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Abstract

A collection of landmarks is complete if the cost of a
minimum-cost hitting set equals h+ and there is a minimum-
cost hitting set that is an optimal relaxed plan. We present an
algorithm for generating a complete collection of landmarks
and we show that this algorithm can be extended into effective
polytime heuristics for optimal and satisficing planning. The
new admissible heuristics are compared with current state-of-
the-art heuristics for optimal planning on benchmark prob-
lems from the IPC.

Introduction
A landmark (for a given state) is a subset of actions such
that each valid plan contains at least one action in the land-
mark. Current state-of-the-art admissible heuristics for opti-
mal planning are landmark heuristics. These heuristics cal-
culate a collection of landmarks for the given state and com-
bine the costs of the landmarks into an admissible estimate.
Landmark heuristics differ in how landmarks are computed
and how costs are combined. The current most success-
ful approach generates landmarks by considering cut-sets in
justification graphs and combine the costs using hitting sets
(Helmert and Domshlak 2009; Bonet and Helmert 2010).

Landmark heuristics are instances of delete-relaxation
heuristics that try to approximate as close as possible the op-
timal delete relaxation heuristic h+ (Hoffmann 2005). The
value of h+ is the cost of an optimal plan for the task that
results of removing the delete lists from the operators. Its
value is a lower bound on the true cost h∗ yet it is NP-hard
to compute (Bylander 1994) or approximate within a con-
stant factor (Betz and Helmert 2009). Nonetheless, h+ had
shown to be a powerful heuristic and thus it is important to
design effective methods to compute it.

In this paper, we present an algorithm for computing
a complete collection of landmarks from which the exact
value of h+ can be computed. Of course, the algorithm does
not run in polynomial time, but it provides new insight for
the principled generation of landmarks. Indeed, using this
insight, we propose novel polytime algorithms for improv-
ing a given collection of landmarks and define novel poly-
time heuristics. These heuristics are compared with the cur-
rent state of the art on benchmark problems.
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The paper is organized as follows. We first review fun-
damental concepts about landmarks, hitting sets and com-
plete collections. Then, we present a complete algorithm
for generating landmarks that is based on a conflict-directed
mechanism, and show how to modify the algorithm to run
in polynomial time and to improve on some of its limita-
tions. The paper finishes with preliminary experiments and
a discussion.

Landmarks

A STRIPS problem with action costs is a tuple P =
〈F,O, I,G, c〉 where F is the set of fluents, O is the set of
actions or operators, I and G are the initial state and goal
description, and c : O → N is the cost function. We are
interested in delete relaxations, so we assume that the oper-
ators have empty delete lists, and thus “plan” and “relaxed
plan” denote the same. We also assume that all fluents have
finite hmax values,1 which implies that the problem has finite
h+ value. Finally and without loss of generality, we require
that all operators have nonempty preconditions, that there
are two fluents s, t ∈ F such that I = {s} and G = {t}, and
that there is a unique operator fin that adds t; when these
simplifying assumptions are not met, they can be achieved
through simple linear-time transformations. The precondi-
tion and effects of a ∈ O are denoted by pre(a) and post(a),
and the h+ value for state I is denoted by h+(P ).

An (action) landmark for P is a set {a1, . . . , an} of ac-
tions such that every plan for P must contain at least one of
such actions. Notice that this definition is done for delete-
free problems. However, if P is not delete free, every plan
for P is also a plan for its delete-free relaxation P+. Thus,
every landmark for P+ is also a landmark for P .

As recently shown (Helmert and Domshlak 2009; Bonet
and Helmert 2010), landmarks can be extracted from jus-
tification graphs. A justification graph is a labeled di-
rected graph on fluents whose edges are defined by a fixed
precondition-choice function (pcf) D, that maps actions a
into preconditions D(a) ∈ pre(a), so that there is an edge
(p, q) labeled with a iff D(a) = p and q ∈ post(a). The jus-
tification graph associated to the pcf D is denoted by G(D).

