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Introduction

• In recent years, generalized planning has become important in planning and DRL
[Hu and De Giacomo, 2011; Srivastava et al., 2011; Toyer et al., 2018; Garg et al., 2021;

Chevalier-Boisvert et al., 2019; etc]

• In the “logical setting”, a successful approach expresses general policies with
rules over state features where

. features provide the necessary abstraction over a class of planning instances

. rules tell which transitions to take at non-goal states

• Rules can also be used to express solution strategies based on subgoals (called
plan sketches) that are guaranteed to be executable in polynomial time [B. and

Geffner, 2019a; Drexeler et al., 2021, 2022]

• General policies and sketches can be learned from traces

• Correctness of learned policies has also been investigated
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Part I:

Classical Planning and Generalized Planning
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State Model for Classical AI Planning

A (classical) state model is tuple S = 〈S, s0, SG, Act, A, f, c〉:

• finite and discrete state space S

• a known initial state s0 ∈ S
• a set SG ⊆ S of goal states

• actions A(s) ⊆ Act applicable in each s ∈ S
• a deterministic state-transition function s′ = f(a, s) for a ∈ A(s)

• positive action costs c(a, s), assumed 1 by default

A solution to the model or plan is a sequence of applicable actions a0, . . . , an that
maps s0 into SG

i.e. there must be state sequence s0, . . . , sn+1 such that ai ∈ A(si), si+1 = f(ai, si),
and sn+1 ∈ SG
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Language for Classical Planning: (Grounded) STRIPS

• A (grounded) problem in STRIPS is tuple P = 〈F,O, I,G〉:
. F is set of (ground) atoms

. O is set of (ground) actions

. I ⊆ F stands for initial situation

. G ⊆ F stands for goal situation

• Actions o ∈ O represented by

. Add list Add(o) ⊆ F

. Delete list Del(o) ⊆ F

. Precondition list Pre(o) ⊆ F

A problem P in STRIPS defines state model S(P ) in compact form . . .
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From Language to Models

STRIPS problem P = 〈F,O, I,G〉 determines state model S(P ) where

• states s ∈ S are collections of atoms from F

• initial state s0 is I

• goal states sG are such that G ⊆ sG
• actions a in A(s) are ops in O s.t. Prec(a) ⊆ s
• next state is s′ = [s \Del(a)] ∪Add(a)

• action costs c(a, s) are all 1

Common approach for solving P is using path-finding/heuristic search algorithms
over graph defined by S(P ) where nodes are states s, and edges (s, s′) are state
transitions caused by an action a; i.e., s′ = f(a, s) and a ∈ A(s)

The source node is the initial state s0, and the targets are the goal states sG
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Language for Generalized Planning: First-Order STRIPS

Problems specified as instances P = 〈D, I〉 of general planning domain:

• Domain D specified in terms of action schemas and predicates

• Instance is P = 〈D, I〉 where I details objects, init, goal

Distinction between general domain D and specific instance P = 〈D, I〉 important
for reusing action models, and also for learning them

Generalized planning deals with collection of problems that share domain D
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Example: 2-Gripper Problem P = 〈D, I〉 in PDDL

(define (domain gripper)

(:requirements :typing)

(:types room ball gripper)

(:constants left right - gripper)

(:predicates (at-robot ?r - room) (at ?b - ball ?r - room) (free ?g - gripper)

(carry ?o - ball ?g - gripper))

(:action move

:parameters (?from ?to - room)

:precondition (at-robot ?from)

:effect (and (at-robot ?to) (not (at-robot ?from))))

(:action pick

:parameters (?obj - ball ?room - room ?gripper - gripper)

:precondition (and (at ?obj ?room) (at-robot ?room) (free ?gripper))

:effect (and (carry ?obj ?gripper) (not (at ?obj ?room)) (not (free ?gripper))))

(:action drop

:parameters (?obj - ball ?room - room ?gripper - gripper)

:precondition (and (carry ?obj ?gripper) (at-robot ?room))

:effect (and (at ?obj ?room) (free ?gripper) (not (carry ?obj ?gripper)))))

