
Automatic Reductions from PH into STRIPS
or How to Generate Short Problems with Very Long Solutions

Aldo Porco
Departamento de Computación

Universidad Simón Bolı́var
Caracas, Venezuela

aldo@gia.usb.ve

Alejandro Machado
Departamento de Computación

Universidad Simón Bolı́var
Caracas, Venezuela

alejandro@gia.usb.ve

Blai Bonet
Departamento de Computación

Universidad Simón Bolı́var
Caracas, Venezuela

bonet@ldc.usb.ve

Abstract

Recently, it has been shown how to automatically translate
any problem in NP, expressed in the language of second-order
logic, into a STRIPS planning problem. In this work, we ex-
tend such translations by considering decision problems in
the polynomial-time hierarchy (PH) and not just NP. Since
decision problems in PH require in general exponentially-
long “certificates”, the plans (if any) for the resulting STRIPS
problems would have exponential length. Besides explaining
the novel translations, we present experimental results and
discuss the challenges that such problems pose.

Introduction
In a recent contribution, Porco, Machado, and Bonet (2011)
show how to automatically reduce instances of decision
problems in NP into plan-existence decision problems for
STRIPS. In this approach, a decision problem Π in NP
is encoded as a second-order existential (SO∃) formula Φ,
while problem instances are encoded as first-order structures
A such that A � Φ iff the instance encoded by A belongs
to Π. This is a general and feasible method as it is known
that SO∃ captures the class NP (Immerman 1998). The pair
〈Φ,A〉 is then fed into a software tool that outputs a STRIPS
problem P that has a solution (plan) iff A � Φ, thus al-
lowing the utilization of the current planning technology to
automatically solve the problems in NP that are expressed
as second-order formulas. Moreover, the problem P is not
an arbitrary STRIPS problem but one that can be solved in
polytime by a non-deterministic Turing machine, thus guar-
anteeing that the whole approach is not an overkill, from the
standpoint of complexity theory. Furthermore, the function
〈Φ, ·〉 : STRUC 7→ STRIPS that is implemented by this
tool for fixed Φ, and that maps first-order structures A into
STRIPS problems P , is computable in polynomial time and
thus corresponds to a genuine polytime many-one reduction.

Since it is known that other (bigger) complexity classes
are also captured in second-order logic, the development of
a tool capable of targeting these classes was left as an open
issue. In this paper, we bridge this gap and show in a concise
and crisp manner how the tool can be extended to work with
decision problems in the Polynomial-time Hierarchy (PH)

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(Sipser 2005). However, although the resulting reductions
still run in polynomial time, the resulting STRIPS problems
are not solvable in non-deterministic polynomial time. This
is so because these problems only admit plans of exponential
length, in the worst case, since PH contains, besides NP, the
classes coNP and Σp

k for any k ≥ 1. The resulting planning
problems are thus short, meaning that they can be encoded
by short bit sequences, but have long solutions.

The consequences of having small problems with long so-
lutions are several. Among others, such problems pose a
challenge on the current state-of-the-art planners, which are
based on heuristic search. In particular, heuristics functions
that are based on the delete relaxation or that do not take into
account that the same action may be applied a large (i.e., ex-
ponential) number of times will probably fail at being effec-
tive for guiding the search. It is not surprising though that
the current best SAT-based planners, the planners M and Mp,
are able to solve some of these challenging STRIPS prob-
lems for which forward-search planners like LAMA’11 are
totally lost. Yet, surprisingly, LAMA’11 is quite superior to
M in one of the tested domains that requires incredible long
plans for some instances.

Being this a short paper, we don’t have the space
to present a detailed account of the approach by Porco,
Machado, and Bonet (2011). Instead, we revise some known
results from Descriptive Complexity, sketch how problems
in PH can be automatically translated into STRIPS, and
present experimental results.

Capturing PH in Second-Order Logic
NP is captured by SO∃ (Fagin 1974); i.e., decision problems
Π in NP are characterized by second-order formulas Φ like

Φ = (∃Ra1
1) · · · (∃Ran

n)ψ , (1)

where each symbol Rai
i is a existentially-quantified relation

of arity ai, and ψ is an arbitrary first-order sentence over a
vocabulary containing {Rai

i }ni=1. In this view, Π is the set of
instances (words in a language) that when encoded as first-
order structures A satisfy the formula Φ. Likewise, coNP is
captured by SO∀ that contains formulas like Eq. (1) but with
the second-order existential quantifiers replaced by second-
order universal quantifiers.

In general, Σp
k is captured by formulas whose second-

order quantifiers show a structure of k alternating blocks

of quantifiers, beginning with existentials. For example,
Σp

2 = SO∃∀ corresponds to formulas of the form:

Φ = (∃Ra1
1) · · · (∃Ran

n)(∀Sa′
1

1) · · · (∀Sa′
m

m)ψ . (2)

Since PH equals
⋃

k≥1 Σp
k and is fully characterized by arbi-

trary second-order formulas (Immerman 1998), the new tool
must target such formulas instead of the more restricted SO∃
formulas. On the other hand, PH ⊆ PSPACE, the decision
problem for STRIPS is PSPACE-complete and there are no
known syntactic restrictions on STRIPS that place its plan-
existence decision problem in PH. Thus, the new tool must
generate unrestricted STRIPS problems.

