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Abstract

We study the consequences on complexity that arise when
bounds on the number of branch points on the solutions for
non-deterministic planning problems are imposed as well as
when modal formulae are introduced into the description lan-
guage. New planning tasks, such as whether there exists a
plan with at mostk branch points for a fully (or partially)
observable non-deterministic domain, and whether there ex-
ists a no-branch (a.k.a. conformant) plan for partially observ-
able domains, are introduced and their complexity analyzed.
Among other things, we show that deciding the existence
of a conformant plan for partially observable domains with
modal formulae is 2EXPSPACE-complete, and that the prob-
lem of deciding the existence of plans with bounded branch-
ing, for fully or partially observable contingent domains,
has the same complexity of the conformant task. These re-
sults generalize previous results on the complexity of non-
deterministic planning and fill a slot that has gone unnoticed
in non-deterministic planning, that of conformant planning
for partially observable domains.

Introduction
Consider the game of Mastermind played by a codemaker
and a codebreaker. The game starts with the codemaker that
picks a secret code, a sequence of 4 colors from 6 available
colors. The task of the codebreaker is to reveal the secret
code by questioning the codemaker and evaluating his an-
swers. Each question has the form of aguess, a sequence of
4 colors, that is answered by the codemaker with two pieces
of information: the first is the number of exact matches in
the guess, i.e. the number of right colors in right positions,
and the second is the number of near matches in the guess,
i.e. the number of right colors in wrong positions. To be
precise, if〈x1, x2, x3, x4〉 and〈y1, y2, y3, y4〉 are the secret
code and guess respectively, the codemaker’s answer is the
number of timesxi = yi for 1 ≤ i ≤ 4, and the number of
times thatxi = yj , for 1 ≤ i ≤ 4 and somej 6= i.

Since the game proceeds in guess-answer stages, each
subsequent guess depends on the previous sequence of
guesses and answers, i.e. the information acquired up to that
moment. A winning strategy can be represented as a tree
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such that internal nodes, that represent sets of possible se-
cret codes and are labeled with guesses, have children nodes
that represent the sets of codes compatible with the possi-
ble answers. The leaves of the tree are nodes that represent
single secret codes. Fig. 1, for example, shows anoptimal
strategy for a game of Mastermind with 3 positions and 3
colors. Although the labels on the edges that tell the possi-
ble answers are not shown, the important thing to note is the
formof the solution, i.e. its tree-like structure.

The game of Mastermind can be thought as a non-
deterministic planning problem with partial observability,
and hence a solution can be obtained with an appropriate
planner.1 Indeed, subsets of possible states (secret codes
in Mastermind) are calledbelief states, and solutions like
Fig. 1 are called contingent plans in belief space or contin-
gent plans with partial observability. In general, ifb is a
belief state in the solution graph,o an operator applicable
in b, andz1, . . . , zn the collection of possible observations
obtained after applyingo in b, then the children ofb in the
solution graph arebz1

o , . . . , bzn
o wherebzi

o is the belief state
that results of applyingo in b and observingzi.

An interesting variation of Mastermind, which has be-
come known asstatic Mastermind, was introduced by
(Chvatal 1983). In this variation, the codebreaker is asked
to give ahead a complete sequence of guesses such that the
secret code can be determined from the answers upon such
guesses. For example, for a game with 3 positions and 3
colors, the sequence

guess(2, 0, 0) , guess(2, 1, 0) , guess(2, 2, 1) . (1)

is guaranteed to succeed independently of the chosen secret
code, and its length is minimum among all such sequences.

We call a solution like Eq. 1 aconformant planfor a non-
deterministic planning problem with partial observability.
Conformant planning has been studied before in the context
of non-deterministic planning with full observability (Gold-
man & Boddy 1996; Smith & Weld 1998), yet its general
treatment in the context of partial observability is novel to
the best of our knowledge.

From the example, it is clear that the potential benefits
of a conformant plan over a contingent plan are its simplic-
ity of execution and storage. A conformant plan is a linear

1Yet, its formalization requires modal formulae in order to de-
fine the goal (see below).
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Figure 1: Optimal contingent plan for Mastermind of 3 pegs
and 3 colors.

sequence of operators that can be applied effortless by an
execution unit and, at the same time, is easier to store and in
some cases more succinct than contingent plans.

We can think of Fig. 1 and Eq. 1 as the extreme points
of a discrete yet infinite range of solution forms. In one ex-
treme, Eq. 1 is a solution with no branch points whatsoever
while Fig. 1 is a solution with an unrestricted number of
branch points, that happens to be 2 in the example. Thus,
in the general case, it is reasonable to ask whether there is
a solution with at most 1 branch point, a solution with at
most 2 branch points, and so on. Note however that certain
planning tasks might not admit a particular solution form, or
none altogether. A similar situation arises in planning with
full observability where some tasks have contingent plans
but no conformant ones.

Meuleau and Smith (2003) consider the case of bounded
branching for non-deterministic problems with full observ-
ability. This seems to be the first explicit treatment of
the problem in the planning community. They use a for-
malization based on Partially Observable Markov Decision
Processes (POMDPs) for computing plans with bounded
branching. Although Meuleau and Smith focus in com-
puting plans as opposed to decide plan existence, their
technique might not be the most appropriate since solving
POMDPs requires double exponential time while the exis-
tence of plans with bounded branching for fully observable
problems can be decided in exponential space.

In this paper, we study the task of deciding the existence
of plans with a bounded number of branch points in the con-
text of non-deterministic planning with either partial or full
observability. We provide complexity results for such tasks
as well as decision algorithms. Additionally, we consider
planning languages extended with modalities and the ef-
fects of such modalities on the complexity of decision prob-
lems. As it will be shown, deciding if a planning task with
partial observability and modal formulae has a conformant
plan or a plan with at mostk-branch points is 2EXPSPACE-

complete, and deciding if a planning task with full observ-
ability has a conformant plan or a plan with at mostk-branch
points is EXPSPACE-complete.2 We also study the com-
plexity of restricted classes of problems as whether there are
plans of polynomial length for fully observable problems,
and whether there are plans for partially observable prob-
lems without modal formulae. In the latter case, for exam-
ple, we show that the complexity of the task decreases from
2EXPSPACE to EXPSPACE.

These results extend the current knowledge on the com-
plexity of non-deterministic planning in two directions: by
studying novel plan-existence decision problems, and by
considering richer representation languages.

The paper is organized as follows. We first define the
planning formalism and the different decisions problems,
and give a brief background on complexity theory. Then,
algorithms for conformant and bounded-branching planning
are given to establish upper bounds on the complexity of
such tasks. The lower bounds on complexity, i.e. hardness
results, are shown using ideas and techniques from (Haslum
& Jonsson 1999) reviewed in a section on regular expres-
sions and automata. Then, we show how to compactly rep-
resent automata with belief states and give the lower bounds.
The paper ends with a section devoted to special cases of de-
cision problems, and with a discussion on future work, open
problems and conclusions.

