
Abstraction Heuristics Extended
with Counting Abstractions

Blai Bonet
Departamento de Computación

Universidad Simón Bolı́var
Caracas, Venezuela

bonet@ldc.usb.ve

Abstract

State-of-the-art abstraction heuristics are those constructed
by the merge-and-shrink approach in which an abstraction
consists of a labeled transition system, and the composition of
abstractions correspond to the synchronized product of tran-
sition systems. Merge-and-shrink heuristics build a compos-
ite abstraction from atomic abstractions that are directly as-
sociated with the variables of the planning problem. In this
paper, we show that the framework of labeled transition sys-
tems is more general, and propose a new type of abstraction
called the counting abstraction. Counting abstractions can
be transparently combined with other type of abstractions to
get more informative heuristics. We show how to effectively
construct the counting abstractions and presents preliminary
experiments over benchmark problems.

Introduction

Abstraction heuristics is a one of the four dominating
classes of admissible heuristics used in planning (Helmert
and Domshlak 2009). This class includes pattern-database
heuristics (Edelkamp 2001; Haslum, Bonet, and Geffner
2005; Haslum et al. 2007; Katz and Domshlak 2008b)
and merge-and-shrink heuristics (Helmert, Haslum, and
Hoffmann 2007) which are known to dominate, with the
proper choice of abstractions and merges, landmark heuris-
tics (Karpas and Domshlak 2009; Helmert and Domshlak
2009) and additive hmax heuristics (Haslum, Bonet, and
Geffner 2005; Katz and Domshlak 2008a).

The merge-and-shrink value for a state s is the length of
a shortest path, in an abstraction of the problem, from the
abstract state associated to s to an abstract goal state. A
merge-and-shrink abstraction is a labeled transition system
that is the result of composing atomic abstractions associ-
ated with the SAS+ variables of the planning problem, and
an abstraction mapping that maps states into abstract states.

However, labeled transition systems are powerful enough
to represent more general abstractions than those captured
by the merge-and-shrink heuristics. In this paper, we pro-
pose a new type of abstraction, called the counting abstrac-
tion, that naturally fits into the merge-and-shrink framework
and that can be used to obtain more informative heuristics.
Briefly, a counting abstraction captures quantitative aspects

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of the planning problem that cut across multiple SAS+ vari-
ables; e.g., one can define a counting abstraction that tracks
the number of goals that remain to be achieved from a state
in an admissible manner.

The use of counting abstraction is not new in search.
Prieditis (1993) considers search problems specified in an
extended STRIPS language and a set of transformations for
automatically creating abstractions (heuristics). These trans-
formations contain operations that define counting abstrac-
tions. However, Prieditis does not mention the difficulties
involved with unsafe operators (see below) nor considers la-
beled transition systems.

The following sections revise the class of problems con-
sidered and relevant concepts of transitions systems. Then,
we present the counting abstractions and their effective con-
struction and integration with merge and shrink. The paper
concludes with preliminary experiments and a discussion.

Planning Problems

We consider SAS+ problems P = 〈V,O, s◦, s�〉 with vari-
ables X ∈ V , each with domain DX , operators o ∈ O, ini-
tial state s◦ and goal state s�. Each operator o ∈ O is spec-
ified by a precondition and postcondition denoted by pre[o]
and post[o] respectively. The precondition and postcondition
are partial SAS+ states (i.e. partial valuations of variables).
The value of a variable X at a full or partial state s is X(s);
e.g., X(pre[o]) denotes the value of X in the precondition
of o. Unlike pure SAS+, we also consider operators o such
that X(post[o]) �= ⊥ and X(pre[o]) = ⊥ for some X , that
set the value of X to X(post[o]) independently of its previ-
ous value; such operators frequently appear when a STRIPS
problem is automatically translated into SAS+.