An s-t-cut of G(D) is a partition (X,Xc = F \ X) of

1The hmax values are obtained by solving the hmax equation in
linear time (Bonet and Geffner 2001).
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vertices such that s ∈ X and t ∈ Xc, and its cut-set is the
set of edges that cross the cut. Since a plan for P defines
an s-t-path on G(D), the labels of the edges in a cut-set
form a landmark for P . Furthermore, the collection FL of
landmarks that can be obtained from cut-sets of justification
graphs is complete, meaning that FL contains enough infor-
mation for computing h+(P ) and an optimal (relaxed) plan
for P (Bonet and Helmert 2010).

Unfortunately, the number of pcfs is exponential as well
as the number of s-t-cuts (in general) for a given G(D).
However, not every landmark in FL is required and the ques-
tion is how to compute a complete subset of FL in a princi-
pled and informed manner. Before answering this question,
let us to recall how landmarks are used to compute heuristics
and to formally define complete collections.

Hitting Sets and Complete Collections

A hitting set problem is a pair 〈A, c〉 where A =
{A1, . . . , An} is a family of subsets and c : A → N is a
cost function, A = ∪n

i=1Ai. A hitting set H for 〈A, c〉 is a
subset of A that “hits” every Ai; i.e., H ∩ Ai �= ∅. The cost
of H is c(H) =

∑
a∈H c(a) and it is of minimum cost if its

cost is no greater than the cost of any other hitting set.
A collection L = {L1, . . . , Ln} of landmarks can be

thought as an instance 〈L, c〉 of a hitting set problem. In-
deed, if min〈L, c〉 denotes the cost of a minimum-cost hit-
ting set, then min〈L, c〉 ≤ h+(P ). A collection L is said
to be complete for P iff min〈L, c〉 = h+(P ) and there is a
minimum-cost hitting set H for 〈L, c〉 that is a plan for P .

Computing a minimum-cost hitting set for a given 〈A, c〉
is NP-hard, but it is fixed-parameter tractable with respect to
its width. The width of 〈A, c〉 is defined as the size of the
largest connected component of its interaction graph. The
interaction graph for 〈A, c〉 is an undirected graph whose
vertices are the elements in A and there is an edge (a, b)
iff there is a subset Ai ∈ A that contains {a, b}. By us-
ing dynamic programming, one can show that a minimum-
cost hitting set can be computed in O(‖〈A, c〉‖ + w4w)
time for problems of width w (Bonet and Helmert 2010),
where ‖〈A, c〉‖ is the length of the encoding of 〈A, c〉. This
bound is a worst-case theoretical bound. In our experiments,
a minimum-cost hitting set is found with search and this
bound is not attained.

A Complete Algorithm

Interestingly, the basis for designing a complete algorithm is
implicit in Bonet and Helmert’s proof for the completeness
of the collection FL, because the proof not only shows com-
pleteness, but also suggests an efficient method for improv-
ing an incomplete collection. Indeed, the following result
builds on such proof.
Theorem 1. Let P = 〈F,O, I,G, c〉 be a relaxed planning
task. There is a linear-time Algorithm A that on input H ⊆
O outputs YES, if H contains a plan for P , or a landmark
L, not hit by H , if H does not contain a plan for P .

Proof. Let R be the subset of fluents reachable from I by
only using operators in H . If R contains t, output YES.
Otherwise, construct the pcf D as follows:

• if pre(a) ⊆ R, set D(a) to some p ∈ pre(a),
• if pre(a) � R, set D(a) to some p ∈ pre(a) \R.

Consider now the s-t-cut (R,Rc) of G(D) where Rc = F \
R. It is an s-t-cut because s ∈ R and t ∈ Rc. We claim
that H does not hit the cut-set; i.e., that there is no operator
a ∈ H that labels an edge in G(D) going from R into Rc.