Planning Problems, Solutions and Modalities
We deal with planning problems of the formP =
〈D, I, G,O,Z〉 whereD is a set of propositional symbols
(propositions),I andG are propositional formulae describ-
ing the initial and goal situations,O is a set of operators,
andZ ⊆ D is the subset of observable variables. Operators
are pairs〈c, e〉 wherec, called the precondition of the oper-
ator, is a propositional formula ande is an effect. We allow
conditional and non-deterministic effects, defined as:

1. > (the null effect) is an effect,
2. p and¬p are effects forp ∈ D,
3. if e1, . . . , en are effects, so they are(e1∧· · ·∧en) (paral-

lel effect) and(e1 ⊕ · · · ⊕ en) (non-deterministic effect),
4. if c is a propositional formula overD ande an effect, then

(c B e) is an effect (conditional).

States are valuations for all propositions inD, and are usu-
ally described by the subset of propositions that hold true
in the state. An operatoro = 〈c, e〉 is applicable in state
s iff s |= c, and in such case the result ofo on s is

Res(o, s) def= Appl(Eff (e, s), s) whereEff (e, s) is the set of
effectsinduced bye on s, andAppl(E, s) is the application
of the effects inE over s. If the operator is not applicable
the result is undefined. The setEff (e, s) is defined as:

1. if e = >, thenEff (e, s) = {∅},
2. if e = l for literal l, thenEff (e, s) = {{l}},
3. if e = (e1 ∧ · · · ∧ en), thenEff (e, s) = {∪n

i=1Ei : Ei ∈
Eff (ei, s)},

2The EXPSPACE-completeness of conformant planning for
fully observable problems is from (Haslum & Jonsson 1999).



4. if e = (e1⊕· · ·⊕ en), thenEff (e, s) =
⋃n

i=1 Eff (ei, s),
5. if e = (c B e′), thenEff (e, s) = Eff (e′, s) if s |= c and

Eff (e, s) = {∅} otherwise.

The application of effects is defined as:

Appl(E, s) def= {e ∪ s′ : e ∈ E, s′ = s \ ∪p∈e{p,¬p}} .

When there are no conditional neither non-deterministic
effects, andI determines a unique state,P is an ADL
planning problem (Pednault 1989). Further, ifG and all
preconditions are conjunctions of positive literals,P is a
STRIPS planning problem (Fikes & Nilsson 1971). If the
set of observables equalsD, P is a fully observable non-
deterministic planning problem which can be thought as a
non-deterministic Markov Decision Process (MDP) (Puter-
man 1994; Bertsekas 1995). If a solution with no branch
points is sought for a fully observable non-deterministic
planning problem, we call problem a conformant planning
problem with full observability (Goldman & Boddy 1996;
Smith & Weld 1998).3 If Z 6= D thenP is a contingent plan-
ning problem which can be thought as a non-deterministic
POMDP (Kaelbling, Littman, & Cassandra 1999).

The form of valid plans vary with the nature of the prob-
lem. For ADL and conformant planning problems with full
observability, a plan is a linear sequence of operators that
achieves the goal no matter what is the initial state and the
non-determinism involved, and hence plans can be recov-
ered by search in state space for ADL problems (McDer-
mott 1996; Bonet & Geffner 2001; Hoffmann & Nebel 2001)
or search in belief space for conformant problems (Bonet
& Geffner 2000; Rintanen 2004b). For fully observable
or contingent problems, valid plans are functions that map
states into operators for MDPs, and belief states into op-
erators for POMDPs. In these cases, a valid plan can be
recovered through different means: dynamic programming
over state space or belief space (Puterman 1994; Bertsekas
1995; Sondik 1978; Cassandra, Littman, & Kaelbling 1994),
AND/OR search in state or belief space (Hansen & Zilber-
stein 2001; Bonet & Geffner 2003),and other techniques as
well, e.g. (Majercik & Littman 1998).

We are interested in checking whether there exists a valid
plan for an input planning problemP , the so-called plan-
existence decision problem. Since different subclasses of
planning problems have different properties, it is better to
divide the general plan-existence task into subtasks. Thus,
there are decision problems for ADL (or STRIPS) planning,
for conformant planning, and so on.

In the rest of this section, we give formal definitions
for belief states, contingent and conformant plans, and the
propositional modal logic to be used. The plan existence
problems together with a brief summary of complexity the-
ory are presented in the next section.

3Traditionally, conformant planning problems are associated
with problems with null observability, i.e.Z = ∅. We think how-
ever that ‘conformance’ is a property of the solutions (plans) and
not of the planning problem itself. As we will see, this difference
only surfaces when conformant plans for partially observable prob-
lems with modal formulae are required.

Belief States and Plans

A belief state is a subset of states that represent a possible
situation at a given moment. Ifb denotes a belief state, an
operatoro = 〈c, e〉 is said to be applicable inb if it’s appli-
cable in alls ∈ b. The result of applyingo in b is the belief
statebo

def= Res(o, b) def= ∪s∈bRes(o, s). A belief stateb is
said to be a goal belief if every state inb is a goal state.

A sequence of operators〈o0, . . . , on〉 is said to be appli-

cable in beliefb0 if o0 is applicable inb0, and if bi+1
def=

Res(oi, bi) then oi+1 is applicable inbi+1 for all 0 ≤
i < n. The result of applying such sequence inb0 is
Res(〈o0, . . . , on〉, b0)

def= bn+1.
Let P = 〈D, I, G,O,Z〉 be a planning problem with full

observability, i.e. Z = D. DefinebI as the set of initial
states, i.e.bI

def= {s : s |= I}. A sequenceπ = 〈o1, . . . , on〉
is said to be aconformant planfor P iff π is applicable in
bI , andRes(π, bI) is a goal belief.

A plan with bounded branching forP has a tree-like struc-
ture. A conformant plan is a plan with 0 branch points or
0-plan. Ak-plan forb0, a valid plan with at mostk branch
points, is a rooted, labeled and directed treeT = 〈V,E, r, `〉,
wherer ∈ V is the root and̀ a labeling of nodes and edges,
defined inductively as:

1. Every directed path inπ has length≤ k,
2. `(n) is a sequence of operators for alln ∈ V ,
3. `(e) is a state for alle ∈ E,
4. the sequencè(r) is applicable inb0,
5. if (r, n) ∈ E then`(r, n) ∈ Res(`(r), b0),
6. for everys ∈ Res(`(r), b0) there is a nodens ∈ V such

that(r, ns) ∈ E and`(r, ns) = s, and
7. for everyn such that(r, n) ∈ E, the subtree rooted atn

is a(k − 1)-plan for the belief state{`(r, n)}.

That is, the labels on nodes give sequence of actions to be
applied after which the true state of the system is observed
and a branch is taken. The labels on the edges give the pos-
sible states that might arise at each branch.

Conditions 1–7 characterize valid plans with at mostk
branch points for planning problems with full observability.
However, for our hardness proofs, we require thatk-plans
include anexplicitbranch operatorobranch such that the plan
‘branches’ on and only on them, i.e. we require

8. `(r) is non-empty with last element equalobranch.