Abstractions

In the approach of Helmert, Haslum, and Hoffmann (2007),
adapted from the one of Dräger, Finkbeiner, and Podelski
(2006) for directed model checking, an abstraction of a tran-
sition system T is a transition system T ′ together with a
mapping α that maps states in T into states in T ′, and
the composition of abstractions correspond to the synchro-
nized product of abstractions. Hence, starting from atomic
abstractions associated to single SAS+ variables, Helmert,
Haslum, and Hoffmann explore different composition strate-

311

Proceedings of the Twenty-First International Conference on Automated Planning and Scheduling

gies to build a global composite that defines a heuristic for
the planning problem. In this section, we revise the funda-
mental concepts of abstraction as defined by them.

A transition system is a tuple T = 〈S,L,A, s0, ST 〉 made
of states S, set L of labels (actions), labeled transitions A ⊆
S×L×S, initial state s0 ∈ S and target states ST ⊆ S. An
abstraction for T , on the other hand, is a pair A = 〈T ′, α〉
where T ′ = 〈S′, L,A′, s′0, S

′
T 〉 is a transition system over

the same set of labels and α : S → S′ is a homomorphism
from T to T ′; i.e., 〈α(s), l, α(t)〉 ∈ A′ for all 〈s, l, t〉 ∈ A,
α(s0) = s′0 and α(ST) ⊆ S′

T .
An abstraction A = 〈T ′, α〉 for T defines an admissible

heuristic hA for finding shortest paths on T , where hA(s)
is the length of a shortest path from α(s) to an abstract goal
state. The admissibility of hA follows directly from the ho-
momorphism because every goal-reaching path from s on T
induces a path of the same length, via α, from α(s) to an
abstract goal state.

Two abstractions A′ = 〈〈S′, L,A′, s′0, S
′
T 〉, α′〉 and

A′′ = 〈〈S′′, L,A′′, s′′0 , S
′′
T 〉, α′′〉 for T are combined into

a composite abstraction A ⊗ A′ .
= 〈〈S,L,A, s0, ST 〉, α〉

where α(s) = (α′(s), α′′(s)), S = S′ × S′′, and
〈(s, s′), l, (t, t′)〉 ∈ A iff 〈s, l, t〉 ∈ A′ and 〈s′, l, t′〉 ∈ A′′.
It is not hard to show that α is a homomorphism from T
into 〈S,L,A, s0, ST 〉 and thus hA′⊗A′′

is admissible and,
furthermore, max{hA′

, hA′′} ≤ hA′⊗A′′
.

Given a SAS+ problem P = 〈V,O, s◦, s�〉, the transition
system TP = 〈S,L,A, s0, ST 〉 consists of the collection of
SAS+ states S, L = O, s0 = s◦, ST = {s : s|vars(s�) = s�},
and 〈s, o, s′〉 ∈ A iff the operator o is applicable at s and re-
sults in s′. TP is a faithful representation of P : all plans
of P , and only them, correspond to paths on TP . Further-
more, this correspondence preserves path lengths and thus a
shortest plan on P corresponds to a shortest path on TP .

Abstractions (hence heuristics) for TP are obtained by
forming synchronized products from atomic abstractions.
Helmert, Haslum, and Hoffmann build complex abstrac-
tions from abstractions AX for SAS+ variables: AX

.
=

〈〈S,L,A, s0, ST 〉, α〉 has states S = DX , labels L = O,
s0 = X(s◦), ST equals {X(s�)} (resp. DX if X(s�) =
⊥), and 〈x, o, x′〉 ∈ A iff 1) X(pre[o]) = x and
X(post[o]) = x′, 2) X(pre[o]) = ⊥ and X(post[o]) = x′,
or 3) X(pre[o]) = X(post[o]) = ⊥ and x = x′. The ab-
straction map is α(s) = X(s).

Counting Abstractions

The above framework is general enough to accommodate
abstractions of a more general type. Here, we present count-
ing abstractions, another type of abstraction, that capture
quantitative aspects of the planning task. These abstractions
may be combined among them or with the composites ob-
tained from the variables to build better composites.