Indeed, let a be an arbitrary element of H . If pre(a) ⊆ R,
then post(a) ⊆ R and no edge labeled by a cross the cut
because such edges go from R into R. If pre(a) � R, then
D(a) /∈ R and no edge labeled by a cross the cut because
such edges originate in Rc. Therefore, H does not hit the
cut-set. Finish with the fact that the labels for the edges in
the cut-set make up a landmark L for P .

The algorithm performs a reachability analysis for com-
puting R, then constructs the pcf D, and finally computes
the landmark L. With the proper data structures, all these
tasks can be performed in linear time.

Observe that Algorithm A is not fully specified as there
may be more than one choice when constructing the pcf,
and thus different implementations are possible. In any case,
Algorithm A can be used to generate a complete collection
of landmarks as follows. Let L be an initial (possibly empty)
collection of landmarks, and H a minimum-cost hitting set
for 〈L, c〉. Then, by calling A(H) one can decide whether H
contains an optimal relaxed plan for P , or else obtain a new
landmark L that is not hit by H . In the former case, we know
that L is a complete collection while in the latter case, L can
be extended into L′ := L ∪ {L}. Then, a minimum-cost
hitting set H ′ for L′ can be computed, and the whole process
repeated. This algorithm computes a complete collection
and it is called Algorithm C1.

In the worst case, C1 does not run in polynomial time
because 1) computing a minimum-cost hitting set for L is
NP-hard, but also because 2) it may incur in an exponential
number of iterations. In spite of this, Algorithm C1 is in-
teresting because it constructs a complete collection using
a conflict-directed mechanism: for a candidate collection L,
C1 computes an optimal plan H (i.e. hitting set) with re-
spect to L and applies it. If H succeeds, L is complete.
Otherwise, the conflict is analyzed by Algorithm A and a
new landmark not achieved by H is obtained. C1 offers an
starting point for the principled generation of landmarks in-
stead of a method based on the blind generation of pcfs and
cut-sets.

Indeed, by simply imposing a bound on the width of L
and a bound on the number of iterations, Algorithm C1 be-
comes Algorithm C2 that is tractable but incomplete, and
it is shown in Fig. 1. Algorithm C2 has two parameters w
and N that bound the width of the collection and the num-
ber of iterations respectively. The notation L ⊕ L refers to
the extension of L with landmark L. The extension is not a
simple union because it involves the removal of dominated
landmarks from L; i.e., landmarks L′ ∈ L with L ⊂ L′. As
a result, the extended collection L ⊕ L may be of smaller
size and even of smaller width.2

2The decrease in width or size is the reason why the algorithm
may incur in an exponential number of iterations.
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1: L := {initial collection of landmarks}
2: i := 0
3: while width(L) ≤ w and i < N do
4: H := {minimum-cost hitting set for 〈L, c〉}
5: L := A(H)
6: if L = YES then terminate
7: L := L ⊕ L
8: i := i+ 1
9: end while

Figure 1: Algorithm C2(w,N) for computing a collection
of landmarks. The parameters w and N are bounds on the
width and the number of iterations respectively.

Clearly, if C2(w,N) terminates at line 6, then c(H) =
h+(P ). Otherwise, c(H) ≤ h+(P ). Therefore, the Algo-
rithm C2(w,N) can be used to compute admissible heuris-
tics for optimal planning in polytime for fixed w and N . Un-
fortunately, we had seen in our experiments that width(L)
grows quite fast reaching the bound w in few iterations. This
is because Algorithm A tends to generate landmarks in the
same connected component instead of generating landmarks
in a more balanced manner. Thus, although Algorithm C2
is correct, it is often ineffective when compared to other
heuristics.

In the following, we present a technique for dealing with
this problem that we call saturation and which permits the
continual generation of landmarks past the time of achieving
the width bound. As we will see, this technique can be used
to obtain better heuristics without giving up the polynomial
time guarantees for both optimal and satisficing planning.