Branch operators are regular operators in the sense that
might have preconditions and effects and thus are not just
a simple technical convenience. Indeed, with the proper use
of preconditions and effects, a problem specification can im-
pose constraints on when branch points are allowed.

In partially observable domains, i.e.Z 6= D, the applica-
tion of an operatoro in a belief stateb is accompanied by an
observationz. The belief statebz

o that results after applyingo
and obtainingz is defined as the subset of states inbo that are
compatible withz. The set of observationsobtainableafter
applyingo in b is denoted asZb,o

def= {z : ∃(s ∈ bo)[s |= z]}.



Since there can be more than one observation after the appli-
cation of an operator, multiple observations generate multi-
ple successor beliefs and hence branching in belief space.

A conformant plan for a partially observable problem is
a sequence of operatorsπ = 〈o0, . . . , on〉. The difference
with respect to full observability is thatπ must map the ini-
tial belief state into asubsetof goal belief states. Formally,
defineB0 = {bI}, and

Bi+1
def= Res(oi, Bi)

def= {bz
oi

: b ∈ Bi, z ∈ Zb,oi
}

if oi is applicable in eachb ∈ Bi. The sequenceπ is said to
be applicable inB0 if eachoi is applicable inBi. Then,π
is aconformant planfor P if it is applicable inB0 and each
b ∈ Bn+1 is a goal belief state.

Thek-plansT = 〈V,E, r, `〉 for B0 are defined similarly
as before:

1′. Every directed path inπ has length≤ k,
2′. `(n) is a sequence of operators for alln ∈ V ,
3′. `(e) is a belief state for alle ∈ E,
4′. the sequencè(r) is applicable inB0,
5′. if (r, n) ∈ E then`(r, n) ∈ Res(`(r), B0),
6′. for everyb ∈ Res(`(r), B0) there is a nodenb ∈ V such

that(r, nb) ∈ E and`(r, nb) = b,
7′. for everyn such that(r, n) ∈ E, the subtree rooted atn

is a(k − 1)-plan for the set{`(r, n)}, and
8′. `(r) is non-empty with last element equalobranch.

Propositional Modal Logic
We extend the standard propositional logic with three
modalities�, ♦ and∗. Well formed formulae are built up
recursively using the standard logic connectives plus�ϕ,
♦ϕ andϕ∗ for formulaϕ.

As usual in modal logic,� represents necessity and♦
represents possibility. The∗ is used to evaluate formulae
with respect toprevious frames of reference.

Modal formulae are interpreted (evaluated) in statess be-
longing to a belief stateb. The interpretation is defined with
respect to triplets(s, b, σ) wheres is a state,b is a belief
state, andσ is asequenceof states fromb used as the frames
of reference. Standard logic connectives are interpreted in
the usual way, propositions and modalities as:

I1. (a, b, σ) |= p iff s |= p,
I2. (s, b, σ) |= �ϕ iff (s′, b, sσ) |= ϕ for all s′ ∈ b,
I3. (s, b, σ) |= ♦ϕ iff (s′, b, sσ) |= ϕ for somes′ ∈ b,
I4. (s, b, s′σ) |= ϕ∗ iff (s′, b, σ) |= ϕ, and
I5. (s, b, 〈〉) 6|= ϕ∗ for all ϕ.

Observe thatσ is used as an stack of contexts such that�
and♦ push contexts intoσ while ∗ pops them out.

A formula ϕ holds in a states with respect tob iff
(s, b, 〈〉) |= ϕ, and it holds in beliefb iff it holds in all s ∈ b
(with respect tob).

Modal logic extends the expressivity in planning since it
allows, for example, to express preconditions or goals of the
form ‘know ϕ’, which holds inb when all states inb agree
on the interpretation ofϕ, and ‘possiblyϕ’ which holds inb

when some state inb satisfiesϕ. Indeed, ‘knowϕ’ is equiv-
alent to�ϕ ∨�¬ϕ, and ‘possiblyϕ’ is equivalent to♦ϕ.

The∗ is less standard but it can be related to a restricted
form of quantification when combined with� (universal)
and♦ (existential) since∗ provides a “handle” into the ap-
propriate quantified variables. For example,�♦(p∗ ↔ q)
holds in belief stateb iff for all s ∈ b there iss′ ∈ b such
that the value ofp in s coincides with the value ofq in s′.

Since a belief state is an explicit representation of models,
the truth ofb |= ϕ can be decided in polynomial space, in|b|
and|ϕ|, using a stack and definitions I1–I4.

In the Mastermind game, the codebreaker’s goal is
achieved when it reaches a belief state that is a singleton;
that is, when all the propositions that denote the colors of
the code are known. Formally, ifC is the set of propositions
that denote the colors of the pegs, the goal in Mastermind
can be coded as

∧
p∈C �p ∨�¬p.

Complexity and Decision Problems
The reader is referred to any book on complexity theory for
basic definitions; e.g. (Papadimitriou 1993; Du & Ko 2000).
In this section, we introduce some notation and known re-
sults, and formally define the plan-existence decision tasks.

We only consider Turing Machines (TM) with semi-
infinite tape that halt on all inputs. The language accepted
by a TM M is denoted byL(M). Henceforth, DTM and
NTM will denote a deterministic and non-deterministic TM
respectively. DTIME(t(n)) (resp. NTIME(t(n))) is the
class of all languages accepted by DTMs (resp. NTMs) with
time boundt(n). DSPACE(s(n)) (resp. NSPACE(s(n))) is
the class of all languages accepted by DTMs (resp. NTMs)
with space bounds(n). The following complexity classes
are standard:

PSPACE
def= ∪k≥0DSPACE(nk) ,

EXPTIME
def= ∪k≥0DTIME(2nk

) ,

EXPSPACE
def= ∪k≥0DSPACE(2nk

) ,

2EXPTIME
def= ∪k≥0DTIME(22nk

) ,

2EXPSPACE
def= ∪k≥0DSPACE(22nk

) .

Similarly for non-deterministic classes, e.g. NEXPTIME
def=

∪k≥0NTIME(2nk

). Some well-known result are that the
non-deterministic ‘space’ classes are equal to their determin-
istic counterparts, e.g. EXPSPACE= NEXPSPACE, and
that the ‘space’ classes are closed under complementation,
e.g. EXPSPACE= co-EXPSPACE.

A decision problemP is a language.P is in a complexity
classC if there is a TMM ∈ C such thatP = L(M), P
is C-hard if for every decision problemP ′ ∈ C there is a
polynomial-time many-one reductionf such thatf(ω) ∈ P
iff ω ∈ P ′, andP is C-complete iffP ∈ C andP is C-hard.
We say thatC is an upper bound (resp. lower bound) on the
complexity ofP if P ∈ C (resp.P is C-hard).