An atom is an assignment ‘X=x’ where X is a variable
and x ∈ DX .1 It holds at state s, written s |= X=x, iff

1We only consider atoms over single variables yet the frame-
work supports atoms of the form X=x where X is a subset of
variables and x is a value for X.

X(s) = x. For a collection C of atoms, the counting vari-
able for C is the variable that assigns to each state s the num-
ber C(s) of atoms in C holding at s; i.e., C(s) .

= |{p ∈ C :
s |= p}|. Clearly, the domain of C is DC

.
= {0, 1, . . . , |C|}.

A counting variable C defines an abstraction AC = 〈TC =
〈S,L,A, s0, ST 〉, α〉 of TP made of states S = DC , la-
bels L = O, initial state s0 = C(s◦), target states ST =
{C(s) : s |= s�)}, and transitions 〈v, o, v′〉 ∈ A iff there is
a state s in TP such that o is applicable at s, C(s) = v and
C(result(s, o)) = v′. The abstraction map is α(s) = C(s).

For example, let C� be the collection of goal atoms so that
C�(s) counts the number of ‘goals’ achieved in s. Then, the
length of a shortest path from C�(s) to an abstract goal is
an admissible estimate for the length of a shortest plan from
s to s�. This estimate is related, but not necessarily equal,
to the one obtained by counting the number of unsatisfied
goals in s. Indeed, hAC� is admissible while the latter is not
because a naive counting assumes that goals are indepen-
dent and does not take into account the possible interactions
among goals; e.g., operators that establish two or more goals
simultaneously.

By definition, AC is an abstraction of TP and thus pro-
vides admissible estimates that can be freely combined with
other abstractions via synchronized products. However, AC
is defined in terms of the transition system TP that is not di-
rectly accessible. In the rest of this section we show how to
efficiently construct an approximation abstraction ̂AC from
the SAS+ representation of the planning problem.

Effective Construction

The challenge for computing a sound abstraction is to take
care of the variables that have undefined precondition val-
ues in the operators. Such operators are closely related to
the “unsafe” operators in the approaches to planning based
on Petri nets (Hickmott et al. 2007; Bonet et al. 2008).
Operators o that delete atoms p ∈ C which are not pre-
conditions cause uncertainty about the transitions labeled
by o: if p holds at s then p contributes -1 to the difference
C(result(s, o)) − C(s), while if p does not hold at s then it
contributes 0 to the difference.

One way to deal with such operators is to consider all safe
versions of them. This method however is not practical as
the number of versions may be exponential. On the other
hand, this is not really needed; we only need to know the
aggregate contribution of the atoms in C to the difference
C(result(s, o))− C(s), for every possible s.

In fact, fix an operator o and let baseo be the number of
atoms in C that appear as preconditions of o, and let

δ+o
.
= {X : X=X(pre[o]) /∈ C ∧X=X(post[o]) ∈ C},

δ−o
.
= {X : X=X(pre[o]) ∈ C ∧X=X(post[o]) /∈ C},

αo
.
= {X : X(pre[o]) = ⊥ ∧X=X(post[o]) ∈ C},

βo
.
= VarsC ∩ {X : X(pre[o]) = ⊥ ∧X=X(post[o]) /∈ C}

where VarsC is the set of variables mentioned in C.
Lemma 1. Let s, s′ be two SAS+ states, o an operator ap-
plicable at s and s′ = result(s, o). Then, C(s) ≥ baseo and
C(s′) = C(s)+ |δ+o | − |δ−o |+ k for some −|βo| ≤ k ≤ |αo|.

312

Proof. Clearly, C(s) ≥ baseo since s |= pre[o]. For the
second claim, let def .

