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Abstract

We study the consequences on complexity that arise when
bounds on the number of branch points on the solutions for
non-deterministic planning problems are imposed as well as
when modal formulae are introduced into the description lan-
guage. New planning tasks, such as whether there exists a
plan with at mostt branch points for a fully (or partially)
observable non-deterministic domain, and whether there ex-
ists a no-branch (a.k.a. conformant) plan for partially observ-
able domains, are introduced and their complexity analyzed.
Among other things, we show that deciding the existence
of a conformant plan for partially observable domains with
modal formulae is 2EXPSPACE-complete, and that the prob-
lem of deciding the existence of plans with bounded branch-
ing, for fully or partially observable contingent domains,
has the same complexity of the conformant task. These re-
sults generalize previous results on the complexity of non-
deterministic planning and fill a slot that has gone unnoticed
in non-deterministic planning, that of conformant planning
for partially observable domains.

Introduction
Consider the game of Mastermind played by a codemaker

and a codebreaker. The game starts with the codemaker tha
picks a secret code, a sequence of 4 colors from 6 available
colors. The task of the codebreaker is to reveal the secret
code by questioning the codemaker and evaluating his an-

swers. Each question has the form afieessa sequence of
4 colors, that is answered by the codemaker with two pieces
of information: the first is the number of exact matches in

such that internal nodes, that represent sets of possible se-
cret codes and are labeled with guesses, have children nodes
that represent the sets of codes compatible with the possi-
ble answers. The leaves of the tree are nodes that represent
single secret codes. Fig. 1, for example, showsptimal
strategy for a game of Mastermind with 3 positions and 3
colors. Although the labels on the edges that tell the possi-
ble answers are not shown, the important thing to note is the
form of the solution, i.e. its tree-like structure.

The game of Mastermind can be thought as a non-
deterministic planning problem with partial observability,
and hence a solution can be obtained with an appropriate
plannert Indeed, subsets of possible states (secret codes
in Mastermind) are calletielief statesand solutions like
Fig. 1 are called contingent plans in belief space or contin-
gent plans with partial observability. In general,bifs a
belief state in the solution graph,an operator applicable
in b, andzy, ..., z, the collection of possible observations
obtained after applying in b, then the children ob in the
solution graph aré?', ..., b2~ whereb? is the belief state
that results of applying in b and observing;.

An interesting variation of Mastermind, which has be-
come known asstatic Mastermind, was introduced by
(Chvatal 1983). In this variation, the codebreaker is asked

%o give ahead a complete sequence of guesses such that the

secret code can be determined from the answers upon such
guesses. For example, for a game with 3 positions and 3
colors, the sequence

gues$2,0,0) , gues$2,1,0) , gues$2,2,1). (1)
is guaranteed to succeed independently of the chosen secret

the guess, i.e. the number of right colors in righ_t positions, code, and its length is minimum among all such sequences.
and the second is the number of near matches in the guess, \ye call a solution like Eq. 1 eonformant plarfor a non-

i.e. the number of right colors in wrong positions. To be
precise, if(x, xq, x3, x4) and{y1, y2, ys, y4) are the secret

deterministic planning problem with partial observability.
Conformant planning has been studied before in the context

code and guess respectively, the codemaker's answer is thegt hon-deterministic planning with full observability (Gold-

number of timese; = y; for 1 < ¢ < 4, and the number of
times thatr; = y;, for 1 <4 < 4 and somg # i.

man & Boddy 1996; Smith & Weld 1998), yet its general
treatment in the context of partial observability is novel to

Since the game proceeds in guess-answer stages, eachhe pest of our knowledge.

subsequent guess depends on the previous sequence of From the example, it is clear that the potential benefits
guesses and answers, i.e. the information acquired up to thatof a4 conformant plan over a contingent plan are its simplic-
moment. A winning strategy can be represented as a tree jty of execution and storage. A conformant plan is a linear

L¥et, its formalization requires modal formulae in order to de-
fine the goal (see below).

Copyright © 2006, American Association for Artificial Intelli-
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complete, and deciding if a planning task with full observ-

[]GOAL

oA ability has a conformant plan or a plan with at mediranch
[eoa GoAL points is EXPSPACE-complefe.We also study the com-
quess(0,1,0) [Jooat plexity of restricted classes of problems as whether there are

plans of polynomial length for fully observable problems,
and whether there are plans for partially observable prob-
lems without modal formulae. In the latter case, for exam-
ple, we show that the complexity of the task decreases from
2EXPSPACE to EXPSPACE.

GOAL These results extend the current knowledge on the com-
plexity of non-deterministic planning in two directions: by
conL studying novel plan-existence decision problems, and by

considering richer representation languages.
The paper is organized as follows. We first define the
planning formalism and the different decisions problems,
and give a brief background on complexity theory. Then,
algorithms for conformant and bounded-branching planning
are given to establish upper bounds on the complexity of
Figure 1: Optimal contingent plan for Mastermind of 3 pegs Such tasks. The lower bounds on complexity, i.e. hardness
and 3 colors. results, are shown using ideas and techniques from (Haslum
& Jonsson 1999) reviewed in a section on regular expres-
sions and automata. Then, we show how to compactly rep-
sequence of operators that can be applied effortless by anresent automata with belief states and give the lower bounds.
execution unit and, at the same time, is easier to store and in The paper ends with a section devoted to special cases of de-
some cases more succinct than contingent plans. cision problems, and with a discussion on future work, open
We can think of Fig. 1 and Eq. 1 as the extreme points problems and conclusions.
of a discrete yet infinite range of solution forms. In one ex-
treme, Eq. 1 is a solution with no branch points whatsoever Planning Problems, Solutions and Modalities
while Fig. 1 is a solution with an unrestricted number of \we deal with planning problems of the forn? =

branch points, that happens to be 2 in the example. Thus, (p 1, G, 0, Z) where D is a set of propositional symbols
in the general case, it is reasonable to ask whether there is (propositions),] andG are propositional formulae describ-
a solution with at most 1 branch point, a solution with at jng the initial and goal situations; is a set of operators,
most 2 branch points, and so on. Note however that certain andz C D is the subset of observable variables. Operators
planning tasks might not admit a particular solution form, or - are pairs(c, ¢) wherec, called the precondition of the oper-
none altogether. A similar situation arises in planning with  ator, is a propositional formula ands an effect. We allow

full observability where some tasks have contingent plans cgonditional and non-deterministic effects, defined as:
but no conformant ones.