Alternation
An alternating TM (ATM) is a TM whose states are par-
titioned into existential states and universal states. A TM



is an ATM where all states are existential. An ATMM ac-
cepts inputω if there is anaccepting computation treerooted
at the initial configuration such that the existential config-
urations have one child, the universal configurations have
all their children, and all leaves are accepting; see (Chan-
dra, Kozen, & Stockmeyer 1981). An ATMM is a(n)-
alternation bounded if the number of alternations, i.e. tran-
sitions between existential and universal states or vice versa,
of any computation path is bounded bya(|ω|) for all input
ω. The following is due to to A. Borodin (Chandra, Kozen,
& Stockmeyer 1981).

Theorem 1 (Borodin) If M is ans(n)-space bounded and
a(n)-alternation bounded ATM withs(n) ≥ log n, then
M ∈ DSPACE(a(n)s(n) + s(n)2).

Decision Problems in Planning
We consider the following decision problems:

• PLAN-STRIPS: Let P be a STRIPS planning problem.
DoesP have a valid plan?

• PLAN-ADL : Let P be an ADL planning problem. DoesP
have a valid plan?

• PLAN-FO-CONT: Let P be a planning problem with full
observability. DoesP have a valid contingent plan?

• PLAN-FO-CONT-k: Let P be a planning problem with full
observability. DoesP have a valid contingent plan with
at mostk branch points?

• PLAN-FO-CONF: Let P be a planning problem with full
observability. DoesP have a valid conformant plan?

• PLAN-PO-CONT: Let P be a planning problem with par-
tial observability and modalities. DoesP have a valid
contingent plan?

• PLAN-PO-CONT-k: LetP be a planning problem with par-
tial observability and modalities. DoesP have a valid
contingent plan with at mostk branch points?

• PLAN-PO-CONF: Let P be a planning problem with par-
tial observability and modalities. DoesP have a valid
conformant plan?

PLAN-STRIPSand PLAN-ADL are known to be PSPACE-
complete (Bylander 1994),PLAN-FO-CONT is known to
be EXPTIME-complete (Rintanen 2004a),4 PLAN-FO-CONF
is known to be EXPSPACE-complete (Haslum & Jonsson
1999), andPLAN-PO-CONT is known to be 2EXPTIME-
complete (Rintanen 2004a) (yet the case of modal formulae
isn’t studied by Rintanen). The classesPLAN-FO-CONT-k,
PLAN-PO-CONT-k and PLAN-PO-CONFare novel; the first
decision problem will be shown to be EXPSPACE-complete
while the latter two to be 2EXPSPACE-complete.

Upper Bounds on Complexity
We begin with the easy direction, the upper bounds on
PLAN-PO-CONT with modalities, andPLAN-FO-CONT-k,
PLAN-PO-CONT-k andPLAN-PO-CONF.

4The complexity remains EXPTIME-complete even for testing
the existence of plans that reach the goal with probability≥ t for
probabilistic problems with full observability (Littman 1997).

Observe that withn propositional symbols, there are≤ 2n

planning states and hence a set of states can be represented
with n2n bits, i.e. in exponential space. Also, the truth of a
modal formula can be decided in polynomial space in the
size of a belief state. Therefore,PLAN-PO-CONT can be
solved with an ATM using exponential space such that the
solution computation trees of the ATM corresponds to the
contingent plans; see proof of Theorem 3 for a hint. Since an
ATM with an exponential space bound can be simulated with
a DTM with a double exponential time bound (see Chandra,
Kozen, & Stockmeyer 1981), we have

Theorem 2 Deciding the existence of a contingent plan for
planning problems with partial observability, with or with-
out modal formulae, is in 2EXPTIME. Since completeness
hold for the restricted case of problems without modal for-
mulae, thenPLAN-PO-CONTis 2EXPTIME-complete.

The membership ofPLAN-FO-CONT-k in EXPSPACE is
shown with an ATM that makes at mostk alternations. Note
that each branch point in the plan corresponds to determin-
ing the current state of the system and then planning there-
after. Since a different plan must be found for each possible
state, the branch can be simulated with a transition from a
universal state of the ATM. A final simulation of the ATM
with a DTM shows the membership in EXPSPACE.

Theorem 3 PLAN-FO-CONT-k is in EXPSPACE.

Proof: Let P = 〈D, I, G,O,D〉 be a contingent planning
problem with full observability with|D| = n. The following
ATM, with ≤ k alternations, decides if there is ak-plan:

1. K := k;
2. b := {s : I |= s};
3. steps := 0;
4. if ∀(s ∈ b)[s |= G] then ACCEPT;
5. ∃-branch:chooseeither APPLY or BRANCH;
6. if BRANCH then
7. if K = 0 then REJECT;
8. K := K − 1;
9. ∀-branch:for eachs ∈ b do b := {s};

10. else ifAPPLY then
11. if steps = 22n

then REJECT;
12. ∃-branch:chooseoperator〈c, e〉 s.t.∀(s ∈ b)[s |= c];
13. b :=

S
s∈b Appl(Eff (s, e), s);

14. steps := steps + 1;
15. end
16. goto4.

The ATM is in EXPSPACE since there are at most2n states
so a subset of states can be stored inO(n2n) bits. Use now
Theorem 1 and the fact thatk is constant to get the result.�

The same idea works for the membership ofPLAN-PO-
CONT-k in 2EXPSPACE yet a subset of belief states is ex-
plicitly stored instead of a belief state, and thus the ATM
requiresO(n2n22n

) bits.

Theorem 4 Deciding the existence of a contingentk-plan
for planning problems with partial observability, with or
without modal formulae, is in 2EXPSPACE.



continueentry

loop

exit

ε

ε

εεεε α
test

Figure 2: Non-deterministic Finite Automaton with Coun-
ters forαn.

Finally, the membership ofPLAN-PO-CONF in 2EX-
PSPACE is easily shown with an NTM that chooses appli-
cable operators non-deterministically and keeps track of the
subset of belief states. The machine accepts if all beliefs in
the subset are goal and rejects when the number of steps is

bigger than222n

.

Theorem 5 Deciding the existence of a conformant plan for
planning problems with partial observability, with or with-
out modal formulae, is in 2EXPSPACE.

Following the work of Haslum and Jonsson (1999),
we use regular expressions with exponentiation and non-
deterministic finite automata with counters to establish
lower bounds on the complexity of decision problems.

Regular Expressions and Automata
A regular expression with exponentiation (REE) is built up
recursively from atomic regular expressions with the usual
concatenation, sum and Kleene star operations plus an ad-
ditional exponentiation operation of the formαn, wheren
is a positive integerwritten in binary, that denotes the lan-
guage{σ1 . . . σn : σi ∈ α}. As usual, the length of a regular
expression is equal to the number of symbols in it.

Theorem 6 (Hopcroft & Ullman 1979) Let α be an REE
and Σα the alphabet ofα. Deciding if α = Σ∗

α is
EXPSPACE-hard.