(define (problem gripper2)

(:domain gripper)

(:objects roomA roomB - room Ball1 Ball2 - ball)

(:init (at-robot roomA) (free left) (free right) (at Ball1 roomA) (at Ball2 roomA))

(:goal (and (at Ball1 roomB) (at Ball2 roomB))))

B. Bonet. https://bonetblai.github.io/reports/GENPLAN22-Talk.pdf 10



Generalized Planning

Generalized task is collection Q of ground instances Pi = 〈D, Ii〉 that share a
common first-order STRIPS domain D together with a goal description

For example, all Qgripper is the task of all gripper instances with any number of
balls and any number of rooms, with the goal of having all balls in “room B”

This is an infinite class of instances

Instances assumed to be “well-formed”; e.g., for all reachable states in all Pi in Q, each ball is in

exactly one position, and the agent is in exactly one room
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Part II:

General Policies
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General Policies

• General policy represents strategy for solving multiple instances reactively; i.e.,
without having to search or plan

. E.g., policy for achieving on(x, y) for any # of blocks, any configuration

• What are good languages for expressing such policies?

• Number of works have addressed the problem [Khardon 1999; Martin and G., 2004;

Fern et al., 2006; Srivastava et al., 2011; Hu and De Giacomo, 2011]

• Obstacle: set of (ground) actions change from instance to instance with objects
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A Language for General Policies [B. and Geffner, 2018]

• General policies are given by rules C 7→ E over set Φ of features

• Features f are state functions that have well-defined value f(s) on every
reachable state of any instance of the domain

. Boolean features p: p(s) is true or false

. Numerical features n: n(s) is non-negative integer

Computation of feature values assumed to be “cheap”: features assumed to have
linear number of values at most, computable in linear time (in #atoms in |P |)
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Example: General Policy for clear(X)

• Features Φ = {H,n}: ‘holding a block’ and ‘number of blocks above x’

• Policy π for class Q of Block problems with goal clear(x) given by two rules:

{¬H,n> 0} 7→ {H,n↓} ; {H,n> 0} 7→ {¬H}

Meaning:

– if ¬H & n > 0, move to successor state where H holds and n decreases

– if H & n > 0, move to successor state where ¬H holds, n doesn’t change
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Language and Semantics of General Policies: Definitions

• Policy rules C 7→ E over set Φ of Boolean and numerical features p, n:

. Boolean conditions in C: p, ¬p, n = 0, n > 0

. qualitative effects in E: p, ¬p, p?, n↓, n↑, n?

• State transition (s, s′) satisfies rule C 7→ E if

. f(s) makes body C true

. change from f(s) to f(s′) satisfies E

• A policy π for class Q of problems P is given by set of policy rules C 7→ E

. Transition (s, s′) in P compatible with π if (s, s′) satisfies a policy rule

. Trajectory s0, s1, . . . compatible if s0 of P and transitions compatible with π

• π solves P if all max trajectories compatible with π reach goal of P

• π solves collection of problems Q if it solves each P ∈ Q
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Example: Delivery

• Pick packages spread in n×m grid, one by one, to target location

• Features Φ = {H, p, t, n}: hold, dist. to nearest pkg & target, # undelivered

• Policy π that solves class QD: any # of pkgs and distribution, any grid size

{¬H, p> 0} 7→ {p↓, t?} go to nearest package

{¬H, p= 0} 7→ {H, p?} pick it up

{H, t> 0} 7→ {t↓, p?} go to target cell

{H, t= 0} 7→ {¬H,n↓, p?} drop package
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Features: Desc. Logics [B. et al., 2019a; Francès et al., 2021]

• Description logic grammar allows generation of concepts and roles from domain predicates

• Pool F obtained from concepts of complexity bounded by parameter

• Complexity of concept/role given by size of its syntax tree

• Denotation of concept C in state s is subset C(s) of objects

• Each concept C defines num and Bool features nC(s) = |C(s)|; pC(s)=> iff |C(s)| > 0

• Grammar:

. Primitive: Cp given by unary predicates p and unary “goal predicates” pG

. Universal: Cu contains all objects

. Nominals: Ca = {a} for constants/parameter a

. Negation: ¬C contains Cu \ C

. Intersection: C u C ′

. Quantified: ∃R.C={x : ∃y[R(x, y) ∧ C(y)]} and ∀R.C={x : ∀y[R(x, y) ∧ C(y)]}

. Roles (for binary predicate p): Rp, R−1
p , R+

p , and [R−1
p ]+

• Additional distance features: dist(C1, R, C2) for concepts C1 and C2 and role R that

evaluates to d in state s iff minimum R-distance between object in C1 to object in C2 is d
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First-Order Features [B. et al., 2019b]

• For STRIPS domain D, signature σ(D) comprises of domain predicates in D

plus predicates p∗ and p+ for binary predicates p in D

• Predicates p∗ and p+ added because not definable in FOL

• FO concept: C = {ō : Ψ(ō)} defined by FO formula Ψ over σ(D)

• Denotation C(s) at state s is C(s) = {ō : s � Ψ(ō)}; i.e., denotation of C may
contain object tuples

• FO feature f given by FO concept C with value f(s) = |C(s)|

• All DL features except distance features are FO features, but there are FO

features that aren’t DL features
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Learning General Policies (and Sketches)

• General policies learned from small sample of traces T and DL feature pool F

• Learning task formulated as combinatorial optimization problem [B. et al., 2019a;

Francès et al., 2021]

• Learned policy then verified empirically over test instances of bigger size (and

latter verified by “hand” that policies are indeed general)

• Policy sketches also learned using combinatorial optimization [Drexeler et al., 2022]

• Deep learning approach using GNNs doesn’t need pool F [St̊ahlberg et al. 2022a,b]
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Part III:

Formal Guarantees for Generalization
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Proving that General Policy Solves Class of Instances Q

How to prove that this policy π achieves clear(x) in all Block problems?

{¬H,n> 0} 7→ {H,n↓} ; {H,n> 0} 7→ {¬H}

• Soundness: policy π applies in every non-goal state s

. for any such s, there is transition (s, s′) compatible with π

• Acyclicity: no sequence of transitions (si, si+1) compatible with π cycles

Theorem: If π is sound and acyclic in Q, π solves Q
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Acyclicity, Termination, and QNPs

• Termination: structural criterion that ensures policy is acyclic over any domain

• A policy π is terminating if for all infinite trajectories s0, . . . , si, . . . compatible
with π, there is a numerical feature n such that:

. n is decremented in some recurrent transition (s, s′); i.e., n(s′) < n(s)

. n is not incremented in any recurrent transition (s, s′); i.e., n(s′) 6> n(s)

• Every such trajectory deemed impossible or unfair (n can’t decrement below 0),
thus if π terminates, π-trajectories terminate

• Termination notion is from QNPs; verifiable in time O(2|Φ|) by Sieve algorithm
[Srivastava et al., 2011], where Φ is set of features involved in the policy

• Also characterized logically using fairness assumptions [Rodriguez et al. 2021]
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Acyclicity for Policies over First-Order Features

• If all features in policy π are FO features, termination condition can be weakened

• π-trajectory s0, . . . , si, . . . on STRIPS instance P terminates if for some nu-
merical feature f :

. f is decreased (resp. increased) an infinite number of times

. f is increased (resp. decreased) a finite number of times

• Reason is that number of object tuples in any STRIPS instance is finite

• QNP termination is stronger since

. QNP variables are not necessarily bounded from above

. QNP variables are not necessarily integer-valued
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Soundness

• The other property needed for showing that π solves Q: for non-goal reachable
states s, there is transition (s, s′) that is compatible with π

• For example, how do we know the following policy is sound for Blocks?

{¬H,n> 0} 7→ {H,n↓} ; {H,n> 0} 7→ {¬H}

E.g., suppose the hand is empty and there are blocks above x in state s:

. Is there a transition (s, s′) compatible with the effect {H,n↓}?