= {X : X(pre[o]) �= ⊥} and define

δ+s
.
= def ∩ {X : X=X(s) /∈ C ∧X=X(post[o]) ∈ C} ,

δ−s
.
= def ∩ {X : X=X(s) ∈ C ∧X=X(post[o]) /∈ C} ,

α+
s

.
= def ∩ {X : X=X(s) /∈ C ∧X=X(post[o]) ∈ C} ,

α0
s
.
= def ∩ {X : X=X(s) ∈ C ∧X=X(post[o]) ∈ C} ,

β−
s

.
= def ∩ {X : X=X(s) ∈ C ∧X=X(post[o]) /∈ C} ,

β0
s

.
= def ∩ {X : X=X(s) /∈ C ∧X=X(post[o]) /∈ C} .

It is not hard to see that every X in α0
s ∪ β0

s contributes
0 to the difference C(s′) − C(s), that every X in δ−s ∪ β−

s
contributes -1 to the difference, and that every X in δ+s ∪α+

s
contributes 1 to the difference. Also, α+

s ⊆ αo and β−
s ⊆

βo. Since δ+s = δ+o and δ−s = δ−o when o is applicable at s,

C(s′)− C(s) = |δ+s | − |δ−s |+ |α+
s | − |β−

s |
= |δ+o | − |δ−o |+ a− b

for some 0 ≤ a ≤ |αo| and 0 ≤ b ≤ |βo|. Thus, C(s′) =
C(s) + |δ+o | − |δ−o |+ k for some −|βo| ≤ k ≤ |αo|.

The approximation ̂AC is thus 〈〈S,L,A, s0, ST 〉, α〉
where S = {0, . . . , |C|}, L = O, s0 = C(s◦), ST = {v ∈
S : C(s�) ≤ v}, 〈v, o, v′〉 ∈ A iff v ≥ baseo and v′ is such
that v′ = v + |δ+o | − |δ−o | + k for some −|βo| ≤ k ≤ |αo|
with the constraint 0 ≤ v′ ≤ |C|, and α(s) = C(s). Finally,
observe that when C only consists of atoms X=x such that
X is a variable that appears in the goal, then the terminal
states can be strengthened to ST = {C(s�)}. The following
result is a direct consequence of the definition and Lemma 1.

Theorem 2. The approximation ̂AC is an abstraction of AC
and, by transitivity, an abstraction of TP as well. Further-
more, ̂AC can be constructed in polynomial time.

Merge-and-Shrink Strategies

A composition strategy dictates how to form a global com-
posite beginning from a collection Λ of atomic abstractions.
The simplest type of strategy is a linear strategy that main-
tains a unique non-atomic abstraction A that is iteratively
enlarged with atomic abstractions. Initially, A is the trivial
non-informative abstraction made of a single state, and at
each iteration an atomic abstraction Ai ∈ Λ is extracted to
update A as A ⊗ Ai. The process ends when Λ becomes
empty, a time at which A consolidates all the information
contained in the atomic abstractions. Since ⊕ is associative
and commutative, the extraction order is irrelevant, but be-
comes relevant when the size of A is controlled.

The size of A ⊗ Ai is the product of the sizes of A and
Ai. Hence, given a requirement N on the maximum amount
of available memory, the partial composites are shrunk ap-
propriately to satisfy the constraint; Helmert, Haslum, and
Hoffmann propose to always shrink A to size �N/size(Ai)�
before forming the product A⊗Ai.

Shrinking is done by a sequence of coalesce operations
until the size reaches the target value; the coalesce of a group
of states is a new abstraction in which all states in the group

are replaced by a new single state. Helmert, Haslum, and
Hoffmann discuss operations that preserve the heuristic val-
ues, called g-, h- and f -preserving operations. However,
even if the heuristic values are preserved, the potential of
the abstraction always diminishes when states are fusioned
because structure, and hence information, is lost.

