# **Feature-based Generalized Policies and Guarantees**

IJCAI/GenPlan 2022

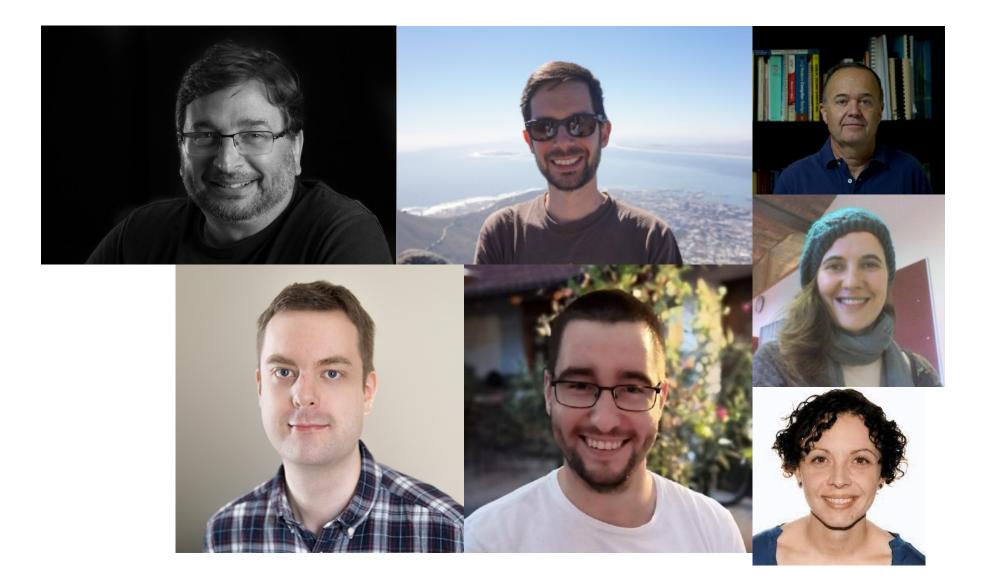
Blai Bonet Universitat Pompeu Fabra, Barcelona

With inputs from Hector Geffner





#### Collaborators



#### Introduction

- In recent years, generalized planning has become important in planning and DRL [Hu and De Giacomo, 2011; Srivastava *et al.*, 2011; Toyer *et al.*, 2018; Garg *et al.*, 2021; Chevalier-Boisvert *et al.*, 2019; etc]
- In the "logical setting", a successful approach expresses general policies with rules over state features where
  - ▶ features provide the necessary abstraction over a class of planning instances
  - rules tell which transitions to take at non-goal states
- Rules can also be used to express solution strategies based on subgoals (called plan sketches) that are guaranteed to be executable in polynomial time [B. and Geffner, 2019a; Drexeler *et al.*, 2021, 2022]
- General policies and sketches can be learned from traces
- Correctness of learned policies has also been investigated

B. Bonet. https://bonetblai.github.io/reports/GENPLAN22-Talk.pdf

# Outline

- Part I: Classical planning and generalized planning
  - Model and language
  - First-order STRIPS
  - Generalized planning
- Part II: General policies
  - Language and semantics
  - Features: Description Logics and FOL
  - Learning general policies
- Part III: Formal guarantees for generalization
  - Showing that a general policy solves a class of problems
  - What is a guarantee?
  - Guarantees as certificates over reachable states
  - Synthesis of certificates
- Wrap up

#### Part I:

### **Classical Planning and Generalized Planning**

#### State Model for Classical AI Planning

A (classical) state model is tuple  $S = \langle S, s_0, S_G, Act, A, f, c \rangle$ :

- finite and discrete state space  ${\cal S}$
- a known initial state  $s_0 \in S$
- a set  $S_G \subseteq S$  of **goal states**
- actions  $A(s) \subseteq Act$  applicable in each  $s \in S$
- a deterministic state-transition function s' = f(a, s) for  $a \in A(s)$
- positive action costs c(a, s), assumed 1 by default

A solution to the model or plan is a sequence of applicable actions  $a_0, \ldots, a_n$  that maps  $s_0$  into  $S_G$ 

i.e. there must be state sequence  $s_0, \ldots, s_{n+1}$  such that  $a_i \in A(s_i)$ ,  $s_{i+1} = f(a_i, s_i)$ , and  $s_{n+1} \in S_G$ 