Meuleau and Smith (2003) consider the case of bounded LT (the null effect) is an effect,
branching for non-deterministic problems with full observ- 2. p and—p are effects fop € D,
ability. This seems to be the first explicit treatment of 3. ifes, ..., e, are effects, so they afe; A- - - Ae,,) (paral-
the problem in the planning community. They use a for- lel effect) and(e; @ - - - @ e,,) (non-deterministic effect),
malization based on Partially Observable Markov Decision 4. if cis a propositional formula oved ande an effect, then
Processes (POMDPs) for computing plans with bounded (¢ > ¢) is an effect (conditional).
branching. Although Meuleau and Smith focus in com-
puting plans as opposed to decide plan existence, their
technique might not be the most appropriate since solving _ . . :
POMDPs requires double exponential time while the exis- Ln i'glesstite.c A:ngpiirzast%h—cécs’,(ee)ﬂl]se argzlllﬁfgfolnn :tiite
tence of plans with bounded branching for fully observable et .
problems can be decided in exponential space. Res(o,s) = Appl(Eff (e, s), s) whereEff (¢, s) is the set of

In this paper, we study the task of deciding the existence €ffectsinduced by ons, andAppl(E, s) is the application
of plans with a bounded number of branch points in the con- ©f the effects in& overs. If the operator is not applicable
text of non-deterministic planning with either partial or full ~ the resultis undefined. The sff (¢, s) is defined as:
observability. We provide complexity results for such tasks 1. if e = T, thenEff (e, s) = {0},
as well as decision algorithms. Additionally, we consider 2. if ¢ = | for literal I, thenEff (e, s) = {{I}},
planning languages extended with modalities and the ef- 3 ., _ (e1 A+ Aen), thenEff (e, s) = (U E; : E; €
fects of such modalities on the complexity of decision prob- Eff (e:,5)} ' ’ =
lems. As it will be shown, deciding if a planning task with e
partial observability and modal formulae has a conformant 2The EXPSPACE-completeness of conformant planning for
plan or a plan with at mogt-branch points is 2EXPSPACE-  fully observable problems is from (Haslum & Jonsson 1999).

States are valuations for all propositions/in and are usu-
ally described by the subset of propositions that hold true



4. ife=(e1® - -Dey), thenEff(e,s) = U, Eff (i, s),
5. ife = (c>¢'), thenEff(e,s) = Eff (¢/,s) if s = cand
Eff (e,s) = {0} otherwise.

The application of effects is defined as:
Appl(E, s) Y {eUs e € E,s" =5\ Upeelp, p}}-

When there are no conditional neither non-deterministic
effects, andl determines a unique statd} is an ADL
planning problem (Pednault 1989). Further,dfand all
preconditions are conjunctions of positive literal?,is a
STRIPS planning problem (Fikes & Nilsson 1971). If the
set of observables equal3, P is a fully observable non-
deterministic planning problem which can be thought as a
non-deterministic Markov Decision Process (MDP) (Puter-
man 1994; Bertsekas 1995). If a solution with no branch
points is sought for a fully observable non-deterministic
planning problem, we call problem a conformant planning
problem with full observability (Goldman & Boddy 1996;
Smith & Weld 1998} If Z # D thenP is a contingent plan-
ning problem which can be thought as a non-deterministic
POMDP (Kaelbling, Littman, & Cassandra 1999).

The form of valid plans vary with the nature of the prob-
lem. For ADL and conformant planning problems with full
observability, a plan is a linear sequence of operators that
achieves the goal no matter what is the initial state and the
non-determinism involved, and hence plans can be recov-
ered by search in state space for ADL problems (McDer-
mott 1996; Bonet & Geffner 2001; Hoffmann & Nebel 2001)
or search in belief space for conformant problems (Bonet
& Geffner 2000; Rintanen 2004b). For fully observable
or contingent problems, valid plans are functions that map
states into operators for MDPs, and belief states into op-
erators for POMDPs. In these cases, a valid plan can be
recovered through different means: dynamic programming
over state space or belief space (Puterman 1994; Bertseka
1995; Sondik 1978; Cassandra, Littman, & Kaelbling 1994),
AND/OR search in state or belief space (Hansen & Zilber-
stein 2001; Bonet & Geffner 2003),and other techniques as
well, e.g. (Majercik & Littman 1998).

We are interested in checking whether there exists a valid
plan for an input planning problen?, the so-called plan-
existence decision problem. Since different subclasses of
planning problems have different properties, it is better to
divide the general plan-existence task into subtasks. Thus,
there are decision problems for ADL (or STRIPS) planning,
for conformant planning, and so on.

In the rest of this section, we give formal definitions
for belief states, contingent and conformant plans, and the
propositional modal logic to be used. The plan existence
problems together with a brief summary of complexity the-
ory are presented in the next section.

3Traditionally, conformant planning problems are associated
with problems with null observability, i.eZ = (). We think how-
ever that ‘conformance’ is a property of the solutions (plans) and
not of the planning problem itself. As we will see, this difference
only surfaces when conformant plans for partially observable prob-
lems with modal formulae are required.

