented qualitatively

11 of 44



QNP Example: Clear-x

Goal: Remove all blocks above fixed block =

QNP Qcrear = (F,V, 1, A, Q) captures all Blocksworld problems:
— F = {H} where H denotes whether gripper holds a block

— V = {n} where n “counts” blocks above x (n>0 iff some block above x)

- I={-H,n>0}
- G = {n=0}
z = block A

=
[]

-H, n=2 H n=1 -H, n=0
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QNP Example: Actions

Block z is block A:

x = block A

Pick-above-x

Put-above-x

-H, n=2

=
(]

AR

H,

n=1

Pick-other = (—H; H) picks block not above x

Putaway

—

Pick-other

Putaway = (H;—H) puts held block on table or block not above x
Pick-above-x = (—H,n > 0; H,nl) picks the top block above z

Put-above-r = (H;—H,nt) puts block being held on top block above x

-H, n=1
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QNP Example: Projection

Observation projection for Qejear = (F,V, I, A, G) where

- F={H}and V = {n}

- I ={H,n>0}and G = {n=0}

— Actions in A: Putaway = (H;—H), Pick-above-r = (~H,n>0; H,nl),
Put-above-x = (H;—H,nt), and Pick-other = (—~H; H)

Pick-above-z : ni.

Pick-other
Pick-above-z : nd.

H,n>0

Put-above-z : nT

Putaway
Put-above-z : nT

H,n>0
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QNP Example: Solution

Observation projection for Qejear = (F,V, I, A, G) where
- F={H}and V = {n}
- I ={H,n>0}and G = {n=0}
Actions in A: Putaway = (H;—H), Pick-above-z = (=H,n > 0; H,nl),
Put-above-x = (H;—H,nt), and Pick-other = (—~H; H)

Pick-above-z : ni.

Pick-above-z : nd.

o
3
[l
o

Putaway

H,n>0
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QNP Syntax

QNP is tuple Q@ = (F,V,I, A, G) where
— F'is a finite set of propositions

— V is a finite set of numerical variables

I is a set of F+V-literals, where V-literals are X=0 or X>0 for X in V

G is goal condition given by F'+V-literals

— A is set of actions. Each has precondition Pre (F+V-literals), boolean
effects Eff (F-literals), and numerical effects N (atoms X1 or X|) with
restriction that if X| in N, then X >0 must be in Pre

Numerical vars affected only qualitatively, and tested for zero

Plan-existence for QNPs decidable [Srivastava et al., 2011] whereas it is
undecidable for numerical planning [Helmert, 2002]
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Trajectory Constraints for QNPs

Only global property that needs to be accounted for is: for each var X,

If X is decremented infinitely often but incremented only a finite number
of times, eventually X =0

Constraint can be expressed in Linear Temporal Logic (LTL), enabling
automata-based approaches for solving QNPs [B. et al., 2017]

Theorem

A solution for QNP Q = (F,V, I, A,G) can be obtained in time doubly
exponential in |V| x |A| + |G| and exponential in |F| + |V|

Automata-based methods need to compute abstraction in explicit form and
thus require exponential space
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First-Order Relational Instances

QNPs also used on STRIPS domains where Q contains ground instances of
common schema

Each task P is associated with interpretations ¢, and ¢x for booleans p
and numerical vars X that map embed P-states s into Q-states ¢(s)

Abstract actions in () must track value change of variables
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Sound Abstraction for Blocksworld

Qclear is sound abstraction for Blocksworld instances defined with
predicates on(?x, ?y), clear(?x), ontable(?z) and holding(?z)

Qcicar has F = {H} and V = {n}: H captures when gripper is holding a
block, and n counts the number of blocks above block A

I_I_I
[e]

Pick(C, E) Put(C, B)
—> —_—
Pick-above-z Putaway

-H, n=2 H n=1 -H, n=1

Pick-above-x represents Pick(C, E) while Putaway represents Put(C, B)
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Sound Abstractions