. Yes: any tower in “well-formed” state for Blocks, ends up in a clear block

• Soundness isn’t structural property of π; it depends on reachable states!

B. Bonet. https://bonetblai.github.io/reports/GENPLAN22-Talk.pdf 25



What’s a (Formal) Guarantee?

• It is certificate Cπ that shows that π solves Q:

. all trajectories for P in Q compatible with π are acyclic

. for any non-goal reachable state s in Q, there is (s, s′) compatible with π

• Acyclicity established from π alone (structurally)

• Soundness must be established using knowledge about instances in Q

IDEA: Rather than formalize well-formedness of states and then reason, better is
to characterize subclass of instances on which π is guaranteed to be sound

Yields principled and clear path for automatically obtaining guarantees
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Guarantees as Invariants over Reachable States

• Often, general plan π guaranteed to succeed when certain properties (invariants)

hold on set of reachable states

. E.g. for clear(X), it’s enough that for all reachable states, the tower containing

X ends up in a clear block, and no two blocks are on common block

• If features in policy π are first-order, one can obtain invariants automatically by

requiring reasonable properties:

. Decrement n↓ across (s, s′) shrinks denotation of n(s) (i.e., n(s′) ( n(s))

. Increment n↑ across (s, s′) enlarges denotation of n(s) (i.e., n(s) ( n(s))
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Certificates: Language and Semantics [B. et al., 2019b]

For policy π given by rules {r : Cr 7→ Er} and STRIPS domain D:

• We aim at certificate Cπ = {Φr : r ∈ π} where Φr = ∃z̄
(∨

a∈D Ψa
r(z̄)

)
:

. a is action schema in domain D

. z̄ is arguments of a, existentially quantified on objects

. if s � Cr ∧Ψa
r(ō), then (s, s′) is compatible with Er for s′ = res(s, a(ō))

. That is, Cr ∧Ψa
r sufficient to establish soundness of π at s

• Certificate Cπ = {Φr = ∃z̄
(∨

a∈D Ψa
r(z̄)

)
: r } is valid in domain D iff for any

state s (reachable or not):

s � Cr ∧Ψa
r(ō) =⇒ Er is compatible with (s, res(s, a(ō))
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Certificates: Scope and Result [B. et al., 2019b]

• Q[Cπ] = {P : for all r in π, Cr ⇒ Φr holds in all reachable states of P }

Theorem: If π is acyclic and Cπ is valid, π solves Q[Cπ]

That is, Cπ guarantees that π is sound on the class (scope) Q[Cπ]!

Hence, given π and instance P , to show π solves P :

• Show that π is acyclic (structural check, automatic)

• Obtain valid certificate Cπ (automatic synthesis, see next slides)

• Check Cr ⇒ Φr hold on reachable states in P
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Synthesis of Valid Certificates

• Valid certificate Cπ obtained automatically using deduction:

. Start with base-for-deduction that gives sufficient/necessary for ground
atom p(ū) to hold after ground action a(ō) is applied in state s

. Lift: Use induction on FO-formulas defining features f in rule r to obtain
sufficient/necessary conditions for value change of f across an a-transition
that is compatible with Er

. Combine lifted formulas with preconditions of concrete actions

• Example: f(s) = |C(s)| decrements across (s, a, s′) for C = {ō : Ψ(ō)} if

C(s′) ( C(s) if

SdecC (z̄) = ∀x̄
(
Na
C(z̄, x̄)⇒ Ψ(x̄)

)
∧ ∃x̄

(
Ψ(x̄) ∧ ¬Na

C(z̄, x̄)
)

where Na
C(z̄, x̄) is necessary condition for x̄ to be in C(res(s, a(z̄)))
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Example: clear(X) on Blocks with 3 Schemas (No Hand)

• Schemas: a1=Newtower(z1, z2), a2=Move(z3, z4, z5), and a3=Stack(z6, z7)

• Generalized policy π with single rule {n> 0} 7→ {n↓} where n = |∃x(on+(x,X))|

• Certificate Cπ = {Φ = ∃z̄
(∨

a∈D Ψa(z̄)
)
} is singleton as there is single rule in π:

Ψ
a1 = Pre(a1) ∧ on∗(z2,A) ∧ ∀y

(
on(z1, y) ∧ on∗(y,A)⇒ y = z2

)
Ψ
a2 = Pre(a2) ∧ on+

(z3,A) ∧ ¬on∗(z5,A) ∧ ∀y
(
on(z3, y) ∧ on∗(y,A)⇒ y = z4

)
Ψ
a3 = ⊥
Φ = ∃z̄

(
Ψ
a1(z1, z2) ∨Ψ

a2(z3, z4, z5)
)

Q[Cπ] = {P : for s reachable in P , s � ∃x(on
+
(x,A))⇒ Φ }

• Interpretation:

. Ψa1 says clear(z1), on(z1, z2), on+(z1,A), and if on(z1, y) ∧ on∗(y,A), then y = z2

. Ψa2 says similar for (z3, z4) with the addition of ¬on∗(z5,A)

. Ψa3 = ⊥ since no ground instance of a3 decreases n

. Cπ valid in well-formed Blocks instances; i.e. π achieves clear(A) in any such instance

B. Bonet. https://bonetblai.github.io/reports/GENPLAN22-Talk.pdf 31



Example: Gripper with 3 Schemas

• Schemas: a1=Move(?r1, ?r2), a2=Pick(?b, ?g, ?r), and a3=Drop(?b, ?g, ?r)

• Acyclic solution for Gripper learned with small instances with 2 rooms [B. et al., 2019b]:

r1 = {¬X, b> 0, g > 0} 7→ {b↓, g↓, c↑} pick ball

r2 = {X, c> 0} 7→ {c↓, (↑g)} drop ball

r3 = {¬X, b= 0, c> 0, g > 0} 7→ {X} go to room A (ver 1)

r4 = {¬X, c> 0, g= 0} 7→ {X} go to room A (ver 2)

r5 = {X, c= 0, g > 0} 7→ {¬X} leave room A

• Defined over the features:

. X = { r : at(r) ∧ r = A } tells if robot is in room A

. b = { x : ∃r(in(x, r) ∧ r 6= A) } counts balls in room B

. c = { x : ∃g(carry(x, g)) } counts balls being held

. g = { x : free(x) } counts free grippers

• Example: Ψa2
r1

= at(?r) ∧ in(?b, ?r) ∧ free(?g) ∧ ∀x[¬carry(?b, x)]∧ ?r 6= A

• Cπ entailed by standard mutexes in Gripper: π solves any instance with 2 rooms
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Challenge: Reduction of Certificates to Initial State

• Know: how to get valid certificate Cπ = {Φr : r ∈ π} from π

• If π is acyclic, π solves all instances in Q[Cπ] (Cπ gives scope of π)

• For given P , deciding if P ∈ Q[Cπ] involves checking
∧
r∈π(Cr ⇒ Φr) on the

reachable states in P

• It’d be much nicer to do some check only on the initial state of P

• Is there (non-trivial) Λπ so that π is sound on Q[Λπ] = {P=(D, I) : I � Λπ }?

• Another recent approach for automatically checking soundness of abstractions
has been put forward [Cui et al., 2022]
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Wrap Up

• Generalized planning is the problem of obtaining policies for solving classes of
instances Q

• Language of Boolean and numerical features allows expressive and succinct
abstractions

• General policy is set of rules defined with features that filter out transitions

• Policy π solves Q if acyclic and sound on each instance P in Q

• Acyclicity established by structural properties of π

• Soundness requires reasoning with reachable states in “well-formed instances”

• Yet, given π, one can characterize subclass Q′ on which π guaranteed to succeed

• Challenges: reduce invariants to initial state, distance features, . . .
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Appendix: Synthesis of Valid Certificates

• Example: Gripper with schemas Move(r1, r2), Pick(b, g, r) and Drop(b, g, r),
and let concept C = {x : free(x)} track set of free grippers