Belief States and Plans

A belief state is a subset of states that represent a possible
situation at a given moment. b denotes a belief state, an
operatoro = {c, e) is said to be applicable ihif it's appli-

cable in alls € b. The result of applying in b is the belief
stateb, &' Res(o,b) & UsepRes(o,s). A belief stateb is

said to be a goal belief if every stateliis a goal state.

A sequence of operatofsy, . .., 0,) is said to be appli-

cable in beliefb, if o is applicable inby, and if b; 1 =

Res(0;,b;) then o;,1 is applicable inb;; for all 0 <
i < n. The result of applying such sequencebt is

Res({0g,.-.,0n),bo) def brt1-

LetP = (D,I,G, 0O, Z) be a planning problem with full
observability, i.e. Z = D. Defineb; as the set of initial
states, i.eb; &£ {s: s = I}. A sequencer = (o1,...,0p)
is said to be aonformant plarfor P iff 7 is applicable in
br, andRes(m, by) is a goal belief.

A plan with bounded branching fd? has a tree-like struc-
ture. A conformant plan is a plan with 0 branch points or
0-plan. Ak-plan forbg, a valid plan with at mosk branch
points, is a rooted, labeled and directed ffee (V, E, r, (),
wherer € V is the root and a labeling of nodes and edges,
defined inductively as:

1. Every directed path in has lengtt< &,

2. ¢(n) is a sequence of operators forale V,

{(e) is a state foralk € F,

the sequencgr) is applicable irb,

if (r,n) € Ethenl(r,n) € Res(¢(r),by),

for everys € Res({(r),bo) there is a node,, € V such
that(r,n,) € E and{(r,n;) = s, and

for everyn such that(r,n) € E, the subtree rooted at
is a(k — 1)-plan for the belief stat¢/(r,n)}.

3.
4,
5.
6.

7.

SThat is, the labels on nodes give sequence of actions to be

applied after which the true state of the system is observed
and a branch is taken. The labels on the edges give the pos-
sible states that might arise at each branch.

Conditions 1-7 characterize valid plans with at mbst
branch points for planning problems with full observability.
However, for our hardness proofs, we require thatlans
include arexplicitbranch operatasy,..,..», such that the plan
‘branches’ on and only on them, i.e. we require

8. /(r) is non-empty with last element equal-o.c.-

Branch operators are regular operators in the sense that
might have preconditions and effects and thus are not just
a simple technical convenience. Indeed, with the proper use
of preconditions and effects, a problem specification can im-
pose constraints on when branch points are allowed.

In partially observable domains, i.&. £ D, the applica-
tion of an operatoo in a belief staté is accompanied by an
observatiore. The belief statéZ that results after applying
and obtaining is defined as the subset of states jithat are

compatible withz. The set of observatiorabtainableafter
def

applyingo in bis denoted ag, , = {z : 3(s € b,)[s = 2]}



Since there can be more than one observation after the appli-

cation of an operator, multiple observations generate multi-
ple successor beliefs and hence branching in belief space.

A conformant plan for a partially observable problem is
a sequence of operatots= (oo, ...,0,). The difference
with respect to full observability is that must map the ini-
tial belief state into aubsef goal belief states. Formally,
defineBy = {b;}, and

Bii1 def Res(o0;, B;) & {65, :b€Bi,2€ Zpo, }

if o; is applicable in each € B;. The sequence is said to
be applicable inB, if eacho; is applicable inB;. Then,=
is aconformant plarfor P if it is applicable inBy and each
b € B, 11 is a goal belief state.

Thek-plansT = (V, E, r, () for B, are defined similarly
as before:
1’. Every directed path im has length< £,
2. ¢(n) is a sequence of operators forale V,
3. L(e) is a belief state for akk € F,
4. the sequencér) is applicable inBy,
5. if (r,n) € Ethenl(r,n) € Res({(r), By),
6’. for everyb € Res({(r), By) thereis anode;, € V such
that(r,ny) € E andl(r,ny) = b,
for everyn such thatr,n) € F, the subtree rooted at
is a(k — 1)-plan for the se{¢(r,n)}, and
£(r) is non-empty with last element equal.qch-

7.
g

Propositional Modal Logic

We extend the standard propositional logic with three
modalities[d, ¢ andx. Well formed formulae are built up
recursively using the standard logic connectives [llys

O andy™* for formulap.

As usual in modal logic[J represents necessity akd
represents possibility. The is used to evaluate formulae
with respect tqrevious frames of reference

Modal formulae are interpreted (evaluated) in statbe-
longing to a belief staté. The interpretation is defined with
respect to tripletgs, b, o) wheres is a statep is a belief
state, and is asequencef states fromb used as the frames
of reference. Standard logic connectives are interpreted in
the usual way, propositions and modalities as:

. (a,b,0) Epiff s Ep,

. (8,b,0) EQOpiff (s',b,s0) E pforall s’ € b,

. (8,b,0) = Qpiff (s',b,s0) = ¢ for somes’ € b,
. (s,b,8'0) |E *iff (s',b,0) = ¢, and

. (8,0,()) & o forall o.

Observe that is used as an stack of contexts such that
and{ push contexts inte while x pops them out.

A formula ¢ holds in a states with respect tob iff
(s,b,()) E o, and it holds in belieb iff it holds in all s € b
(with respect ta).

Modal logic extends the expressivity in planning since it
allows, for example, to express preconditions or goals of the
form ‘know ¢’, which holds inb when all states ith agree
on the interpretation ap, and ‘possiblyy’ which holds inb

when some state ihsatisfiesp. Indeed, ‘knowy’ is equiv-
alent tolJy Vv O, and ‘possiblyy’ is equivalent tod .