### Language for Classical Planning: (Grounded) STRIPS

- A (grounded) **problem** in STRIPS is tuple  $P = \langle F, O, I, G \rangle$ :
  - $\triangleright$  F is set of (ground) atoms
  - ▷ *O* is set of (ground) **actions**
  - $\triangleright$   $I \subseteq F$  stands for **initial situation**
  - $\triangleright$   $G \subseteq F$  stands for **goal situation**
- Actions  $o \in O$  represented by
  - $\triangleright$  Add list  $Add(o) \subseteq F$
  - $\triangleright$  **Delete** list  $Del(o) \subseteq F$
  - ▷ **Precondition** list  $Pre(o) \subseteq F$

A problem P in STRIPS defines state model S(P) in compact form . . .

#### From Language to Models

STRIPS problem  $P = \langle F, O, I, G \rangle$  determines state model  $\mathcal{S}(P)$  where

- states  $s \in S$  are collections of atoms from  ${\cal F}$
- initial state  $s_0$  is I
- goal states  $s_G$  are such that  $G \subseteq s_G$
- actions a in A(s) are ops in O s.t.  $Prec(a) \subseteq s$
- next state is  $s' = [s \setminus Del(a)] \cup Add(a)$
- action costs c(a,s) are all 1

Common approach for solving P is using **path-finding/heuristic search** algorithms over **graph** defined by S(P) where nodes are states s, and edges (s, s') are state transitions caused by an action a; i.e., s' = f(a, s) and  $a \in A(s)$ 

The **source** node is the initial state  $s_0$ , and the **targets** are the goal states  $s_G$ 

#### Language for Generalized Planning: First-Order STRIPS

Problems specified as **instances**  $P = \langle D, I \rangle$  of **general** planning domain:

- **Domain** D specified in terms of **action schemas** and **predicates**
- Instance is  $P = \langle D, I \rangle$  where I details objects, init, goal

Distinction between general domain D and specific instance  $P = \langle D, I \rangle$  important for reusing action models, and also for learning them

Generalized planning deals with collection of problems that share domain D

#### **Example: 2-Gripper Problem** $P = \langle D, I \rangle$ in PDDL

```
(define (domain gripper)
   (:requirements :typing)
   (:types room ball gripper)
   (:constants left right - gripper)
   (:predicates (at-robot ?r - room) (at ?b - ball ?r - room) (free ?g - gripper)
       (carry ?o - ball ?g - gripper))
   (:action move
       :parameters
                    (?from ?to - room)
       :precondition (at-robot ?from)
       :effect
                    (and (at-robot ?to) (not (at-robot ?from))))
   (:action pick
                    (?obj - ball ?room - room ?gripper - gripper)
       :parameters
       :precondition (and (at ?obj ?room) (at-robot ?room) (free ?gripper))
       :effect
                     (and (carry ?obj ?gripper) (not (at ?obj ?room)) (not (free ?gripper))))
   (:action drop
                    (?obj - ball ?room - room ?gripper - gripper)
       :parameters
       :precondition (and (carry ?obj ?gripper) (at-robot ?room))
       :effect
                     (and (at ?obj ?room) (free ?gripper) (not (carry ?obj ?gripper)))))
(define (problem gripper2)
    (:domain gripper)
    (:objects roomA roomB - room Ball1 Ball2 - ball)
    (:init (at-robot roomA) (free left) (free right) (at Ball1 roomA) (at Ball2 roomA))
    (:goal (and (at Ball1 roomB) (at Ball2 roomB))))
```

#### **Generalized Planning**

**Generalized task** is collection Q of ground instances  $P_i = \langle D, I_i \rangle$  that share a common first-order STRIPS domain D together with a **goal description** 

For example, all  $Q_{gripper}$  is the task of all gripper instances with **any number of balls and any number of rooms,** with the goal of having all balls in "room B"

#### This is an infinite class of instances

Instances assumed to be "well-formed"; e.g., for all reachable states in all  $P_i$  in Q, each ball is in exactly one position, and the agent is in exactly one room

# Part II: General Policies

 $B. \ Bonet. \ https://bonetblai.github.io/reports/GENPLAN22-Talk.pdf$ 

#### **General Policies**

- General policy represents strategy for solving multiple instances reactively; i.e., without having to search or plan
  - $\triangleright$  E.g., policy for achieving on(x, y) for any # of blocks, any configuration
- What are good **languages** for expressing such policies?
- Number of works have addressed the problem [Khardon 1999; Martin and G., 2004; Fern *et al.*, 2006; Srivastava *et al.*, 2011; Hu and De Giacomo, 2011]
- **Obstacle:** set of (ground) actions change from instance to instance with objects