QNP Q@ is sound abstraction for STRIPS instance P iff
— if sq is initial state in P, then ¢(sg) is initial state in Q
— for each state s in P, if ¢(s) E G then s is goal in P

— for any reachable state s in P and any abstract action @ in @ that is
applicable in ¢(s), there is action a in P that is represented by a at s

[B. & Geffner, 2018]

Theorem

If Q is sound for P and 7 solves Q, then the plan 7' defined by 7' (s) = a
where a is an action in P that is represented by m(¢(s) at s, solves P.
That is, ' solves @ = {P : Q is sound abstraction for P}
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Example: Gripper in STRIPS

Problem: Robot with grippers whose goal is to move balls from B to A:

STRIPS schema for Gripper:
— Atoms: at(?r), ball(?b,?r), empty(?g), hold(?b,?g)

Actions:

o Move(?s,?t) = (at(?s); ~at(?s), at(?t))
® Pick(?b, 7r,?7g) = (empty(?g), at(?r), ball(?b, ?r); mempty(?g), ~ball(?b, ?r), hold(?b, 7g))

® Drop(?b,?r,?g) = (hold(?b,?g), at(?r); —hold(?b, ?g), ball(?b, ?r), empty(?g))

Initial state is robot at A and all balls at B

Goal is to have all balls at A
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Example: QNP for Gripper

QNP Qgripper = (F,V, 1, A, G):
— F = {T} where T iff at(A)
- V ={b,c,g} where b counts balls at B, ¢ balls held, and g free grippers
- I={T,b>0,c=0,9g>0} and G = {¢=0,b=0}
— Abstract actions are:
e Move = (-T;T) and Leave = (T;—T)
e Pick-at-B = (=T,b>0,g > 0;bl, ct, gl)
e Drop-at-B = (=T, ¢ > 0; bt, cl, g1)
e Drop-at-A = (T, c>0;cl,gt)
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Example: Solution for Gripper

Pick-at-B

C 2

Leave [— Pick-at-B  [—
T,b>0,c=0,g>0|—>|T,b>o,c20,g>o|—>|T,b:o,c>o,gzo|

A

Drop-at-A Pick-at-B

A J

Move

Y
M —
|T,b>0,C>U,gzO|(L|T’b>0’c>0’g:0| T,b:O,C

Drop-at-A

\

/

Drop-at-A

T,b=0,c:0,g>0|
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Solving QNPs with FOND Planners

Reduction from QNP into FOND planning

Reduction is function T": QNPs — FONDs such that:

Efficient: given QNP @ returns FOND problem P = T'(Q) in polytime

Sound: P has solution implies @) has solution

Complete: () has solution implies P has solution

— Effective: solution for () can be recoverd in polytime from solution for P

If conditions met, efficient algorithm for QNPs and establish upper bound on
complexity
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Termination of QNP Plans

QNP solutions are the strong-cyclic solutions that terminate

— m terminates if each infinite induced trajectory terminates

— Infinite trajectory denoted by sg, s1,...[Si, .., Sm]* where {s;,...,8m}
is set of recurrent states (loop)

— Such trajectory terminates iff there is variable X that is decremented
but not incremented in loop

Example: loop terminates because variable b is decremented by Pick-at-B
but not incremented in loop

Drop-at-A Pick-at-B

y
Drop-at-A T,b6>0,c>0,9g>0 Move T,b>0,c>0,g=0
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Checking Termination with SIEVE

Termination checked with algorithm called SIEVE [Srivastava et al., 2011]

SIEVE works on policy graph G(m): subgraph of projection induced by 7

SIEVE (Graph G(m)):
repeat

Compute the strongly connected components (SCC) of G()

Choose SCC C and variable X that is decremented in C' but not
incremented in C

Remove edges (s,s’) so that s and s’ are in C, and (s) decrements X

until G(7) is acyclic or there is no SCC C' and variable X to choose

Theorem

7 terminates iff SIEVE reduces G() to an acyclic graph. Hence, solution for
Q) can be obtained in exponential space by enumerating the strong-cyclic
solutions and testing each for termination with SIEVE
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Reduction of QNPs into FOND