Haslum and Jonsson use non-deterministic automata with
counters (NFAC) to represent regular expressions with ex-
ponentiation. A NFAC is a non-deterministic finite automa-
ton augmented with a set of bounded countersC. Each
counterc ∈ C is associated with five statesentryc, testc,
continuec, exitc andloopc, and with a boundboundc writ-
ten in binary. Initially, all counters are set to zero. Upon
visiting entryc the counter is initialized toboundc and a
transition is made totestc; this is the only possible transition
from entryc. In testc, the machine testsc > 0 and makes
a transition tocontinuec if it holds and toexitc otherwise;
these are the only transitions fromtestc and intocontinuec

andexitc. Upon visitingloopc, the machine decrementsc
and makes a transition totestc; the only transitions totestc
are either fromentryc or loopc.5 Fig. 2 shows the NFAC for
αn.

Let Q be the set of states of an NFAC andF ⊆ Q the set
of its accepting states. An instantaneous description (ID) of
an NFAC is a tuple inQ × Xc∈C [boundc] where[boundc]

5Our NFACs are slightly different from Haslum and Jonsson’s
that allow for simpler proofs.

denotes the set{0, . . . , boundc}; an ID is acceptingif its
state is final. We denote withΘ the set of all IDs, with
Θa the set of all accepting IDs, andΘn = Θ \ Θa. For-
mally, an NFAC is a tupleM = 〈Q,Σ, δ, q0, F, C〉whereδ :
Q×Σ → 2Q is the transition function andC is a set of tuples
〈c, boundc, entryc, testc, continuec, exitc, loopc〉. The
size ofM is defined as|δ|+

∑
c∈C |boundc|where|boundc|

is the number of bits in the binary representation ofboundc.

Theorem 7 (Haslum & Jonsson 1999)For any REE α
there exists an NFACMα of polynomial size in|α| such that
ω ∈ α iff ω ∈ L(Mα).

As is standard in NFAs, the domain of definition ofδ can
be extended fromδ : Q × Σ → 2Q into δ : Θ × Σ∗ → 2Θ

such thatω ∈ L(M) iff δ(θ0, ω) contains an accepting ID

whereθ0
def= 〈q0, 0, . . . , 0〉 is theinitial ID.

Haslum and Jonsson proof’s of EXPSPACE-hardness for
conformant planning with full observability is as follows.
Given an REEα, they construct a planning problemP =
〈D, I, G,O,D〉 that simulatesthe transition functionδ of
the NFACMα in a way that states inP corresponds to IDs
of Mα, and that (non-deterministic) planning operatorsoa

correspond to transitions inMα upona ∈ Σ ∪ {ε} such that

Res(〈oa1 , . . . , oan
〉, I) = δ(θ0, a1 . . . an) .

Hence, ifG is defined as being in a non-accepting ID thenP
has a valid plan〈oa1 , . . . , oan〉 iff a1 . . . an /∈ L(Mα). This
argument shows that deciding the existence of a conformant
plan is co-EXPSPACE-hard. The result then follows with an
application of EXPSPACE= co-EXPSPACE.

Compact Representation of Counters
In this section, we show how to encode a counter of expo-
nential length with the belief states of a planning problem
with a polynomial number of propositional symbols. This
encoding is the main tool behind the 2EXPSPACE-hardness
proof of conformant planning for partially observable do-
mains.

Let c be a counter of exponential length with bitsci for
0 ≤ i < 2n, and consider a planning problemP with n
propositional “bit markers”mc,k for 0 ≤ k < n. The value
of counterc can be represented with the positions of the bits
set to 1, i.e. with the set{i : ci = 1}. Since each position
can be encoded withn bits, the value ofc can be represented
with the belief state6

bc = {{mc,k : (kth bit in [i]bit) = 1} : ci = 1} .

For example,{∅} represents the value1 = 00000001bin,
{{mc,0}, {mc,2}} the value 18 = 00010010bin, and
{∅, {mc,0,mc,1,mc,2}} the value129 = 10000001bin. Note
however that0 is represented by the empty belief state, yet
since empty beliefs are not allowed, the value0 cannot be
encoded. Therefore, all counter values will beshiftedby 1.

Let bc be a belief state representing counterc, we will
need to test whether the value ofc is equal to or greater than

6The notation[k]bit stands for the integerk written in binary.



1. The former holds iffbc = {∅} while the latter iffbc has a
state satisfying somemc,k; these are abbreviated as

c = 1 :
∧n

k=0 ¬mc,k and c > 1 : ♦
∨n

k=0 mc,k .

Similarly, we will need two operations. The first, denoted
by c+ k, is to set all 1-bits in the binary expansion ofk to 1.
It is implemented with the effect:

c + k :
∧
{mc,i : (ith bit in [k]bit) = 1} .

The second operation, denoted by decc, is to decrement the
value of the counterc whenc > 1. For example, it must
change the value72 = 01001000bin represented by

b72 = {{mc,0,mc,1}, {mc,1,mc,2}}
to the value71 = 01000111bin represented by

b71 = {∅, {mc,0}, {mc,1}, {mc,1,mc,2}} .

That is, the set{mc,0,mc,1} should be replaced by the three
sets∅, {mc,0} and{mc,1}. The general principle here is to
replace the subset for theleast significant bit(the first 1 from
right to left in the binary expansion) with the collection of
subsets that correspond to all bits of lesser significance. We
thus need a formula to identify the subset to replace, and an
effect to generate the replacement subsets. It is not hard to
see that the subset to replace is the only one that satisfies
�φc,n where

φc,k : [(mc,k ∧ ¬m∗
c,k) ∨ ((mc,k ↔ m∗

c,k) ∧ φc,k−1)] ,

φc,0 : [(mc,0 ∧ ¬m∗
c,0) ∨ (mc,0 ↔ m∗

c,0)] .

Indeed,�φc,n holds ins ∈ b iff for all s′ ∈ b, eithers = s′

or there isk such that¬mc,k ∈ s, mc,k ∈ s′ andmc,l ∈ s
iff mc,l ∈ s′ for all l > k.

Once the subsets to replace is identified, all replacements
can be generated by non-deterministically processing all bits
mc,k as follows. Ifmc,k ∈ s, then it’s cleared and all bits
mc,j , 0 ≤ j < k, are flipped non-deterministically, or else
all bits mc,j , 0 ≤ j ≤ n, are set to zero. The decrement
effect is thus defined as

decc : �φc,n B⊕n
k=0

[
(mc,k B ¬mc,k ∧

∧k−1
j=0 (mc,j ⊕ ¬mc,j)) ∧

(¬mc,k B
∧n

j=0 ¬mc,j)
]
.

In the example, wheres = {mc,0,mc,1}, the processing of
mc,0 generates{mc,1}, the processing ofmc,1 generates∅
and{mc,0}, and the processing of the other bits generates∅,
hence the effect of decc on the beliefb72 is the beliefb71.

As a final remark, observe that multiple counters can be
encoded simultaneously by taking the “cross-product” of the
encodings for the individual counters.