## A Language for General Policies [B. and Geffner, 2018]

- General policies are given by rules  $C \mapsto E$  over set  $\Phi$  of features
- Features f are state functions that have well-defined value f(s) on every reachable state of any instance of the domain
  - **Boolean** features p: p(s) is true or false
  - > **Numerical** features n: n(s) is non-negative integer

Computation of feature values assumed to be "cheap": features assumed to have **linear** number of values at most, computable in **linear** time (in #atoms in |P|)

#### **Example: General Policy for** $clear(\mathbf{X})$

- Features  $\Phi = \{H, n\}$ : 'holding a block' and 'number of blocks above x'
- **Policy**  $\pi$  for class  $\mathcal{Q}$  of Block problems with goal clear(x) given by two rules:

$$\{\neg H, n > 0\} \mapsto \{H, n \downarrow\} \qquad ; \qquad \{H, n > 0\} \mapsto \{\neg H\}$$

#### Meaning:

- if  $\neg H \& n > 0$ , move to successor state where H holds and n decreases
- if H & n > 0, move to successor state where  $\neg H$  holds, n doesn't change

#### Language and Semantics of General Policies: Definitions

- Policy rules  $C \mapsto E$  over set  $\Phi$  of Boolean and numerical features p, n:
  - ▷ Boolean conditions in C: p,  $\neg p$ , n = 0, n > 0
  - ▷ qualitative effects in  $E: p, \neg p, p?, n\downarrow, n\uparrow, n?$
- State transition (s, s') satisfies rule  $C \mapsto E$  if
  - ▶ f(s) makes body C true
    ▶ change from f(s) to f(s') satisfies E
- A **policy**  $\pi$  for class  $\mathcal{Q}$  of problems P is given by set of policy rules  $C \mapsto E$ 
  - ▷ Transition (s, s') in P compatible with  $\pi$  if (s, s') satisfies a policy rule
  - $\triangleright$  Trajectory  $s_0, s_1, \ldots$  compatible if  $s_0$  of P and transitions compatible with  $\pi$
- $\pi$  solves P if all max trajectories compatible with  $\pi$  reach goal of P
- $\pi$  solves collection of problems Q if it solves each  $P \in Q$

#### **Example: Delivery**

- Pick packages spread in  $n\times m$  grid, one by one, to target location
- Features  $\Phi = \{H, p, t, n\}$ : hold, dist. to nearest pkg & target, # undelivered
- Policy  $\pi$  that solves class  $\mathcal{Q}_D$ : **any** # of pkgs and distribution, **any** grid size

$$\begin{split} \{\neg H, p > 0\} &\mapsto \{p \downarrow, t?\} & \text{go to nearest package} \\ \{\neg H, p = 0\} &\mapsto \{H, p?\} & \text{pick it up} \\ \{H, t > 0\} &\mapsto \{t \downarrow, p?\} & \text{go to target cell} \\ \{H, t = 0\} &\mapsto \{\neg H, n \downarrow, p?\} & \text{drop package} \end{split}$$

### Features: Desc. Logics [B. et al., 2019a; Francès et al., 2021]

- Description logic grammar allows generation of concepts and roles from domain predicates
- Pool  ${\mathcal F}$  obtained from concepts of complexity **bounded by parameter**
- Complexity of concept/role given by size of its syntax tree
- Denotation of concept C in state s is subset C(s) of objects
- Each concept C defines num and Bool features  $n_C(s) = |C(s)|$ ;  $p_C(s) = \top$  iff |C(s)| > 0
- Grammar:
  - $\triangleright$  Primitive:  $C_p$  given by unary predicates p and unary "goal predicates"  $p_G$
  - $\triangleright$  Universal:  $C_u$  contains all objects
  - $\triangleright$  Nominals:  $C_a = \{a\}$  for constants/parameter a
  - $\triangleright$  Negation:  $\neg C$  contains  $C_u \setminus C$
  - ▷ Intersection:  $C \sqcap C'$
  - $\triangleright \quad \text{Quantified: } \exists R.C = \{x : \exists y [R(x, y) \land C(y)]\} \text{ and } \forall R.C = \{x : \forall y [R(x, y) \land C(y)]\}$
  - ▷ Roles (for binary predicate p):  $R_p$ ,  $R_p^{-1}$ ,  $R_p^+$ , and  $[R_p^{-1}]^+$
- Additional distance features:  $dist(C_1, R, C_2)$  for concepts  $C_1$  and  $C_2$  and role R that evaluates to d in state s iff minimum R-distance between object in  $C_1$  to object in  $C_2$  is d