Reduction simulates way SIEVE removes edges to reduce SCCs. For this, a
bounded stack and bounded counters are introduced [B. & Geffner, 2020]

Stack used to push/pop numeric vars, while counters used to bound number
of operations on stack. The reduction is such that:
— actions that decrement vars must have at least one such var in stack

— actions that increment vars must have none of such variables in stack

Max stack depth and max counter capacity implemented with polynomial
number of propositions and actions

QNP @ can be reduced in polynomial time to FOND P = T'(Q) such that
Q) has solution iff P has solution. Moreover, solution for () can be recovered
in polytime from solution for P. Hence, QNPs can be solved in (worst-case)
exponential time since FONDs can be solved in exponential time
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Example: Solving Clear-z

Qclear fed to gnp2fond to get P solved with FOND-SAT [Geffner & Geffner, 2018]

Pick-above-x

— Push(n)
H,n>0

Pick-above-x

=IH,n>0| |H,n:0|

Putaway

gnp2fond translates @ in less than 0.01 secs. FOND-SAT solves P in 0.08 secs after
3 calls to SAT solver
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Example: Solving Gripper

Pick-at-B

Push(b Leave = Pick-at-B —
T,b>0,c=0,9>0 ®) ﬂb>&c:Q9>0F————ﬂTﬁ>&c2ag>0 T,b=0,¢>0,g>0

T,6>0,c=0,g>0

Drop-at-A

T,b>0,¢>0,g>0

Drop-at-A

Pick-at-B

|T,b>0,c>o,g:0 Fmﬁ,bo,w&g:ﬂ

Drop-at-A

T,b=0,c=0,g>0

T,b=0,c

Move

>0,92>0

Push(c)

T,b=0,c

Drop

>0,92>0

-at-A

gnp2fond translates @ in less than 0.01 secs. FOND-SAT solves P in 11.25 secs after
making 10 calls to SAT solver
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Expressiveness and Limitations

Any Q can be captured with simple QNP @ with only one variable d:
- I ={d>0}, G={d=0} and single action Get-closer = {(d > 0;d\)

— d is number of steps to goal

Interpretation ¢4(s) performs computation that is intractable: compute
distance in implicit graph

Makes sense to focus on abstractions whose features are polynomial-time
computable from representation of states
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Outline Recap

. Non deterministic abstractions for families of classical planning problems

. Qualitative Numerical Planning (QNP): concrete language for abstractions
. First-order relational planning instances

. Solving QNPs via reduction to FOND planning

. Learning QNP abstractions from traces

. Wrap Up
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Learning QNP Representations

QNPs are expressive and effective!

QNP models can be learned from samples [B., Frances & Geffner, 2019]

Main challenge is to learn concepts that define features (booleans and
numericals); e.g. number of free grippers, distance to target, etc

From pool of concepts that define pool of features, select minimal subset
that account for transitions in sampled trajectories

System learns QNP models that are translated into FOND and solved
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QNP Learner

Input: STRIPS domain, sampled trajectories for small instances, and
complexity bound NN for concepts

Output: QNP model @ that explain trajectories

Method:

Use atom schemas and fixed concept grammar to generate pool of
concepts: all concepts with complexity < N

Interpretation of concept C at state s is subset of objects C(s); these
define features:

« boolean feature p when |C(s)| € {0,1} for all states s

e numerical feature n = |C(s)| when |C(s)| > 1 for at least some state s

From pool of features, construct SAT theory T that “separates’ states
and transitions in sample

— Recover QNP model from solution of SAT theory T
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SAT Theory for Learning QNPs

Input:

— & = sample of transitions (s, s") from small instances in Q
— F = pool of features f together with interpretations f(s) at each sin S

Propositional variables:

— selected(f) for each f in F to select F-subset

— Di(s,t) iff selected features distinguish states s and t in S

— Da(s, s, t,t') iff selected features distinguish (s, s’) and (¢,t') in S

Formulas:

— Dy (s,t) (for states s and ¢ such that only one is goal)
= Ny Da(s,s',t,t') = Di(s,1) (for each (s,s’) and ¢ in S)
= Di(s,t) < V; selected(f) (for f's that distinguish s and t)
= Da(s,s',t,t') <=\ selected(f)  (for f's that dist. (s,s’) and (¢,7'))

T(S,F) is SAT iff there is sound QNP abstraction relative to S and F

34 of 44



Learned QNPs: Gripper

Training set: 2 instances with 4 and 5 balls each

Learned features (selected) from |S| = 403 and |F| = 130:

— T = "whether robot is in target room"
— b= "number of balls not in target room"
— ¢ = "number of balls being held by robot”

— g = "number of free grippers (available capacity)”

Learned abstract actions:

Drop = (T, c>0;cl, gt)

Move-fully-loaded = (=T, ¢>0,9=0;T)

— Move-half-loaded = (—T,¢>0,9>0,b=0;T)
Pick = (=T,b>0,g > 0;bl, gl, ct)

Leave= (T,c=0,¢9>0;-T)

Solution works for any number of balls and grippers!
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Example: Solution for (Learned) Gripper

Pick

T,g=0,c>0,b=0

T,9>0,c=0,b>0

T,9>0,c>0,b>0

T,9>0,c=0,b>0

T,9>0,e>0,b=0

Push(c) Move-half-loaded

papeoj-Ajjnj-aropy

Move-fully-loaded

T,g=0,¢>0,b>0

T,9>0,c=0,b>0

T,9=0,¢>0,b>0

Drop

Model @ learned and translated into FOND in less than 1 sec. FOND-SAT solves the
FOND problem in less than 13 secs after 11 calls to SAT solver
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Learned QNPs: Pick Rewards in Grid

Inspired from RL work [Garnelo, Arulkumaran & Shanahan, 2016]

Training set: 2 instances 4 x 4, 5 x 5, diff. dist. of blocked cells and rewards

Learned Features (selected) from

S| = 568 and |F| = 280:
— r = “number of remaining rewards"

— d = "minimum distance to closest reward along unblocked path”

Learned abstract actions:
— Move-to-closest-reward = (r > 0,d > 0; dl)
- Collect = (d=0,r>0;7l,dt)

Solution works for any grid dimension, number of rewards, and
distribution of blocked cells!
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Example: Solution for (Learned) Rewards

Move-to-closest-reward

Move-to-closest-reward

Collect

Model @ is learned and translated into FOND is less than 1 sec. FOND-SAT solves
the FOND problem in less than 1 sec after 4 calls to SAT solver
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Wrap Up

Collections of planning problems expressed as non-det abstractions with
trajectory constraints

QNP is suitable language for expressing abstractions and constraints
compactly

QNPs solved with reduction to FOND

QNP models can be learned
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Related Work

LTL can be used to express more general abstractions and constraints [B.
et al, 2017, Aminof et al., 2019; Illanes & Mcllraith, 2019, Camacho et al, 2018]

Model-based learning of general policies from examples [Khardon, 1999;
Martin & Geffner, 2004; Fern et al., 2004; Jiménez et al., 2019]

Deep RL for general p0|iCieS [Toyer et al., 2018; Issakkimuthu et al., 2018; Bueno
et al., 2019; Garg et al., 2020]

Learning general policies from images without PDDL/STRIPS first-order
representations [Ross et al, 2011; Hussein et al., 2017] and DRL
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Current Work

Learn QNP models directly from image traces provided by a teacher:
— Use SAT to learn QNP model + solution that imitates teacher on traces

— Model has uninterpreted variables, but SAT solution gives interpretations
for images in traces

— Use interpretations provided by SAT to learn interpretation functions:
o Classifier from state images into valuations for variables

o Classifier from image transitions into qualitative effects

— Solution + classifiers sufficient for applying policy on new instances

SAT task similar and inspired by work on learning STRIPS representations
from non-symbolic traces (ECAI 2020)
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