In our experiments, we tried two different merge strate-
gies. The first is the default strategy of merge-and-shrink in
which the variables are statically ordered and the next ab-
straction AX to pick corresponds to the first variable that
is either 1) causally connected to a variable in A, or 2) a
goal variable. The second strategy is a new strategy that is
like the previous but in which the causally connected vari-
ables are considered in a breadth-first manner, by using a
FIFO queue that maintains the causally connected variables.
Another option is to use a LIFO queue that implements a
depth-first order; yet, it did not produce good results.

Independently of the merge strategy, if the counting vari-
ables are brought into the global composite at last, the result
is a heuristic that is at least as good as the one that consid-
ers no counting variables. In our experiments, this heuristic
does not improve over merge-and-shrink either because the
counting abstractions do not provide additional information
or because the shrinking operations had reduced the poten-
tial of the global abstraction. Thus, we treat the counting
abstractions as first-class citizens like the standard atomic
abstractions. In any case, the relevant thing is to think about
the counting abstractions as an effective way to boost the
pure merge-and-shrink heuristic; something this is not clear
how to do it in the original setting because once the atomic
abstractions are exhausted, there are not other sources of in-
formation available.

Preliminary Experiments
Experiments were performed on problems from the Interna-
tional Planning Competition with an Intel Xeon processor
of 1.86GHz and with 2Gb of RAM. We implemented the
counting abstractions on top of the merge-and-shrink heuris-
tic of the Fast Downward distribution.

The experiment consisted of extending the collection of
standard atomic abstractions with a fixed number of 5 count-
ing abstractions: C� that “counts goal atoms”, C◦ that con-
sists of the goal variables evaluated at s◦, and three counting
abstractions with 2 atoms each obtained by randomly sam-
pling a variable and a value. The maximum number of nodes
in an abstraction is set to parameter N .

Table 1 gives results for selected problems with the length
h∗(s◦) of an optimal plan and the number of expanded nodes
until the last f -layer, an objective measure for the quality of
a heuristic, for four heuristics: two pure merge-and-shrink
(M&S-1 and M&S-2) and two merge-and-shrink with count-
ing variables (M&S-#1 and M&S-#2). The versions in each
group differ on the merge strategy: the first uses the original
static strategy and the second the LIFO strategy.

The results are mixed because no heuristic dominates the
others. However, it is clear that there is some sort of dom-
inance in a per-domain basis. Another interesting obser-
vation is the column of zeroes for M&S-#2 across all in-
stances of Gripper. These zeroes mean that M&S-#2 equals

313

the perfect heuristic h∗ on these instances. Indeed, it can be
shown that M&S-#2 is perfect in Gripper because it counts
the number of balls at each room and tracks the position of
the robot, enough information to build a perfect abstraction.

Independently of these preliminary results, we believe
that the performance of merge-and-shrink heuristics can be
improved by defining more interesting counting variables
and with better merge strategies. A clear advantage of count-
ing variables over SAS+ variables is that one is not limited
by their number; any set of fluents defines a counting vari-
able that may be relevant for the problem.

Discussion

We defined counting abstractions that are transparently com-
bined with SAS+ abstractions within the framework of la-
beled transition systems. The abstractions are combined us-
ing a merge strategy. We tried the original merge-and-shrink
strategy and a new one that explore causally connected vari-
ables in a breadth-first order.

In general, any function that maps states into a domain D
defines an abstraction that can be expressed as a labeled tran-
sition system. However, an abstraction is feasible in practice
only if it can be effectively constructed from the description
of the planning problem. In our case, we showed how to
construct counting abstractions from SAS+ representations.
It is matter of future research to study other types of general
and feasible abstractions.

Acknowledgments Thanks to J. Hoffmann, M. Helmert
and P. Haslum for interesting discussions, and the reviewers.