Lower Bounds on Complexity
The hardness proofs are similar to Haslum and Jonsson’s.
However, for the case of 1-plans, observe that determining
the current planning state amounts to determining the cur-
rent ID of the automatonMα. Thus, there is a valid 1-plan
for P iff there existsω ∈ Σ∗ such that

∀(θ ∈ δ(θ0, ω))∃(w′ ∈ Σ∗)[δ(θ, w′) ⊆ Θn] ,

yet this condition is strictly weaker thanα 6= Σ∗
α and thus a

naive reduction would fail in one direction.
We fix this problem by inserting effects into the branch

operators. Indeed, letα be an REE with alphabetΣ andM
be an NFAC such thatL(Mα) = α. As done in the proof of
Haslum and Jonsson, construct a planning problemP with
full observability such that the states ofP encode the IDs
of M : the operators ofP , of the formoa for a ∈ Σ ∪ {ε},
simulate the transitions ofM with conditional effects. Ex-
tendP into P ′ with a binary counterbranch ∈ {0, . . . , k}
and with anobranch operator with preconditionbranch < k
and a single effect of increasing the value ofbranch. Since
the range ofbranch is bounded by a constant, the size of
obranch is constant. The descriptionsI andG are extended
such that the unique initial state, that corresponds toθ0,
makesbranch = 0, and that the goal states are those that
correspond to non-accepting IDs andbranch = k. Finally,
add the preconditionbranch = 0 to all operatorsoa with
a ∈ Σ ∪ {ε}.

We claim thatP ′ has ak-plan, with exactlyk branch
points, iff α 6= Σ∗

α. First, assume there is a wordw =
a1 . . . an /∈ α, i.e. δ(θ0, w) ⊆ Θn. Therefore, the plan
〈oa1 , . . . , oan〉 is a conformant plan forP and hence gener-
ates inP ′ a set of states associated with non-accepting IDs
andbranch = 0. Extend this plan withk applications of
obranch to get ak-plan forP ′.

On the other hand, assumeP ′ has ak-planT with root r.
Let τ = 〈o1, . . . , on+k〉 be the sequence of operators asso-
ciated with a maximal directed path inT (a trajectory in the
execution of planT ). Sinceτ makesbranch = k, it con-
tainsk branch operators that must be all consecutive given
that obranch increases the counter and that all operatorsoa

have preconditionbranch = 0. Therefore, by definition of
T , the firstn operators fromτ are of the form〈a1, . . . , an〉,
with ai ∈ Σ ∪ {ε}, and will appear in any trajectory; i.e.
`(r) = 〈oa1 , . . . , oan

, obranch〉. Since the branch operators
doesn’t change the state of the automataM , we have that
`(r) except the lastobranch is a plan forP and hence the
worda1 . . . an /∈ α. We have shown

Theorem 8 Deciding the existence of a contingentk-plan
for planning problems with full observability is EXPSPACE-
hard, and hence EXPSPACE-complete.

The main result of the paper is the 2EXPSPACE-hardness
of conformant planning for partially observable domains.
The proof idea is essentially the same except that we have
to deal with counters of exponential length. To understand
the proof, let’s revise the proof of Theorem 6. Given a DTM
M with an exponential space bound and a wordω, an REE
α = α(M,ω) of polynomial length in|M | + |ω| is con-
structed such thatα = Σ∗

α iff ω /∈ L(M). A closer look
atα reveals that ifM has a double exponential space bound
thenα would be the same except that the exponents are of
exponential length (Hopcroft & Ullman 1979). Therefore,
the associated NFAC have counters of double exponential
capacity that must be encoded compactly.

Theorem 9 Deciding the existence of a conformant plan for
problems with partial observability and modal formulae is
2EXPSPACE-hard, and hence 2EXPSPACE-complete.



Proof: Let M be a DTM with a double exponential space
boundd(x) andω ∈ Σ∗. Consider the REEα = α(M,ω)
given in the proof of Theorem 6. The size ofα is ex-
ponential yet, if the sizes of the exponents are not mea-
sured,|α| is polynomial in|M | + |ω|. Therefore, ifMα =
〈Q,Σ, δ, q0, F, C〉 is the NFAC associated toα, the size|δ| is
polynomial in|M |+ |ω| while

∑
c∈C |boundc| is exponen-

tial. We are going to build a conformant planning problem
with partial observability of polynomial length to simulate
the NFAC. The main idea is to encode the IDs with beliefs
states.

Let n = poly(|ω|) be such thatd(|ω|) < 22n

and define
the planning problemPα = 〈D, I, G,O,Z〉 with proposi-
tional symbols:

1. machine state symbols{q : q ∈ Q},
2. bits marker symbols{mc,k : c ∈ C, 0 ≤ k ≤ n},
3. set symbols{sc,k : c ∈ C, 0 ≤ i ≤ dlog(|ω|+ 1)e},
4. initialize symbols{uc : c ∈ C}, and
5. decrement symbols{dc,k : c ∈ C, 0 ≤ k ≤ 2|ω|+ 1}.

The observable symbols are the state symbols, i.e.Z = {q :
q ∈ Q}. The descriptionsI andG reflect the initial ID and
all non-accepting IDs respectively,

I
def= q0 ∧

∧
q 6=q0

¬q ∧
∧
c,k

¬uc ∧ ¬mc,k ∧ ¬sc,k ∧ ¬dc,k ,

G
def=

∨
q∈Q\F q .

That is,I encodes the ID with stateq0 and the value of all
counters set to 1 (which means 0 since the counters values
are shifted by 1).

Let q ∈ Q \ {entryc, testc, loopc : c ∈ C} and a ∈
Σ ∪ {ε}. The transitionδ(q, a) is modeled with a non-
deterministic operator

oq,a
def= 〈q,¬q ∧

⊕
p∈δ(q,a) p〉 .

The transition from testc is deterministic either to
continuec or exitc whetherc > 1; i.e.

otestc,ε
def= 〈testc,¬testc ∧ (c > 1 B continuec) ∧

(c = 1 B exitc)〉
The transition fromloopc is deterministic that changes state
to testc and decrements the counterc; i.e.

oloopc,ε
def= 〈loopc,¬loopc ∧ testc ∧ decc〉 .

The transition fromentryc must setc = 1 + boundc and
change state intotestc. In general, we cannot set a counter
of double exponential capacity to an arbitrary value using a
polynomial number of operators each of polynomial length.
However, the exponents inα are in{1, . . . , |ω| + 1, 22n −
|ω| − 1, 22n − 1, 22n

+ 1, 22n

+ |ω|} (Hopcroft & Ullman
1979), and these values can be set with polynomially long
operators. Indeed, define the entry operator as

oentryc,ε
def= 〈entryc,¬entryc ∧ uc ∧ c = 1〉

which sets the counter to 1 and changes state to a temporary
stateuc from which the counter is initialized to the value
1 + boundc.