#### First-Order Features [B. et al., 2019b]

- For STRIPS domain D, signature  $\sigma(D)$  comprises of domain predicates in D plus predicates  $p^*$  and  $p^+$  for binary predicates p in D
- Predicates  $p^{\ast}$  and  $p^{+}$  added because not definable in FOL
- FO concept:  $C = \{ \bar{o} : \Psi(\bar{o}) \}$  defined by FO formula  $\Psi$  over  $\sigma(D)$
- Denotation C(s) at state s is  $C(s) = \{\bar{o} : s \models \Psi(\bar{o})\}$ ; i.e., denotation of C may contain object tuples
- FO feature f given by FO concept C with value f(s) = |C(s)|
- All DL features except distance features are FO features, but there are FO features that aren't DL features

### Learning General Policies (and Sketches)

- General policies learned from small sample of traces  ${\cal T}$  and DL feature pool  ${\cal F}$
- Learning task formulated as combinatorial optimization problem [B. et al., 2019a; Francès et al., 2021]
- Learned policy then verified empirically over test instances of bigger size (and latter verified by "hand" that policies are indeed general)
- Policy sketches also learned using combinatorial optimization [Drexeler et al., 2022]
- **Deep learning** approach using GNNs doesn't need pool  $\mathcal{F}$  [Ståhlberg *et al.* 2022a,b]

#### Part III:

#### **Formal Guarantees for Generalization**

#### Proving that General Policy Solves Class of Instances ${\cal Q}$

How to **prove** that this policy  $\pi$  achieves clear(x) in all Block problems?

 $\{\neg H, n > 0\} \mapsto \{H, n \downarrow\} \qquad ; \qquad \{H, n > 0\} \mapsto \{\neg H\}$ 

- Soundness: policy π applies in every non-goal state s
   ▶ for any such s, there is transition (s, s') compatible with π
- Acyclicity: no sequence of transitions  $(s_i, s_{i+1})$  compatible with  $\pi$  cycles

#### **Theorem:** If $\pi$ is sound and acyclic in Q, $\pi$ solves Q

### Acyclicity, Termination, and QNPs

- Termination: structural criterion that ensures policy is acyclic over any domain
- A policy  $\pi$  is **terminating** if for all **infinite** trajectories  $s_0, \ldots, s_i, \ldots$  compatible with  $\pi$ , there is a **numerical feature** n such that:
  - ▷ n is **decremented** in some recurrent transition (s, s'); i.e., n(s') < n(s)
  - ▷ n is **not incremented** in any recurrent transition (s, s'); i.e.,  $n(s') \neq n(s)$
- Every such trajectory deemed impossible or unfair (n can't decrement below 0), thus if π terminates, π-trajectories terminate
- **Termination** notion is from **QNPs**; verifiable in time  $O(2^{|\Phi|})$  by SIEVE algorithm [Srivastava *et al.*, 2011], where  $\Phi$  is set of features involved in the policy
- Also characterized logically using fairness assumptions [Rodriguez et al. 2021]

#### **Acyclicity for Policies over First-Order Features**

- If all features in policy  $\pi$  are FO features, termination condition can be weakened
- $\pi$ -trajectory  $s_0, \ldots, s_i, \ldots$  on **STRIPS instance** P terminates if for some numerical feature f:
  - ▶ *f* is decreased (resp. increased) an **infinite number** of times
  - ▶ *f* is increased (resp. decreased) a **finite number** of times
- Reason is that number of object tuples in any STRIPS instance is finite
- QNP termination is stronger since
  - ▷ QNP variables are not necessarily bounded from above
  - QNP variables are not necessarily integer-valued

#### **Soundness**

- The other property needed for showing that π solves Q: for non-goal reachable states s, there is transition (s, s') that is compatible with π
- For example, how do we know the following policy is sound for Blocks?

 $\{\neg H, n > 0\} \mapsto \{H, n \downarrow\} \qquad ; \qquad \{H, n > 0\} \mapsto \{\neg H\}$ 

E.g., suppose the hand is empty and there are blocks above x in state s:

- ▷ Is there a transition (s, s') compatible with the effect  $\{H, n\downarrow\}$ ?
- > Yes: any tower in "well-formed" state for Blocks, ends up in a clear block
- Soundness isn't structural property of  $\pi$ ; it depends on reachable states!