The x is less standard but it can be related to a restricted
form of quantification when combined withl (universal)
and ¢ (existential) since: provides a “handle” into the ap-
propriate quantified variables. For example)(p* < q)
holds in belief staté iff for all s € b there iss’ € b such
that the value of in s coincides with the value af in s'.

Since a belief state is an explicit representation of models,
the truth ofb = ¢ can be decided in polynomial space|tih
and||, using a stack and definitions 11-14.

In the Mastermind game, the codebreaker’s goal is
achieved when it reaches a belief state that is a singleton;
that is, when all the propositions that denote the colors of
the code are known. Formally,d is the set of propositions
that denote the colors of the pegs, the goal in Mastermind
can be coded a4 . Up v U-p.

Complexity and Decision Problems

The reader is referred to any book on complexity theory for
basic definitions; e.g. (Papadimitriou 1993; Du & Ko 2000).
In this section, we introduce some notation and known re-
sults, and formally define the plan-existence decision tasks.
We only consider Turing Machines (TM) with semi-
infinite tape that halt on all inputs. The language accepted
by a TM M is denoted byL(M). Henceforth, DTM and
NTM will denote a deterministic and non-deterministic TM
respectively. DTIMEt(n)) (resp. NTIMEt(n))) is the
class of all languages accepted by DTMs (resp. NTMs) with
time boundt(n). DSPACHEs(n)) (resp. NSPACEs(n))) is
the class of all languages accepted by DTMs (resp. NTMs)
with space bound(n). The following complexity classes
are standard:

PSPACEZE' Uj-(DSPACHR"),
EXPTIME £ U,>(DTIME(2"")
EXPSPACE Y U;»(DSPACEH2™"),
2EXPTIME &' U2 DTIME (22" ),
2EXPSPACE Uy-oDSPACH?2?2" ).

Similarly for non-deterministic classes, e.g. NEXPTINE

ukZONTIME(T‘k). Some well-known result are that the
non-deterministic ‘space’ classes are equal to their determin-
istic counterparts, e.g. EXPSPACE NEXPSPACE, and
that the ‘space’ classes are closed under complementation,
e.g. EXPSPACE= co-EXPSPACE.

A decision problenP is a languageP is in a complexity
classC if there is a TMM € C such thatP = L(M), P
is C-hard if for every decision problen?’ € C there is a
polynomial-time many-one reductighsuch thatf (w) € P
iff w € P/, andP isC-complete iff P € C and P is C-hard.
We say that is an upper bound (resp. lower bound) on the
complexity of P if P € C (resp.P is C-hard).

Alternation

An alternating TM (ATM) is a TM whose states are par-
titioned into existential states and universal states. A TM



is an ATM where all states are existential. An ATM ac-
cepts inputv if there is amaccepting computation treeoted

at the initial configuration such that the existential config-
urations have one child, the universal configurations have
all their children, and all leaves are accepting; see (Chan-
dra, Kozen, & Stockmeyer 1981). An ATM/ is a(n)-
alternation bounded if the number of alternations, i.e. tran-

sitions between existential and universal states or vice versa,

of any computation path is bounded b{jw|) for all input
w. The following is due to to A. Borodin (Chandra, Kozen,
& Stockmeyer 1981).

Theorem 1 (Borodin) If M is ans(n)-space bounded and
a(n)-alternation bounded ATM witli(n) > logn, then
M € DSPACEa(n)s(n) + s(n)?).

Decision Problems in Planning
We consider the following decision problems:

e PLAN-STRIPS Let P be a STRIPS planning problem.
DoesP have a valid plan?

e PLAN-ADL: Let P be an ADL planning problem. Dod3
have a valid plan?

e PLAN-FO-CONT Let P be a planning problem with full
observability. Doeg” have a valid contingent plan?

e PLAN-FO-CONT#: Let P be a planning problem with full
observability. Does” have a valid contingent plan with
at mostk branch points?

e PLAN-FO-CONE Let P be a planning problem with full
observability. Does” have a valid conformant plan?

e PLAN-PO-CONT Let P be a planning problem with par-
tial observability and modalities. Doe&3 have a valid
contingent plan?

e PLAN-PO-CONT%: Let P be a planning problem with par-
tial observability and modalities. DoeB have a valid
contingent plan with at mogt branch points?

e PLAN-PO-CONE Let P be a planning problem with par-
tial observability and modalities. Doe&B have a valid
conformant plan?

PLAN-STRIPSand PLAN-ADL are known to be PSPACE-
complete (Bylander 1994)PLAN-FO-CONT is known to

be EXPTIME-complete (Rintanen 20044 AN-FO-CONF

is known to be EXPSPACE-complete (Haslum & Jonsson
1999), andPLAN-PO-CONT is known to be 2EXPTIME-
complete (Rintanen 2004a) (yet the case of modal formulae
isn't studied by Rintanen). The classesAN-FO-CONT#,
PLAN-PO-CONT% and PLAN-PO-CONFare novel; the first
decision problem will be shown to be EXPSPACE-complete
while the latter two to be 2EXPSPACE-complete.

Upper Bounds on Complexity

We begin with the easy direction, the upper bounds on
PLAN-PO-CONT with modalities, andPLAN-FO-CONT#,
PLAN-PO-CONT% andPLAN-PO-CONF

“The complexity remains EXPTIME-complete even for testing
the existence of plans that reach the goal with probabitity for
probabilistic problems with full observability (Littman 1997).

Observe that with propositional symbols, there axe2"
planning states and hence a set of states can be represented
with n2™ bits, i.e. in exponential space. Also, the truth of a
modal formula can be decided in polynomial space in the
size of a belief state. ThereforeLAN-PO-CONT can be
solved with an ATM using exponential space such that the
solution computation trees of the ATM corresponds to the
contingent plans; see proof of Theorem 3 for a hint. Since an
ATM with an exponential space bound can be simulated with
a DTM with a double exponential time bound (see Chandra,
Kozen, & Stockmeyer 1981), we have

Theorem 2 Deciding the existence of a contingent plan for
planning problems with partial observability, with or with-
out modal formulae, is in 2EXPTIME. Since completeness
hold for the restricted case of problems without modal for-
mulae, therPLAN-PO-CONTis 2EXPTIME-complete.