Counters with an initial value of polynomial size, i.e.
those with1 ≤ boundc ≤ |ω| + 1 can be set directly with
the operators

oc,u
def= 〈uc,¬uc ∧⊕

{sc,k : (kth bit of [1 + boundc]bit) = 1}〉 ,

oc,s
def= 〈

∨
k sc,k, testc ∧

∧
k(sc,k B ¬sc,k ∧ (c + k))〉 .

The first operator creates a set in the belief state for each
1-bit in the value of the counter, and the second operator
sets the marker bits appropriately in each state. Observe that
these two operators must be executed in such order right af-
ter the application ofoentryc,ε.

Counters with an initial value of exponential size, i.e.
those withboundc ∈ {22n −|ω|−1, 22n −1, 22n

+1, 22n

+
|ω|}, are first set to22n

+ |ω| + 1 and then decremented
22n

+ |ω|− boundc times (which is a polynomial number of
decrements):

oc,u
def= 〈uc,¬uc ∧[

mc,n ⊕
⊕
{sc,k : (kth bit of [1 + |ω|]bit) = 1}

]
〉 ,

oc,s
def= 〈mc,n ∨

∨
k sc,k, dc,22n+|ω|−boundc

∧∧
k(sc,k B ¬sc,k ∧ (c + k))〉 ,

oc,dk

def= 〈dc,k,¬dc,k ∧ dc,k−1 ∧ decc〉 ,

oc,d0

def= 〈dc,0,¬dc,0 ∧ testc〉 .

For example, to setc = 22n − |ω|, the counter is set to
1 + 22n

+ |ω| and then decremented2|ω| + 1 times. The
representation is faithful in the sense thatPα has a valid con-
formant plan iffα 6= Σ∗

α. �

We remark that the simulation of the NFAC works only
for certain REEs and won’t work in general; the problem
being the initialization of counters’ values. Whether there
is a reduction from the problemα = Σ∗

α for general REEs
with exponents of exponential length to conformant plan-
ning problems with partial observability is an open problem.

Finally, combining the simulation of counters of exponen-
tial length with branch operators, we have

Theorem 10 Deciding the existence of a contingentk-plan
for planning problems with partial observability and modal
formulae is 2EXPSPACE-hard, and hence 2EXPSPACE-
complete.

Special Cases

Turner (2002) studies the complexity of deciding the exis-
tence of plans of polynomial length using quantified boolean
formulae (QBFs). He shows that deciding the existence of
conformant plans of polynomial length for fully observable
problems isΣp

3-complete, and that deciding the existence of
contingent plans of polynomial length is PSPACE-complete
for problems with either full or partial observability.



We take a similar approach here and study the complex-
ity of deciding the existence of plans of polynomial length7

for fully observable problems, and the existence of plans for
partially observable domains without modalities.

Let us consider a planning problemP with full observ-
ability, a fixed planning horizonn, and the codification of
P into propositional logic. The codification uses symbols
oi for operators andfi for fluents tagged with time indices
such thatoi (resp.fi) stands for an operator (resp. fluent) at
time0 ≤ i ≤ n. For lack of space, we only present the main
results without proofs.

Turner shows thatP has a conformant plan of lengthn iff
a QBF of the form

∃o0 · · · ∃on−1∀f0 · · · ∀fn∃f ′1 · · · ∃f ′n.Ψ (2)

is valid. Therefore, ifn is polynomial then (2) is inΣp
3. The

existence of ak-plan with branch points at times0 < t1 <
t2 < · · · < tk < n can be verified with a QBF of the form

∃o0 · · · ∃ot1−1∀f0 · · · ∀ft1

∃ot1 · · · ∃ot2−1∀f1+t1 · · · ∀ft2 · · ·
∃otk

· · · ∃on−1∀f1+tk
· · · ∀fn∃f ′0 · · · ∃f ′n.Ψ . (3)

If n is polynomial, then (3) is inΣ2k+3. Since the positions
of the branch points can be chosen non-deterministically,
the decision problem can be solved with an (oracle) TM in
NP (Σp

2k+3) = Σp
2k+4.

Theorem 11 Deciding the existence of a contingentk-plan
of polynomial length for planning problems with full observ-
ability is in Σp

2k+4.

The other special case considered is that of partially ob-
servable problems without modalities. Let’s begin with the
existence of conformant plans. LetB be a subset of belief
states, as defined in the Sect. on Belief States and Plans, and
o an operator. By definition,o is applicable onB if it is ap-
plicable in allb ∈ B. Therefore, sinceo contains no modal-
ities, o is applicable onB if it is applicable on all states in⋃

b∈B b. Similarly, B is a goal set if allb ∈ B is a goal
belief, and thus, since there are no modalities,B is a goal
set if

⋃
b∈B b is a goal belief. In conclusion, the existence of

a conformant plan for problems without modalities can be
established by considering belief states instead of subsets of
belief states.8

Theorem 12 Deciding the existence of a conformant plan
for planning problems with partial observability without
modal formulae is EXPSPACE-complete. Deciding the ex-
istence of a conformant plan of polynomial length for plan-
ning problems with partial observability without modal for-
mulae isΣp

3-complete.

The case ofk-plans for partially observable problems
without modalities is similar to the case of full observabil-
ity. If the set of fluentsf is partitioned into the observables

7A k-plan for problemP has polynomial length if there is a
polynomialp such that every path in the plan has length≤ p(|P |);
i.e. if k is polynomially bounded.

8A similar result appears in (Giacomo & Vardi 1999).

fZ and the non-observablesfN , the existence of ak-plan of
lengthn can be checked with a QBF of the form

∃o0 · · · ∃ot1−1∀fZ
0 · · · ∀fZ

t1

∃ot1 · · · ∃ot2−1∀fZ
1+t1 · · · ∀f

Z
t2 · · · (4)

∃otk
· · · ∃on−1∀f1+tk

· · · ∀fn∀fN
0 · · · ∀fN

tk
∃f ′0 · · · ∃f ′n.Ψ

where0 < t1 < t2 < · · · < tk < n are the branch points.

Theorem 13 Deciding the existence of a contingentk-plan
of polynomial length for planning problems with partial ob-
servability without modal formulae is inΣp

2k+4.

Discussion
We have introduced novel decision tasks for checking
the existence of conformant plans for partially observ-
able domains, and the existence plans of bounded branch-
ing for problem with either full or partial observabil-
ity. The complexity of the former task is shown to be
2EXPSPACE-complete for problems with modal formulae
and EXPSPACE-complete for problems without modal for-
mulae. The complexity of deciding the existence of plans
with a bounded number of branch points is EXPSPACE-
complete for fully observable domains, and 2EXPSPACE-
complete for partially observable domains. If plans of poly-
nomial length are sought, then all decision problems can be
reduced to QBFs and hence are in PSPACE.

The 2EXPSPACE-hardness for conformant tasks is shown
with a reduction from a subclass of the decision problem of
checking the totality of regular expression with exponenti-
ation. Rintanen (2004b) makes a direct simulation of TMs
with an exponential space bound to show the EXPSPACE-
hardness of conformant planning for fully observable prob-
lems. A similar simulation of TMs with a double exponen-
tial space bound is also possible with partially observable
conformant planning problems.