### What's a (Formal) Guarantee?

- It is certificate  $C_{\pi}$  that shows that  $\pi$  solves Q:
  - $\triangleright$  all trajectories for P in Q compatible with  $\pi$  are **acyclic**
  - ▷ for any non-goal reachable state s in Q, there is (s, s') compatible with  $\pi$
- Acyclicity established from  $\pi$  alone (structurally)
- $\bullet\,$  Soundness must be established using knowledge about instances in  ${\cal Q}$

**IDEA:** Rather than formalize well-formedness of states and then reason, better is to **characterize subclass** of instances on which  $\pi$  is **guaranteed to be sound** 

#### Yields principled and clear path for automatically obtaining guarantees

#### **Guarantees as Invariants over Reachable States**

- Often, general plan  $\pi$  guaranteed to succeed when certain properties (invariants) hold on set of reachable states
  - E.g. for clear(X), it's enough that for all reachable states, the tower containing X ends up in a clear block, and no two blocks are on common block
- If features in policy  $\pi$  are **first-order**, one can obtain invariants automatically by requiring reasonable properties:
  - ▷ Decrement  $n\downarrow$  across (s, s') shrinks denotation of n(s) (i.e.,  $n(s') \subsetneq n(s)$ )
  - ▷ Increment  $n\uparrow$  across (s, s') enlarges denotation of n(s) (i.e.,  $n(s) \subsetneq n(s)$ )

#### Certificates: Language and Semantics [B. et al., 2019b]

For policy  $\pi$  given by rules  $\{r : C_r \mapsto E_r\}$  and STRIPS domain D:

- We aim at certificate  $C_{\pi} = \{\Phi_r : r \in \pi\}$  where  $\Phi_r = \exists \bar{z} (\bigvee_{a \in D} \Psi_r^a(\bar{z}))$ :
  - $\triangleright$  a is action schema in domain D
  - $\triangleright \bar{z}$  is arguments of a, existentially quantified on objects

▷ if  $s \models C_r \land \Psi_r^a(\bar{o})$ , then (s, s') is compatible with  $E_r$  for  $s' = res(s, a(\bar{o}))$ 

- $\triangleright$  That is,  $C_r \wedge \Psi_r^a$  sufficient to establish soundness of  $\pi$  at s
- Certificate  $C_{\pi} = \{ \Phi_r = \exists \overline{z} (\bigvee_{a \in D} \Psi_r^a(\overline{z})) : r \}$  is valid in domain D iff for any state s (reachable or not):

$$s \models C_r \land \Psi_r^a(\bar{o}) \implies E_r$$
 is compatible with  $(s, res(s, a(\bar{o})))$ 

#### Certificates: Scope and Result [B. et al., 2019b]

•  $\mathcal{Q}[\mathcal{C}_{\pi}] = \{ P : \text{ for all } r \text{ in } \pi, C_r \Rightarrow \Phi_r \text{ holds in all reachable states of } P \}$ 

**Theorem:** If  $\pi$  is acyclic and  $C_{\pi}$  is valid,  $\pi$  solves  $\mathcal{Q}[C_{\pi}]$ 

That is,  $C_{\pi}$  guarantees that  $\pi$  is sound on the class (scope)  $\mathcal{Q}[C_{\pi}]!$ 

Hence, given  $\pi$  and instance P, to show  $\pi$  solves P:

- Show that  $\pi$  is acyclic (structural check, automatic)
- Obtain valid certificate  $C_{\pi}$  (automatic synthesis, see next slides)
- Check  $C_r \Rightarrow \Phi_r$  hold on **reachable states** in P