The membership oPLAN-FO-CONT# in EXPSPACE is
shown with an ATM that makes at madstlternations. Note
that each branch point in the plan corresponds to determin-
ing the current state of the system and then planning there-
after. Since a different plan must be found for each possible
state, the branch can be simulated with a transition from a
universal state of the ATM. A final simulation of the ATM
with a DTM shows the membership in EXPSPACE.

Theorem 3 PLAN-FO-CONTE is in EXPSPACE.

Proof: Let P = (D, I,G,0, D) be a contingent planning
problem with full observability withD| = n. The following
ATM, with < k alternations, decides if there iskgplan:

K=k

Cbi={s: I s}

. steps :=0;

. if V(s € b)[s = G] then ACCEPT;

. J-branch:chooseeither APPLY or BRANCH;
. if BRANCH then

if K = 0then REJECT;

K =K-1,;

V-branch:for eachs € bdo b := {s};
. else ifAPPLY then

if steps = 22" then REJECT;

1
2
3
4
5
6
7.
8.
9
10
11
12.  3-branch:chooseoperator(c, e) s.t.V(s € b)[s = ¢];

13.  b:=U,c, ApPU(Eff (s, €),5);
14.  steps := steps + 1,

15. end

16. goto4.

The ATM is in EXPSPACE since there are at mp&tstates
so a subset of states can be store@{n2") bits. Use now
Theorem 1 and the fact thatis constant to get the result

The same idea works for the membershipPafAN-PO-
CONT+k in 2EXPSPACE yet a subset of belief states is ex-
plicitly stored instead of a belief state, and thus the ATM
requiresO(n2"22") bits.

Theorem 4 Deciding the existence of a contingénplan
for planning problems with partial observability, with or
without modal formulae, is in 2EXPSPACE.



Figure 2: Non-deterministic Finite Automaton with Coun-
ters fora™.

Finally, the membership oPLAN-PO-CONF in 2EX-
PSPACE is easily shown with an NTM that chooses appli-
cable operators non-deterministically and keeps track of the
subset of belief states. The machine accepts if all beliefs in

denotes the sef0,...,bound.}; an ID is acceptingif its
state is final. We denote wit the set of all IDs, with
O, the set of all accepting IDs, ard,, = © \ ©,. For-
mally, an NFAC is atupld/ = (Q, %, 6, qo, F, C) where :
Qx Y — 29 is the transition function an@ is a set of tuples
(¢, bound,., entry., test., continue., exit.,loop.).  The
size of M is defined a$)|+ ) _ .~ |bound.| where|bound.|
is the number of bits in the binary representatioh®ind..

Theorem 7 (Haslum & Jonsson 1999)For any REE «
there exists an NFAG/,, of polynomial size ia| such that
we aiff we L(M,).

As is standard in NFAs, the domain of definitiondofan
be extended from : Q x & — 29 intod : © x I* — 2°©

the subset are goal and rejects when the number of steps issych thatv € L(M) iff 3(6y,w) contains an accepting 1D

bigger thare?” .

Theorem 5 Deciding the existence of a conformant plan for
planning problems with partial observability, with or with-
out modal formulae, is in 2EXPSPACE.

Following the work of Haslum and Jonsson (1999),
we use regular expressions with exponentiation and non-
deterministic finite automata with counters to establish
lower bounds on the complexity of decision problems.

Regular Expressions and Automata

A regular expression with exponentiation (REE) is built up
recursively from atomic regular expressions with the usual

concatenation, sum and Kleene star operations plus an ad-

ditional exponentiation operation of the fora¥, wheren

is a positive integewritten in binary, that denotes the lan-
guage{o; ...o, : 0; € a}. As usual, the length of a regular
expression is equal to the number of symbols in it.

Theorem 6 (Hopcroft & Ullman 1979) Let o« be an REE
and X, the alphabet ofa. Deciding if « s
EXPSPACE-hard.

wheredy £ (g0, 0, . . .,0) is theinitial ID.

Haslum and Jonsson proof’s of EXPSPACE-hardness for
conformant planning with full observability is as follows.
Given an REEqy, they construct a planning problem =
(D,1,G,0, D) that simulatesthe transition functiory of
the NFAC M,, in a way that states i corresponds to IDs
of M,, and that (non-deterministic) planning operators
correspond to transitions it,, upona € ¥ U {¢} such that

Res((0gys---»0a,),I) = (00, a1 ...ay).

Hence, ifG is defined as being in a non-accepting ID thién
has a valid plaro,,, . .., 04, ) iff a1 ...a, ¢ L(M,). This
argument shows that deciding the existence of a conformant
plan is co-EXPSPACE-hard. The result then follows with an
application of EXPSPACE= co-EXPSPACE.

Compact Representation of Counters

In this section, we show how to encode a counter of expo-
nential length with the belief states of a planning problem
with a polynomial number of propositional symbols. This
encoding is the main tool behind the 2EXPSPACE-hardness

Haslum and Jonsson use non-deterministic automata with ro0f of conformant planning for partially observable do-

counters (NFAC) to represent regular expressions with ex-
ponentiation. A NFAC is a non-deterministic finite automa-
ton augmented with a set of bounded countéts Each
counterc € C is associated with five statestry,, test.,
continue,, exit. andloop., and with a boundound,. writ-
ten in binary Initially, all counters are set to zero. Upon
visiting entry. the counter is initialized t@dound,. and a
transition is made téest.; this is the only possible transition
from entry.. In test., the machine tests > 0 and makes
a transition tacontinue,. if it holds and toexit. otherwise;
these are the only transitions framst,. and intocontinue,
andexit.. Upon visitingloop,, the machine decrements
and makes a transition test.; the only transitions téest,
are either fromentry, or loop..® Fig. 2 shows the NFAC for
a”.