Saturation

Let w be the width bound, L a collection of landmarks and
H a minimum-cost hitting set for L. Further, let L be a
landmark not hit by H , as the one generated by A(H). If the
width of L⊕L is greater than w, then L cannot be extended.
However, we can generate a new landmark L′ by calling A
with H ∪ HS where HS is a (perhaps suboptimal) hitting
set for {L}. If A detects that H ∪HS contains a plan, then
we know that c(H) ≤ h+(P ) and c(H) is an admissible
estimate. Otherwise, A computes a new landmark L′ that is
not hit by H ∪ HS . This landmark is used to extend L if
the width of L ⊕ L′ is less than or equal to w, or to extend
{L} in the other case. This process can be iterated a number
of times to obtain an admissible estimate c(H) for optimal
planning or a non-admissible estimate c(H) + c(HS) for
satisficing planning.

We call the set HS the saturation of H with respect to
{L}. In general, we keep a collection S of landmarks that
need to be “saturated” with respect to a given minimum-
cost hitting set H . The algorithm that performs saturation is
called Algorithm C3 and shown in Fig. 2.

As before, Algorithm C3 is not fully specified as there
may be more than one choice when computing the hitting set
HS . However, there are two methods that should be men-
tioned. The first method names the whole approach and it
just consists of selecting actions from each landmark in S

1: L := {initial collection of landmarks}
2: S := ∅
3: i := 0
4: while i < N do
5: H := {minimum-cost hitting set for 〈L, c〉}
6: HS := {hitting set for 〈S, c〉 given H}
7: L := A(H ∪HS)
8: if L = YES then terminate
9: if width(L ⊕ L) ≤ w then L := L ⊕ L

10: else S := S ∪ {L}
11: i := i+ 1
12: end while

Figure 2: Algorithm C3(w,N) for computing a collection
of landmarks using saturation. The parameters w and N are
bounds on the width and the number of iterations.

that is not hit by H . This method can be done incrementally
by inserting one (or more) actions from L each time that S
is extended with L. The second method computes a sub-
optimal hitting set using the linear-time “pricing” method
of Chvatal (1979). For lack of space, we just say that the
pricing method computes a greedy hitting set HS for S by
including at each iteration an action a that maximizes the
number of remaining landmarks hit by a per unit cost of a.

Preliminary Experiments

We performed experiments on a total of 881 instances for
27 domains from previous International Planning Competi-
tions. We are interested in the quality of the heuristics as
measured by the number of expanded nodes until the last f -
layer, an objective measure of quality that is not affected by
the tie-breaking criteria used for the open list. The evalua-
tion compares the heuristics LM-cut (Helmert and Domsh-
lak 2009), maxhLM-cut

p and hLM-cut
p,w for p = 3 and w = 5

(Bonet and Helmert 2010), and 3 novel “saturation” heuris-
tics that were instantiated into 6 different heuristics.

The saturation heuristics differ in how the initial collec-
tion of landmark is obtained and how the saturation is com-
puted. For the former, we use an idea similar to hLM-cut

p,w of
performing p ∈ {1, 3} passes of the LM-cut method to gen-
erate the initial collection of landmarks. For the latter, we
tried the pricing method (denoted by hprice

p,w), and an incre-
mental saturation in which whenever a landmark L needs to
be saturated, only one action (denoted by hone

p,w) or all ac-
tions (denoted by hall

p,w) in L are inserted into HS . In all
cases, we use a width bound w = 5 and maximum number
of iterations N = 25.

We do not have enough space to present the results in de-
tail. Instead, we make the following remarks:
• As expected, no heuristic expanded more nodes than the

LM-cut heuristic hLM-cut.
• No heuristic improved on hLM-cut for airport, blocks, open-

stacks (2006 instances), parcprinter and logistics (2000
instances), suggesting that hLM-cut computes h+ on these
domains.