References

Bonet, B.; Haslum, P.; Hickmott, S.; and Thiébaux, S. 2008.
Directed unfolding of petri nets. Trans. on Petri Nets and
Other Models of Concurrency I 1:172–198.
Dräger, K.; Finkbeiner, B.; and Podelski, A. 2006. Directed
model checking with distance-preserving abstractions. Proc.
13th Int. SPIN Workshop, 19–34.
Edelkamp, S. 2001. Planning with pattern databases. Proc.
6th European Conf. on Planning, 13–24.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. Proc. 22th
National Conf. on Artificial Intelligence, 1007–1012.
Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admissi-
ble heuristics for domain-independent planning. Proc. 20th
National Conf. on Artificial Intelligence, 1163–1168.
Helmert, M., and Domshlak, C. 2009. Landmarks, criti-
cal paths and abstractions: What’s the difference anyway?
Proc. 19th Int. Conf. on Automated Planning and Schedul-
ing, 162–169.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flex-
ible abstraction heuristics for optimal sequential planning.
Proc. 17th Int. Conf. on Automated Planning and Schedul-
ing, 176–183.

Hickmott, S.; Rintanen, J.; Thiébaux, S.; and White, L.
2007. Planning via petri net unfolding. Proc. 20th Int. Conf.
on Automated Planning and Scheduling, 1904–1911.
Karpas, E., and Domshlak, C. 2009. Cost-optimal plan-
ning with landmarks. Proc. 21st Int. Joint Conf. on Artificial
Intelligence, 1728–1733.
Katz, M., and Domshlak, C. 2008a. Optimal additive com-
position of abstraction-based admissible heuristics. Proc.
18th Int. Conf. on Automated Planning and Scheduling,
174–181.
Katz, M., and Domshlak, C. 2008b. Structural patterns
heuristics via fork decomposition. Proc. 18th Int. Conf. on
Automated Planning and Scheduling, 182–189.
Prieditis, A. 1993. Machine discovery of effective admissi-
ble heuristics. Machine Learning 12:117–141.

static strategy LIFO strategy

inst. h∗(s◦) M&S-1 M&S-#1 M&S-2 M&S-#2
Gripper: N = 50,000
03 23 9,318 10,298 0 0
04 29 68,186 65,681 32,514 0
05 35 376,494 371,720 332,629 0
06 41 1,982,014 1,974,279 1,934,383 0
07 47 10,091,966 10,080,246 10,047,485 0

Parcprinter: N = 10,000
01 8 0 0 0 0
02 15 0 102 0 0
03 22 0 1,949 0 1,833
04 29 0 123,129 0 86,589
05 36 3,938,986 — 0 4,411,801

Pipesworld-notankage: N = 2,500
06 10 1,481 1,454 9,739 1,582
07 8 205 171 2,033 245
08 10 475 501 27,146 498
09 13 128,528 77,204 1,500,464 123,148
10 18 3,002,179 2,889,572 — —

Satellite: N = 10,000
02 13 0 0 0 0
03 11 0 766 0 588
04 17 0 12,321 392 8,622
05 15 49,185 222,067 125,677 247,228
06 20 2,365,252 3,945,065 3,141,649 3,662,944

Sokoban: N = 10,000
06 35 3,534 8,739 3,468 3,440
07 69 171,467 278,898 162,188 163,927
08 76 4,980,753 8,043,455 4,924,825 4,634,145
09 88 491,551 846,583 490,206 431,562
10 95 260,051 741,567 257,767 258,404

Trucks: N = 10,000
02 17 4,185 11,554 398 3,289
03 20 181,538 111,559 19,697 95,228
04 23 2,591,406 1,915,555 1,707,330 1,690,526
05 25 — 13,328,955 10,968,136 11,596,010
07 23 8,066,124 5,103,416 1,107,526 3,632,298

Table 1: Number of expanded nodes until the last f -layer
for different problems; N is the maximum # of states for
the abstraction. The columns show the name of the instance,
the length of the optimal plan, and the number of expanded
nodes for merge-and-shrink without and with counting vari-
ables for two different merge strategies (best in boldface).

314