Let Q be the set of states of an NFAC aRdC (@ the set
of its accepting states. An instantaneous description (ID) of
an NFAC is a tuple inQ x X.cc[bound.| where[bound,]

50Our NFACs are slightly different from Haslum and Jonsson’s
that allow for simpler proofs.

mains.

Let ¢ be a counter of exponential length with bitsfor
0 < ¢ < 2™, and consider a planning problef with n
propositional “bit markersin, ;, for 0 < k < n. The value
of counterc can be represented with the positions of the bits
setto 1, i.e. with the s€fti : ¢; = 1}. Since each position
can be encoded with bits, the value of can be represented
with the belief state

b, = {{mgk : (kth bitin [i]bit) =1}:¢ =1},

For example,{@} represents the value = 00000001,
{{meco},{mc2}} the value 18 00010010pin, and
{0, {mc,0,me1,mc2}} the valuel29 = 10000001pin. Note
however that) is represented by the empty belief state, yet
since empty beliefs are not allowed, the valueannot be
encoded. Therefore, all counter values willdiéftedby 1.

Let b. be a belief state representing countemwe will
need to test whether the valuedif equal to or greater than

®The notationk]vi stands for the integér written in binary.



1. The former holds ifb, = {0} while the latter iffb. has a
state satisfying some:. ;; these are abbreviated as

c=1": /\2:0 Mk <> VZ:() Me,k -

Similarly, we will need two operations. The first, denoted
by c + k, is to set all 1-bits in the binary expansioniofo 1.
It is implemented with the effect:

c+k : N{mc; : (ith bitin [k]pi) = 1}.

The second operation, denoted by dés to decrement the
value of the counter whenc > 1. For example, it must
change the valug2 = 01001000y, represented by

and ¢c>1 :

bro = {{mc,o, mc,l}» {mc,h mc,2}}

to the valuerl = 01000111y, represented by

b71 = {03 {mc,O}a {mc,1}7 {mc,h mc,Z}} .

That s, the sefm..o, m..1} should be replaced by the three
setsf), {m.,0} and{m.1}. The general principle here is to
replace the subset for theast significant bifthe first 1 from

right to left in the binary expansion) with the collection of

subsets that correspond to all bits of lesser significance. We
thus need a formula to identify the subset to replace and an
effect to generate the replacement subsets. It is not hard to 5
see that the subset to replace is the only one that satisfies

Oé¢e,n Where

¢c,k :
¢c,0

Indeed,J¢, ,, holds ins € biff for all s € b, eithers = s’
or there isk such that-m. ; € s, m. € s’ andm,,; € s
iff m.; € ' foralll > k.

Once the subsetto replace is identified, all replacements
can be generated by non-deterministically processing all bits
me,, as follows. Ifm.; € s, then it's cleared and all bits
mej, 0 < j < k, are flipped non-deterministically, or else
all bits m. ;, 0 < j < n, are set to zero. The decrement
effect is thus defined as

[(mc A ﬁm: k) V (Mg < m:k:) A ¢c,k’71)] )
*
C

t [(meo A=mi o)V (meo < my )]

)

dec : O¢cn >
n k—1
Dirzo [(mer > ~mep A NjZp (Mej ® ~me,j)) A
(=M > Nj—g ~me,j)] -

In the example, where = {m. o, m. 1}, the processing of
me generategm,. 1}, the processing ofn.; generate$
and{mc o}, and the processing of the other bits gener@fes
hence the effect of demn the belieb, is the beliefo;;.

As a final remark, observe that multiple counters can be
encoded simultaneously by taking the “cross-product” of the
encodings for the individual counters.

Lower Bounds on Complexity

The hardness proofs are similar to Haslum and Jonsson'’s.

However, for the case of 1-plans, observe that determining
the current planning state amounts to determining the cur-
rent ID of the automatod/,,. Thus, there is a valid 1-plan
for P iff there existsv € ¥* such that

V(0 € 6(0p,w))I(w' € T9)[0(0,w") C O,],

yet this condition is strictly weaker than# X} and thus a
naive reduction would fail in one direction.

We fix this problem by inserting effects into the branch
operators. Indeed, let be an REE with alphabéi and M
be an NFAC such that(M,) = a. As done in the proof of
Haslum and Jonsson, construct a planning probiemith
full observability such that the states 8f encode the IDs
of M the operators oP, of the formo, for a € ¥ U {e},
simulate the transitions af/ with conditional effects Ex-
tend P into P’ with a binary countebranch € {0,..., k}
and with aroy,..,,.n, Operator with preconditiobranch < k
and a single effect of increasing the valuegdinch. Since
the range obranch is bounded by a constant, the size of
Opranch 1S CONstant. The descriptiodsandG are extended
such that the unique initial state, that correspondégto
makesbranch = 0, and that the goal states are those that
correspond to non-accepting IDs althnch = k. Finally,
add the preconditiohranch = 0 to all operators, with
a € XU {e}.

We claim thatP’ has ak-plan, with exactlyk branch
points, iff & # X%*. First, assume there is a wotd =

ai...a, ¢ a,ie. 6(6y,w) C O,. Therefore, the plan
(044, - -+, 04,) is @ conformant plan foP and hence gener-

es |nP’ a set of states associated with non-accepting IDs
andbranch = 0. Extend this plan witht: applications of
Obranch 10 get ak-plan for P’.