. Feature f = |C| decreases across (s, s′) due to Pick(b,g,r) if C(s) ) C(s′) if
s � free(g) since ¬free(g) is negative effect of action; i.e.,

∀x
(
Na
C(z̄, x)⇒ Ψ(x)

)
∧ ∃x

(
Ψ(x) ∧ ¬Na

C(z̄, x)
)

≡ ∀x
(
Na
C(z̄, x)⇒ free(x)

)
∧ ∃x

(
free(x) ∧ ¬Na

C(z̄, x)
)

≡ > ∧ ∃x
(
free(x) ∧ ¬Na

C(z̄, x)
)

≡ ∃x
(
free(x) ∧ ¬([[free(x) ∈ Post ]] ∨ (free(x) ∧ [[¬free(x) /∈ Post ]]))

)

≡ ∃x
(
free(x) ∧ ¬(⊥ ∨ (free(x) ∧ (x 6= g)))

)

≡ free(g)

. Thus, f↓ across (s, s′) by Pick(b, g, r) if s � free(g) which true by prec

• General synthesis method for policies defined with FO-features [B. et al., 2019b]

B. Bonet. https://bonetblai.github.io/reports/GENPLAN22-Talk.pdf 37



Appendix: Base for Deduction

Reference Formula

BX(a, p)(z̄, x̄) [[p(x̄) ∈ Post]] ∨ (p(x̄) ∧ [[¬p(x̄) /∈ Post]])

BN (a, p∗)(z̄, x, y) p∗(x, y) ∨ ∃uv
(
[[p(u, v) ∈ Post]] ∧ p∗(x, u) ∧ p∗(v, y)

)
(action adds at most 1 p-atom)

p∗(x, y) ∨ ∃uv
(
[[p(u, v) ∈ Post]] ∧ (p∗(x, u) ∨ p∗(v, y))

)
(action adds 2 or more p-atoms)

BS(a, p∗)(z̄, x, y) (x = y) ∨
(
p∗(x, y) ∧ ∀uv([[¬p(u, v) ∈ Post]] ⇒ u = v)

)

Table 1: General base B for synthesis of any domain D. Post(a(z̄)) is abbreviated by Post. X ∈ {N, S}. There are two versions of the
necessary condition for p∗; one for actions that add at most one atom p(u, v), and the other for actions that add two or more atoms of this
form. The first version uses a conjunction, p∗(x, u) ∧ p∗(v, y), while the second version replaces it with a disjunction.

We have expressed how the value of individual features
changes in transitions. Before providing the complete synthe-
sis, we need to express the value of preconditions of abstract
actions, and how the actions affect the different features.

Preconditions of abstract actions ā on features f = fC

are expressed by Pre(ā)C = ' if there is no precondition
on f , Pre(ā)C = ∃x̄(ΨC(x̄)) if f is boolean (resp. nu-
meric) and Pre(ā) contains f (resp. f > 0), and Pre(ā)C =
∀x̄(¬ΨC(x̄)) if f is boolean (resp. numeric) and Pre(ā) con-
tains ¬f (resp. f = 0).

On the other hand, ā partitions the set of features according
to their type and the effects of ā on them:

∆inc
ā = {n ∈ F : n is numeric and n↑ ∈ Eff(ā)} ,

∆dec
ā = {n ∈ F : n is numeric and n↓ ∈ Eff(ā)} ,

∆eq
ā = {f ∈ F : f is not affected by ā} ,

∆true
ā = {f ∈ F : f is boolean and f ∈ Eff(ā)} ,

∆false
ā = {f ∈ F : f is boolean and ¬f ∈ Eff(ā)} .