Our hardness results for plans of bounded branching make
the assumption that a branch operator appears explicitly in
the plans. An open problem is to remove this assumption in
the proofs.

We haven’t addressed the task of computing plans and/or
optimal plans. Since the size of such plans can be fairly
large, e.g. triple exponential for the case of conformant plans
with partial observability, the complexity of such tasks will
increase.

In the future, we expect to develop heuristic search meth-
ods for computing plans for some of the tasks. In particular,
we are interested in finding plans of bounded branching for
fully observable domains and conformant plans for partially
observable domains. We think that AND/OR search algo-
rithm in belief space might be good candidates for the for-
mer task, while an A* algorithm in the space of subsets of
belief states might be good candidate for the latter task. Ad-
ditionally, algorithms based on QBFs should be good candi-
dates for computing polynomially long plans.
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for illuminating discussions and comments on early drafts.
Thanks also to the anonymous reviewers.



References
Bertsekas, D. 1995.Dynamic Programming and Optimal
Control, (2 Vols). Athena Scientific.

Bonet, B., and Geffner, H. 2000. Planning with incomplete
information as heuristic search in belief space. In Chien,
S.; Kambhampati, S.; and Knoblock, C., eds.,Proc. 6th
International Conf. on Artificial Intelligence Planning and
Scheduling, 52–61. Breckenridge, CO: AAAI Press.

Bonet, B., and Geffner, H. 2001. Planning as heuristic
search.Artificial Intelligence129(1–2):5–33.

Bonet, B., and Geffner, H. 2003. Faster heuristic search
algorithms for planning with uncertainty and full feedback.
In Gottlob, G., ed.,Proc. 18th International Joint Conf.
on Artificial Intelligence, 1233–1238. Acapulco, Mexico:
Morgan Kaufmann.

Bylander, T. 1994. The computational complexity of
propositional STRIPS planning. Artificial Intelligence
69:165–204.

Cassandra, A.; Littman, M.; and Kaelbling, L. 1994. Act-
ing optimally in partially observable stochastic domains.
In Hayes-Roth, B., and Korf, R., eds.,Proc. 12th National
Conf. on Artificial Intelligence, 1023–1028. Seattle, WA:
AAAI Press / MIT Press.

Chandra, A.; Kozen, D.; and Stockmeyer, L. 1981. Alter-
nation.Journal of the ACM28(1):114–133.

Chvatal, V. 1983. Mastermind.Combinatorica3(3–
4):325–329.

Du, D., and Ko, K. 2000.Theory of Computational Com-
plexity. New York, NY: Wiley-Interscience.

Fikes, R., and Nilsson, N. 1971. STRIPS: A new approach
to the application of theorem proving to problem solving.
Artificial Intelligence1:27–120.

Giacomo, G. D., and Vardi, M. Y. 1999. Automata-
theoretic approach to planning for temporally extended
goals. In Biundo, S., and Fox, M., eds.,Proc. 5th Euro-
pean Conf. on Planning, 226–238. Durham, UK: Springer:
LNCS 1809.

Goldman, R. P., and Boddy, M. S. 1996. Expressive plan-
ning and explicit knowledge. In Drabble, B., ed.,Proc.
3rd International Conf. on Artificial Intelligence Planning
Systems. Edinburgh, Scotland: AAAI Press.

Hansen, E., and Zilberstein, S. 2001. LAO*: A heuristic
search algorithm that finds solutions with loops.Artificial
Intelligence129:35–62.

Haslum, P., and Jonsson, P. 1999. Some results on the
complexity of planning with incomplete information. In
Biundo, S., and Fox, M., eds.,Proc. 5th European Conf. on
Planning, 308–318. Durham, UK: Springer: LNCS 1809.

Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search.Journal
of Artificial Intelligence Research14:253–302.

Hopcroft, J., and Ullman, J. 1979.Introduction to Au-
tomata Theory, Languages, and Computation. Addison-
Wesley.

Kaelbling, L.; Littman, M.; and Cassandra, A. 1999. Plan-
ning and acting in partially observable stochastic domains.
Artificial Intelligence101:99–134.
Littman, M. 1997. Probabilistic propositional planning:
representations and complexity. In Kuipers, B., and Web-
ber, B., eds.,Proc. 14th National Conf. on Artificial Intelli-
gence, 748–754. Providence, RI: AAAI Press / MIT Press.
Majercik, S., and Littman, M. 1998. Maxplan: A new ap-
proach to probabilistic planning. In Simmons, R.; Veloso,
M.; and Smith, S., eds.,Proc. 4th International Conf. on
Artificial Intelligence Planning Systems, 86–93. Pittsburgh,
PA: AAAI Press.
McDermott, D. 1996. A heuristic estimator for means ends
analysis in planning. In Drabble, B., ed.,Proc. 3rd Inter-
national Conf. on Artificial Intelligence Planning Systems,
150–157. Edinburgh, Scotland: AAAI Press.
Meuleau, N., and Smith, D. 2003. Optimal limited con-
tingency planning. In Meek, C., and Kjaerulff, U., eds.,
Proc. 19th Conf. on Uncertainty in Artificial Intelligence.
Acapulco, Mexico: Morgan Kaufmann.
Papadimitriou, C. 1993. Computational Complexity.
Addison-Wesley.
Pednault, E. 1989. ADL: Exploring the middle ground be-
tween Strips and the situation calculus. In Brachman, R.;
Levesque, H.; and Reiter, R., eds.,Proc. 1st International
Conf. on Principles of Knowledge Representation and Rea-
soning, 324–332. Toronto, Canada: Morgan Kaufmann.
Puterman, M. 1994.Markov Decision Processes – Discrete
Stochastic Dynamic Programming. John Wiley and Sons,
Inc.
Rintanen, J. 2004a. Complexity of planning with partial
observability. In Zilberstein, S.; Koenig, S.; and Koehler,
J., eds.,Proc. 14th International Conf. on Automated Plan-
ning and Scheduling, 345–354. Whistler, Canada: AAAI
Press.
Rintanen, J. 2004b. Distance estimates for planning in the
discrete belief space. In McGuinness, D. L., and Fergu-
son, G., eds.,Proc. 19th National Conf. on Artificial Intel-
ligence, 525–530. San Jose, California: AAAI Press / MIT
Press.
Smith, D., and Weld, D. 1998. Conformant graphplan. In
Mostow, J., and Rich, C., eds.,Proc. 15th National Conf.
on Artificial Intelligence, 889–896. Madison, WI: AAAI
Press / MIT Press.
Sondik, E. 1978. The optimal control of partially observ-
able Markov decision processes over the infinite horizon:
discounted costs.Operations Research26(2).
Turner, H. 2002. Polynomial-length planning spans the
polynomial hierarchy. In Flesca, S., and Giovambattista,
I., eds.,Proc. 8th European Conf. on Logics in Artificial
Intelligence, 111–124. Cosenza, Italy: Springer: LNCS
2424.