• The domains can be divided into three groups according
to whether the percentage of the reduction on the number
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hprice
p,5 hone

p,5 hall
p,5

domain hLM-cut maxhLM-cut
3 hLM-cut

3,5 p = 1 p = 3 p = 1 p = 3 p = 1 p = 3

trucks 23,326 0.1% 0.2% 8.6% 11.5% 5.9% 17.4% 2.2% 4.9%
zenotravel 8,406 24.8% 25.4% 0.0% 25.3% 0.0% 25.3% 0.0% 25.3%
tpp 23,417 28.1% 28.4% 18.9% 28.6% 15.7% 28.8% 15.5% 28.7%
scanalyzer 8,097 32.4% 32.7% 0.2% 33.1% 0.3% 33.1% 0.2% 33.0%
pipesworld-tankage 6,442 36.1% 38.5% 0.0% 38.2% 0.0% 38.5% 0.0% 38.3%
elevators 166,459 36.7% 37.8% 5.3% 37.7% 5.5% 38.6% 4.9% 37.8%
satellite 4,117 36.0% 36.6% 0.8% 38.7% 0.3% 37.4% 1.2% 37.5%
mprime 337 42.1% 42.4% 2.3% 42.4% 2.3% 42.4% 2.3% 42.4%
depot 18,394 36.5% 42.0% 0.0% 42.9% 0.6% 43.0% 0.0% 42.6%

pegsol 985,520 27.7% 27.9% 44.3% 50.7% 39.0% 48.2% 30.8% 44.5%
woodworking 43,675 46.7% 46.8% 25.5% 54.5% 25.5% 57.0% 25.5% 57.0%
openstacks-2006 481,665 57.8% 61.8% 4.0% 64.8% 4.0% 64.8% 4.0% 64.4%
freecell 68,265 73.3% 74.3% 0.1% 74.5% 17.8% 76.6% 1.1% 74.5%

Table 1: Total number of expanded nodes for all instances in a given domain for hLM-cut, and percentages of the reduction on
the number of expanded nodes with respect to hLM-cut for other heuristics. Top domains are those considered of “moderate”
reduction (10%-50%) while bottom domains are considered of significant reduction (50%-100%). Best reductions are shown
in boldface.

of expanded nodes with respect to hLM-cut is minor (0%-
10%), moderate (10%-50%) or significant (50%-100%).
Table 1 shows the domains of moderate and significant
reduction ordered by this percentage.

• hLM-cut
3,5 is the best heuristic in terms of expanded nodes

only for zenotravel, and is tied with other heuristics in
pipesworld-tankage and mprime. In the other domains,
the saturation heuristics are better than hLM-cut

3,5 .

• For p = 1, hLM-cut
1,5 equals hLM-cut. However, for p = 1, the

saturation heuristics are better than hLM-cut and, in some
cases, better than hLM-cut

3,5 (see Table 1).

• The heuristic hone
3,5 obtained the most reductions across all

domains (see Table 1).

• The dominant factor in time is the number of passes of the
LM-cut loop used to initialize L. In problems with minor
or moderate reduction, the new heuristics are slower than
hLM-cut
3,5 (which is slower than hLM-cut). In problems with

significant reduction, the running times improve substan-
tially approaching that of hLM-cut.

These results show that is possible to generate landmarks in
a focused manner to improve landmark heuristics.

Discussion

We defined the simple and efficient Algorithm A that de-
cides when a set H of actions contains a relaxed plan for
a given task, or computes a landmark not hit by H when it
contains no such plan. Algorithm A is used to design Algo-
rithm C1 that computes a complete collection of landmark
using a conflict-directed approach, and its modification Al-
gorithm C3 that runs in polytime and uses saturation. Sat-
uration is a general idea that can be implemented in several
ways. We proposed three saturation methods and evaluated
them over benchmarks problems from the IPCs. The results

show that the new heuristics improve on the current state of
the art for optimal planning.

In the future, we would like to develop an effective algo-
rithm for computing exact h+ values, and to define better ad-
missible heuristics and also non-admissible landmark-base
heuristics for satisficing planning.
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