#### **Synthesis of Valid Certificates**

- Valid certificate  $C_{\pi}$  obtained automatically using deduction:
  - > Start with **base-for-deduction** that gives **sufficient/necessary** for ground atom  $p(\bar{u})$  to hold **after** ground action  $a(\bar{o})$  is applied in state s
  - ▷ Lift: Use induction on FO-formulas defining features f in rule r to obtain sufficient/necessary conditions for **value change** of f across an a-transition that is compatible with  $E_r$
  - Combine lifted formulas with preconditions of concrete actions
- Example: f(s) = |C(s)| decrements across (s, a, s') for  $C = \{\bar{o} : \Psi(\bar{o})\}$  if

$$\begin{split} C(s') &\subseteq C(s) \quad \text{if} \\ S_C^{dec}(\bar{z}) &= \forall \bar{x} \big( N_C^a(\bar{z}, \bar{x}) \Rightarrow \Psi(\bar{x}) \big) & \land \exists \bar{x} \big( \Psi(\bar{x}) \land \neg N_C^a(\bar{z}, \bar{x}) \big) \end{split}$$

where  $N_C^a(\bar{z}, \bar{x})$  is **necessary condition** for  $\bar{x}$  to be in  $C(res(s, a(\bar{z})))$ 

#### **Example:** clear(X) on Blocks with 3 Schemas (No Hand)

- Schemas:  $a_1 = \text{Newtower}(z_1, z_2)$ ,  $a_2 = \text{Move}(z_3, z_4, z_5)$ , and  $a_3 = \text{Stack}(z_6, z_7)$
- Generalized policy  $\pi$  with single rule  $\{n > 0\} \mapsto \{n\downarrow\}$  where  $n = |\exists x(on^+(x, X))|$
- Certificate  $C_{\pi} = \{ \Phi = \exists \overline{z} (\bigvee_{a \in D} \Psi^{a}(\overline{z})) \}$  is singleton as there is single rule in  $\pi$ :

$$\begin{split} \Psi^{a_1} &= \operatorname{Pre}(a_1) \wedge \operatorname{on}^*(z_2, \mathsf{A}) \wedge \forall y \left( \operatorname{on}(z_1, y) \wedge \operatorname{on}^*(y, \mathsf{A}) \Rightarrow y = z_2 \right) \\ \Psi^{a_2} &= \operatorname{Pre}(a_2) \wedge \operatorname{on}^+(z_3, \mathsf{A}) \wedge \neg \operatorname{on}^*(z_5, \mathsf{A}) \wedge \forall y \left( \operatorname{on}(z_3, y) \wedge \operatorname{on}^*(y, \mathsf{A}) \Rightarrow y = z_4 \right) \\ \Psi^{a_3} &= \bot \\ \Phi &= \exists \overline{z} \left( \Psi^{a_1}(z_1, z_2) \vee \Psi^{a_2}(z_3, z_4, z_5) \right) \\ \mathcal{Q}[\mathcal{C}_{\pi}] &= \{ P : \text{ for } s \text{ reachable in } P, s \vDash \exists x \left( \operatorname{on}^+(x, \mathsf{A}) \right) \Rightarrow \Phi \} \end{split}$$

- Interpretation:
  - $\blacktriangleright \Psi^{a_1}$  says  $clear(z_1)$ ,  $on(z_1, z_2)$ ,  $on^+(z_1, A)$ , and if  $on(z_1, y) \land on^*(y, A)$ , then  $y = z_2$
  - $\triangleright \ \Psi^{a_2}$  says similar for  $(z_3, z_4)$  with the addition of  $\neg on^*(z_5, \mathsf{A})$
  - $\triangleright \Psi^{a_3} = \bot$  since no ground instance of  $a_3$  decreases n
  - $\triangleright C_{\pi}$  valid in well-formed Blocks instances; i.e.  $\pi$  achieves clear(A) in any such instance

#### **Example: Gripper with 3 Schemas**

• Schemas:  $a_1$ =Move(?r1, ?r2),  $a_2$ =Pick(?b, ?g, ?r), and  $a_3$ =Drop(?b, ?g, ?r)

• Acyclic solution for Gripper learned with small instances with 2 rooms [B. et al., 2019b]:

$$\begin{split} r_1 &= \{\neg X, b > 0, g > 0\} \mapsto \{b\downarrow, g\downarrow, c\uparrow\} & \text{pick ball} \\ r_2 &= \{X, c > 0\} \mapsto \{c\downarrow, (\uparrow g)\} & \text{drop ball} \\ r_3 &= \{\neg X, b = 0, c > 0, g > 0\} \mapsto \{X\} & \text{go to room A (ver 1)} \\ r_4 &= \{\neg X, c > 0, g = 0\} \mapsto \{X\} & \text{go to room A (ver 2)} \\ r_5 &= \{X, c = 0, g > 0\} \mapsto \{\neg X\} & \text{leave room A} \end{split}$$

• Defined over the features:

N = { r : at(r) ∧ r = A } tells if robot is in room A
b = { x : ∃r(in(x, r) ∧ r ≠ A) } counts balls in room B
c = { x : ∃g(carry(x, g)) } counts balls being held
g = { x : free(x) } counts free grippers

• Example:  $\Psi_{r_1}^{a_2} = at(?r) \land in(?b,?r) \land free(?g) \land \forall x[\neg carry(?b,x)] \land ?r \neq A$ 

•  $C_{\pi}$  entailed by standard mutexes in Gripper:  $\pi$  solves any instance with 2 rooms

#### **Challenge: Reduction of Certificates to Initial State**

- Know: how to get valid certificate  $C_{\pi} = \{\Phi_r : r \in \pi\}$  from  $\pi$
- If  $\pi$  is acyclic,  $\pi$  solves all instances in  $\mathcal{Q}[\mathcal{C}_{\pi}]$  ( $\mathcal{C}_{\pi}$  gives scope of  $\pi$ )
- For given P, deciding if P ∈ Q[C<sub>π</sub>] involves checking Λ<sub>r∈π</sub>(C<sub>r</sub> ⇒ Φ<sub>r</sub>) on the reachable states in P
- It'd be much nicer to do some check only on the initial state of  ${\cal P}$
- Is there (non-trivial)  $\Lambda_{\pi}$  so that  $\pi$  is sound on  $\mathcal{Q}[\Lambda_{\pi}] = \{ P = (D, I) : I \vDash \Lambda_{\pi} \}$ ?

• Another recent approach for automatically checking soundness of abstractions has been put forward [Cui *et al.*, 2022]

# Wrap Up

- Generalized planning is the problem of obtaining policies for solving classes of instances  ${\cal Q}$
- Language of Boolean and numerical features allows expressive and succinct abstractions
- General policy is set of rules defined with features that filter out transitions
- Policy  $\pi$  solves Q if **acyclic** and **sound** on each instance P in Q
- Acyclicity established by structural properties of  $\pi$
- Soundness requires reasoning with reachable states in "well-formed instances"
- Yet, given  $\pi$ , one can characterize subclass Q' on which  $\pi$  guaranteed to succeed
- Challenges: reduce invariants to initial state, distance features, . . .

#### References

- [Bonet et al., 2019a] Bonet, B., Francès, G., and Geffner, H. (2019a). Learning features and abstract actions for computing generalized plans. In *Proc. AAAI*, pages 2703–2710.
- [Bonet et al., 2019b] Bonet, B., Fuentetaja, R., E-Martín, Y., and Borrajo, D. (2019b). Guarantees for sound abstractions for generalized planning. In *Proc. IJCAI*, pages 1566–1573.
- [Bonet and Geffner, 2018] Bonet, B. and Geffner, H. (2018). Features, projections, and representation change for generalized planning. In *Proc. IJCAI*, pages 4667–4673.
- [Bonet and Geffner, 2020] Bonet, B. and Geffner, H. (2020). Qualitative numeric planning: Reductions and complexity. *Journal of AI Research*, 69:923–961.
- [Cui et al., 2022] Cui, Z., Kuang, W., and Liu, Y. (2022). Automatic verification of sound abstractions for generalized planning. *arXiv preprint arXiv:2205.11898*.
- [Drexler et al., 2021] Drexler, D., Seipp, J., and Geffner, H. (2021). Expressing and exploiting the common subgoal structure of classical planning domains using sketches. In *Proc. KR*, pages 258–268.
- [Drexler et al., 2022] Drexler, D., Seipp, J., and Geffner, H. (2022). Learning sketches for decomposing planning problems into subproblems of bounded width. In *Proc. ICAPS*.
- [Fern et al., 2006] Fern, A., Yoon, S., and Givan, R. (2006). Approximate policy iteration with a policy language bias: Solving relational markov decision processes. *Journal of Artificial Intelligence Research*, 25:75–118.
- [Francès et al., 2021] Francès, G., Bonet, B., and Geffner, H. (2021). Learning general planning policies from small examples without supervision. In *Proc. AAAI*, pages 11801–11808.
- [Geffner and Bonet, 2013] Geffner, H. and Bonet, B. (2013). A Concise Introduction to Models and Methods for Automated Planning. Morgan & Claypool Publishers.
- [Hu and De Giacomo, 2011] Hu, Y. and De Giacomo, G. (2011). Generalized planning: Synthesizing plans that work for multiple environments. In *Proc. IJCAI*, pages 918–923.
- [Khardon, 1999] Khardon, R. (1999). Learning action strategies for planning domains. *Artificial Intelligence*, 113:125–148.