Definition 8 (Synthesis). Let T be a base for synthesis for
domain D, and let Q̄ = (F,AF , IF , GF ) be a first-order ab-
straction for D. For abstract action ā in AF and schema a(z̄)
in D, we define the formula Ψa

ā(z̄) as

Pre(a(z̄)) ∧
∧

ϕ∈Chg

∧

fC∈∆ϕ
ā

Pre(ā)C ∧ SϕC(z̄)

where Chg={inc, dec, eq, true, false}. The guarantee for
Q̄ is G(T , Q̄) = {Φā = ∃z̄

(∨
a∈D Ψa

ā(z̄)
)

: ā ∈ AF }.
Theorem 9 (Main). Let T be a base for synthesis for domain
D, and let Q̄ = (F,AF , IF , GF ) be a first-order abstraction.
Then, G(T , Q̄) is a valid guarantee for D (cf. Definition 2).

We cannot yet provide a complete example because the
synthesis requires the conditions for the atoms in the language
that are given by the base for synthesis. We now provide one
such base, and apply it to the running example.

5.1 A General Base for Synthesis
The synthesis framework is parametrized by the base. Triv-
ial, non-informative, bases are easy to obtain: it is enough to
define sufficient and necessary conditions as ⊥ and ' respec-
tively for each atom in the language. We provide a simple,
general, and non-trivial base that can be used with any do-
main D. The conditions provided by two different bases, or
by the same base for different but logically equivalent formu-
las, do not need to be logically equivalent.

Table 1 shows a template for obtaining bases B(D) for any
domain D. No formula in the template involves the predicate
p+; i.e., all such predicates have been replaced by equivalent
formulas involving p∗. (Alternatively, we may define a base
that only resolves p+ and assumes that no formula contains
p∗.) Two versions for the necessary condition for p∗ are pro-
vided: one when the action a adds at most one atom p(u, v),
and the other when a adds two or more such atoms.

The formulas in Table 1 involve “bracket expressions” that
instantiate to first-order formulas. For schema a(z̄) and tuple
x̄, a bracket expression reduces to either to a logical constant
' or ⊥, or to an expression involving equality over the vari-
ables in z̄ and x̄, and the constant symbols in D. For exam-
ple, [[¬on(x, y) /∈ Post]] reduces to xy += z1z2 for the action
Newtower(z1, z2) since this action removes only on(z1, z2).

Theorem 10 (General Base). Let D be a planning domain.
The set B(D) is a base for synthesis for domain D.

Corollary 11. Let D be a domain and let Q̄ = (F,AF , IF ,
GF ) be a first-order abstraction for D. The guarantee
G(B(D), Q̄) is valid for D and, hence, Q̄ is a sound abstrac-
tion for the generalized problem Q = {P ∈ Q(D) : Q̄ ∼ P
and Pre(ā) ⇒ Φā holds in the reachable states in P}.

Example. The abstraction Q̄clear = (F,AF , IF , GF ) has a
single feature n=nC for ΨC(x)=∃y(on(x, y) ∧ on∗(y, A)).
Dclear has two schemas a1 = Newtower(z1, z2) and a2 =
Move(z3, z4, z5). The condition Sdec

C (z1, z2) for a1 is equiv-
alent (after simplification) to

on(z1,z2) ∧ on∗(z2,A) ∧ ∀y(on(z1,y)∧on∗(y,A) ⇒ y=z2).

The formula Ψa1
ā (z1, z2) is this formula conjoined with

clear(z1). For action a2, Sdec
C (z3, z4, z5) is

on+(z3, A) ∧ ¬on∗(z5, A) ∧
∀y(on(z3, y) ∧ on∗(y, A) ⇒ y = z4) .

The formula Ψa2
ā (z1, z2) is this formula conjoined with

clear(z3), on(z3, z4), and clear(z5). The guarantee for ā
is Φā = ∃z̄

(
Ψa1

ā (z1, z2) ∨ Ψa2
ā (z3, z4, z5)

)
.

By Corollary 11, Qclear is sound for instances with goal
clear(A) and reachable states that satisfy ∃x(on+(x, A)) ⇒
Φā. Namely, if there is a block above A, then either there are
blocks z1 and z2 such that z1 is clear and on z2, z2 is A or
above it, and z2 mediates any “path of blocks” from z1 to A,
or there are blocks z3, z4 and z5 such that z3 is clear, on z4,
and above A, z5 is clear and not equal to A or above it, and z4
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