On the other hand, assuni has ak-planT with rootr.
LetT = (o01,...,0n+k) be the sequence of operators asso-
ciated with a maximal directed path T (a trajectory in the
execution of plaril’). Sincer makesbranch = k, it con-
tainsk branch operators that must be all consecutive given
that oy,ancn, INCreases the counter and that all operatgrs
have preconditioiranch = 0. Therefore, by definition of
T, the firstn operators fromr are of the formaq, . .., a,),
with a; € ¥ U {e}, and will appear in any trajectory; i.e.
£(r) = (0ay,- - 0a,,0branch)- Since the branch operators
doesn’t change the state of the automé&fa we have that
£(r) except the lasby,.ncn IS @ plan forP and hence the
wordaj .. .a, ¢ a. We have shown

Theorem 8 Deciding the existence of a contingéaplan
for planning problems with full observability is EXPSPACE-
hard, and hence EXPSPACE-complete.

The main result of the paper is the 2EXPSPACE-hardness
of conformant planning for partially observable domains.
The proof idea is essentially the same except that we have
to deal with counters of exponential length. To understand
the proof, let’s revise the proof of Theorem 6. Given a DTM
M with an exponential space bound and a wordan REE
a = a(M,w) of polynomial length in|M| + |w| is con-
structed such that = 3% iff w ¢ L(M). A closer look
ata reveals that if\/ has a double exponential space bound
thena would be the same except that the exponents are of
exponential length (Hopcroft & Ullman 1979). Therefore,
the associated NFAC have counters of double exponential
capacity that must be encoded compactly.

Theorem 9 Deciding the existence of a conformant plan for
problems with partial observability and modal formulae is
2EXPSPACE-hard, and hence 2EXPSPACE-complete.



Proof: Let M be a DTM with a double exponential space
boundd(z) andw € ¥*. Consider the REE = a(M,w)
given in the proof of Theorem 6. The size ofis ex-
ponential yet, if the sizes of the exponents are not mea-
sured,|a| is polynomial in|M| 4 |w|. Therefore, ifM,, =
(@Q,%,9,q0, F,C) isthe NFAC associated tg, the sizgd| is
polynomial in| M| + |w| while ) __ . |bound.| is exponen-
tial. We are going to build a conformant planning problem
with partial observability of polynomial length to simulate
the NFAC. The main idea is to encode the IDs with beliefs
states.

Letn = poly(|w|) be such thatl(|w]|)
the planning problenP, = (D,I,G, O,
tional symbols:

1. machine state symbolg : ¢ € Q},
bits marker symbolém.. , : c € C,0 < k < n},

set symbolgs. . : c € C,0 <14 < [log(jw| + 1)1},
initialize symbols{u, : ¢ € C}, and

. decrement symbolgi. . : c € C,0 < k < 2|w| + 1}.

The observable symbols are the state symbolsZi.e. {q :
g € Q}. The descriptiong andG reflect the initial ID and
all non-accepting IDs respectively,

< 22" and define
Z) with proposi-

QI

def
I = qo N /\ g A\ /\ U N Me,k A Sk A _‘dc,k y
a#qo ¢,k
def
G = Vieaq\rt-

That is, I encodes the ID with statg and the value of all

counters set to 1 (which means 0 since the counters values

are shifted by 1).

Let ¢ € Q\ {entry.,teste,loop. : ¢ € C} anda €
¥ U {e}. The transitiond(q,a) is modeled with a non-
deterministic operator

def
Oq,a = <Q7 -q A @peé(q@) p> .

The transition from test. is deterministic either to
continue, or exit, whetherc > 1; i.e.
def (test., —teste A (¢ > 1> continue.) A

(c =11 exite))

The transition fromoop, is deterministic that changes state
to test. and decrements the counteii.e.

Otest..,e

Oloop. e def (loop.., —loop. A test. A deg.) .

The transition fromentry. must setc = 1 + bound,. and
change state inteest.. In general, we cannot set a counter
of double exponential capacity to an arbitrary value using a
polynomial number of operators each of polynomial length.
However, the exponents im are in{1,..., |w| + 1,2%" —

lw| —1,22" —1,2%" +1,22" + |w|} (Hopcroft & Ullman
1979), and these values can be set with polynomially long
operators. Indeed, define the entry operator as

Ocntrye,e gef (entry., mentry. A u. Ac=1)

Counters with an initial value of polynomial size, i.e.
those withl < bound. < |w|+ 1 can be set directly with
the operators
o (e, e A

@D{sc,k : (kth bit of [1 + bound.]uit) = 1}),
Oc,s &f <\/k Se,kyteste A /\}g(sc,k’ > 2Sek N (C + k))> .

The first operator creates a set in the belief state for each
1-bit in the value of the counter, and the second operator
sets the marker bits appropriately in each state. Observe that
these two operators must be executed in such order right af-
ter the application 0bey¢ry, e

Counters with an initial value of exponential size, i.e.
those withbound,. € {22 —|w|—1,2%" —1,22" +1,22" +
lw|}, are first set t@%" + |w| + 1 and then decremented
22" + |w| — bound,. times (which is a polynomial number of
decrements):

Oc,u

def
= (Ue, U A

[mcm D P{sck : (kthbitof [1 + |w|]pit) = 1}]) ,

Oc,u

def

Oc,s = <mc,n \ \/k Sc,ks dc,22"Jr|u.)\7boundC A
Ni(See > 2see A e+ K)))
def
Oc,dy, = <dc,ka _‘dc,k A dc,kfl A deQ> )

def
Oc,dy = <dc,07 _‘dc,(] A teStc> .

For example, to set = 22" — ||, the counter is set to
1 + 22" 4 |w| and then decrementetkw| + 1 times. The
representation is faithful in the sense tifathas a valid con-
formant plan iffa # 2% . O

We remark that the simulation of the NFAC works only
for certain REEs and won't work in general; the problem
being the initialization of counters’ values. Whether there
is a reduction from the problem = X}, for general REEs
with exponents of exponential length to conformant plan-
ning problems with partial observability is an open problem.