- [Martín and Geffner, 2004] Martín, M. and Geffner, H. (2004). Learning generalized policies from planning examples using concept languages. *Applied Intelligence*, 20(1):9–19.
- [Rodriguez et al., 2021] Rodriguez, I. D., Bonet, B., Sardina, S., , and Geffner, H. (2021). Flexible fond planning with explicit fairness assumptions. In *Proc. ICAPS*, pages 290–298.
- [Srivastava et al., 2011] Srivastava, S., Zilberstein, S., Immerman, N., and Geffner, H. (2011). Qualitative numeric planning. In AAAI.
- [Ståhlberg et al., 2022a] Ståhlberg, S., Bonet, B., and Geffner, H. (2022a). Learning general optimal policies with graph neural networks: Expressive power, transparency, and limits. In *Proc. ICAPS*.
- [Ståhlberg et al., 2022b] Ståhlberg, S., Bonet, B., and Geffner, H. (2022b). Learning generalized policies without supervision using gnns. In *Proc. KR*.

#### **Appendix: Synthesis of Valid Certificates**

- **Example:** Gripper with schemas Move(r1, r2), Pick(b, g, r) and Drop(b, g, r), and let concept  $C = \{x : free(x)\}$  track set of free grippers
  - ▶ Feature f = |C| decreases across (s, s') due to Pick(b,g,r) if  $C(s) \supseteq C(s')$  if  $s \models free(g)$  since  $\neg free(g)$  is negative effect of action; i.e.,

$$\forall x \left( N_C^a(\bar{z}, x) \Rightarrow \Psi(x) \right) \land \exists x \left( \Psi(x) \land \neg N_C^a(\bar{z}, x) \right)$$
  

$$\equiv \forall x \left( N_C^a(\bar{z}, x) \Rightarrow free(x) \right) \land \exists x \left( free(x) \land \neg N_C^a(\bar{z}, x) \right)$$
  

$$\equiv \top \land \exists x \left( free(x) \land \neg N_C^a(\bar{z}, x) \right)$$
  

$$\equiv \exists x \left( free(x) \land \neg (\llbracket free(x) \in Post \rrbracket \lor (free(x) \land \llbracket \neg free(x) \notin Post \rrbracket)) \right)$$
  

$$\equiv \exists x \left( free(x) \land \neg (\bot \lor (free(x) \land (x \neq g))) \right)$$
  

$$\equiv free(g)$$

▷ Thus,  $f \downarrow$  across (s, s') by Pick(b, g, r) if  $s \models free(g)$  which true by prec

• General synthesis method for policies defined with FO-features [B. et al., 2019b]

#### **Appendix: Base for Deduction**

| Reference                             | Formula                                                                                                                           |                                         |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| $\mathcal{B}_X(a,p)(\bar{z},\bar{x})$ | $[\![p(\bar{x}) \in Post]\!] \lor (p(\bar{x}) \land [\![\neg p(\bar{x}) \notin Post]\!])$                                         |                                         |
| $\mathcal{B}_N(a,p^*)(\bar{z},x,y)$   | $p^*(x,y) \lor \exists uv \big( \llbracket p(u,v) \in \text{Post} \rrbracket \land p^*(x,u) \land p^*(v,y) \big)$                 | (action adds at most 1 p-atom)          |
|                                       | $p^*(x,y) \lor \exists uv \big( \llbracket p(u,v) \in Post \rrbracket \land (p^*(x,u) \lor p^*(v,y)) \big)$                       | (action adds 2 or more <i>p</i> -atoms) |
| $\mathcal{B}_S(a,p^*)(ar{z},x,y)$     | $(x=y) \vee \left( p^*(x,y) \wedge \forall uv(\llbracket \neg p(u,v) \in \operatorname{Post} \rrbracket \Rightarrow u=v) \right)$ |                                         |

Table 1: General base  $\mathcal{B}$  for synthesis of any domain  $\mathcal{D}$ . Post $(a(\bar{z}))$  is abbreviated by Post.  $X \in \{N, S\}$ . There are two versions of the necessary condition for  $p^*$ ; one for actions that add at most one atom p(u, v), and the other for actions that add two or more atoms of this form. The first version uses a conjunction,  $p^*(x, u) \wedge p^*(v, y)$ , while the second version replaces it with a disjunction.