Finally, combining the simulation of counters of exponen-
tial length with branch operators, we have

Theorem 10 Deciding the existence of a contingénplan

for planning problems with partial observability and modal
formulae is 2EXPSPACE-hard, and hence 2EXPSPACE-
complete.

Special Cases

Turner (2002) studies the complexity of deciding the exis-
tence of plans of polynomial length using quantified boolean
formulae (QBFs). He shows that deciding the existence of
conformant plans of polynomial length for fully observable

which sets the counter to 1 and changes state to a temporaryproblems is-%-complete, and that deciding the existence of

stateu, from which the counter is initialized to the value
1 + bound...

contingent plans of polynomial length is PSPACE-complete
for problems with either full or partial observability.



We take a similar approach here and study the complex-

ity of deciding the existence of plans of polynomial lergth
for fully observable problems, and the existence of plans for
partially observable domains without modalities.

Let us consider a planning problei with full observ-
ability, a fixed planning horizom, and the codification of
P into propositional logic. The codification uses symbols
o; for operators and; for fluents tagged with time indices
such thab; (resp. f;) stands for an operator (resp. fluent) at
time0 < ¢ < n. For lack of space, we only present the main
results without proofs.

Turner shows thaP has a conformant plan of lengthiff
a QBF of the form

Jog - 3on1Vfo -V u3fi - 3f 0 (2)

is valid. Therefore, if2 is polynomial then (2) is irt%. The
existence of &-plan with branch points at timés < ¢; <
ty < --- <t < n can be verified with a QBF of the form

Jog - - Elotl*lvfo e 'Vftl
Jog, -+ For, 1V frgey Vi, o
Jog, - Fon_ 1V froey, -V Ifo - 3fL 0 (3)

If n is polynomial, then (3) is iy 3. Since the positions

of the branch points can be chosen non-deterministically,
the decision problem can be solved with an (oracle) TM in
NP(ngJrs) = ng+4-

Theorem 11 Deciding the existence of a contingénplan

of polynomial length for planning problems with full observ-
ability isin %%, .

The other special case considered is that of partially ob-
servable problems without modalities. Let's begin with the
existence of conformant plans. LBtbe a subset of belief

states, as defined in the Sect. on Belief States and Plans, an

o an operator. By definitiory is applicable onB if it is ap-
plicable in allb € B. Therefore, since contains no modal-
ities, o is applicable onB if it is applicable on all states in
UbeB b. Similarly, B is a goal set if alb € B is a goal
belief, and thus, since there are no modalitiBsis a goal
setif(J,. 5 bis a goal belief. In conclusion, the existence of
a conformant plan for problems without modalities can be

established by considering belief states instead of subsets of

belief state$.

Theorem 12 Deciding the existence of a conformant plan
for planning problems with partial observability without
modal formulae is EXPSPACE-complete. Deciding the ex-
istence of a conformant plan of polynomial length for plan-
ning problems with partial observability without modal for-
mulae isX%-complete.

The case ofk-plans for partially observable problems
without modalities is similar to the case of full observabil-
ity. If the set of fluentsf is partitioned into the observables

A E-plan for problemP has polynomial length if there is a
polynomialp such that every path in the plan has lengdtlp(| P|);
i.e. if k is polynomially bounded.

8A similar result appears in (Giacomo & Vardi 1999).

f# and the non-observablgd’, the existence of A-plan of
lengthn can be checked with a QBF of the form

300...30t171vf02...vft21
Joy, ...gotrlvflzﬂl ---Vfé e (4)

Joy, - Fon-1V frae, -V VS VYIS TS0
where0 < t; <ty < --- < t} < n are the branch points.

Theorem 13 Deciding the existence of a contingénplan
of polynomial length for planning problems with partial ob-
servability without modal formulae is |7, _ ,.

Discussion

We have introduced novel decision tasks for checking
the existence of conformant plans for partially observ-
able domains, and the existence plans of bounded branch-
ing for problem with either full or partial observabil-
ity. The complexity of the former task is shown to be
2EXPSPACE-complete for problems with modal formulae
and EXPSPACE-complete for problems without modal for-
mulae. The complexity of deciding the existence of plans
with a bounded number of branch points is EXPSPACE-
complete for fully observable domains, and 2EXPSPACE-
complete for partially observable domains. If plans of poly-
nomial length are sought, then all decision problems can be
reduced to QBFs and hence are in PSPACE.

The 2EXPSPACE-hardness for conformant tasks is shown
with a reduction from a subclass of the decision problem of
checking the totality of regular expression with exponenti-
ation. Rintanen (2004b) makes a direct simulation of TMs
with an exponential space bound to show the EXPSPACE-
hardness of conformant planning for fully observable prob-
lems. A similar simulation of TMs with a double exponen-
tial space bound is also possible with partially observable

dponformant planning problems.

Our hardness results for plans of bounded branching make
the assumption that a branch operator appears explicitly in
the plans. An open problem is to remove this assumption in
the proofs.

We haven’t addressed the task of computing plans and/or
optimal plans. Since the size of such plans can be fairly
large, e.qg. triple exponential for the case of conformant plans
with partial observability, the complexity of such tasks will
increase.

In the future, we expect to develop heuristic search meth-
ods for computing plans for some of the tasks. In particular,
we are interested in finding plans of bounded branching for
fully observable domains and conformant plans for partially
observable domains. We think that AND/OR search algo-
rithm in belief space might be good candidates for the for-
mer task, while an A* algorithm in the space of subsets of
belief states might be good candidate for the latter task. Ad-
ditionally, algorithms based on QBFs should be good candi-
dates for computing polynomially long plans.
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