Consider now the formula Φ = (∀R1)ψ and structure A
with universe |A| (i.e., |A| is a symbol that denotes the set of
objects in A). This formula is valid in A iff for every inter-
pretationRA ofR, whereRA ⊆ |A|, we have 〈A, RA〉 � ψ.
Thus, since there are 2‖A‖ different interpretations for R, a
proof for A � Φ may be of exponential length. For exam-
ple, if ΦUNSAT denotes UNSAT, then a proof that a structure
A (encoding a set of clauses) is unsatisfiable is typically of
exponential length as it must consider all the truth valuations
for the propositional variables inA. Indeed, the solutions for
the planning problem P generated by the pair 〈ΦUNSAT,A〉
encode such proofs and are of exponential length.

Automatic Translations into STRIPS
Before extending our previous work over PH, we found it
convenient to add a simple type system. We refer to a type
system τ∗ constructed from a finite set τ = {t0, t1, . . . , tN}
of atomic types, and where τ∗ refers to the smallest set that
contains τ and all types of the form t = t′ × t′′ for t′ ∈ τ∗
and t′′ ∈ τ . The idea is that each object in a first-order struc-
ture is assigned an atomic type, with t0 standing for the type
containing all objects. The types are then used to qualify the
first-order and second-order quantifications in formulas. For
example, (∀x ∈ t) refers to a first-order quantification over
all objects of type t ∈ τ , while (∀Rt) refers to a second-
order universally quantified predicate R with type t ∈ τ∗.
The only restriction that we pose is that the complex types
in τ∗ \ τ should only appear in second-order quantifications.

Let us consider a general SO formula of the form

Φ = (Q1R
t1
1)(Q2R

t2
2) · · · (QnR

tn
n)ψ (3)

where each Qi ∈ {∃,∀} is a second-order quantifier, Ri is
a relational symbol of type ti ∈ τ∗, and ψ is a first-order
sentence. Further, let A be a first-order structure over the
vocabulary of ψ. We now show how to generate a planning
problem P that has solution iff A � Φ.

Following the previous work, the problem P has atom
schemas Holds-F[θ] for every subformula θ of ψ, with pa-
rameters that match the free variables in θ. For example, for
the formula ΦSAT encoding SAT, given by

ΦSAT = (∃TVar)ψSAT ,

ψSAT = (∀y ∈ Cls)(∃x ∈ Var)
[(P (x, y) ∧ T (x)) ∨ (N(x, y) ∨ ¬T (x))]

where ‘Var’ and ‘Cls’ are the types for variables and clauses,
there is an atom Holds-F[θ] with parameters 〈x, y〉 for the
subformula θ(x, y) = N(x, y) ∨ ¬T (x). In ψSAT, the rela-
tion P (x, y) (resp. N(x, y)) denotes that the variable x ap-
pears positively (resp. negatively) in the clause y; these re-
lations are fixed for a given SAT instance and their interpre-
tation given in a structure A encoding the instance. On the
other hand, the existentially-quantified relation T encodes
the model: T (x) is true iff the variable x is assigned to true.

The problem P has actions for choosing the valuation
T , that is represented by fluents of the form ‘T(?x)’ and
‘not T(?x)’, and actions for building a proof for ψSAT, that
are designed to work by following the recursive structure of
ψSAT. The goal of P is the single fluent Holds-F[ψSAT] that
has no parameters since ψSAT is a sentence.

In our approach, we make use of the same fluents that de-
note the validity of subformulas and the quantified relations.
The difference, though, is in how the quantified relations
are built and interleaved with the proofs of the subformu-
las. The interleaving issue does not arise for SO∃ as there
is just one interpretation to construct for each existentially-
quantified relation, but for general formulas, one needs to
construct and test many different interpretations. To make
this point clear, let us consider the formula for UNSAT that
involves a universally-quantified unary relation T :

ΦUNSAT = (∀TVar)ψUNSAT with ψUNSAT ≡ ¬ψSAT .

This formula says that for every relation T over variables
(that encodes a model), there is a clause y such that for every
variable x, if x appears positive in y, then x is false, and
if x appears negative in y, x is true. UNSAT can thus be
automatically translated into STRIPS by considering actions
that “iterate” over all possible relations T , and actions for
obtaining the fluent Holds-F[ψUNSAT] for each such T .

For unary T , there are 2n different relations on n vari-
ables. Each relation can be encoded with a binary string
of length n (one bit per variable) so that the ith bit is 1
iff the ith variable xi is true. Thus, to iterate over all re-
lations is equivalent to iterate over all such strings. This
can be done by starting with the empty relation, correspond-
ing to ‘0. . . 00’, and successively “adding 1” until reach-
ing ‘1. . . 11’. Figure 1 shows 5 actions that do the itera-
tion; these actions make use of the extra fluents Need- and
Holds-F[ΦUNSAT], for the second-order formula ΦUNSAT, and
the fluents ‘Marker(x)’, ‘VarFirst(x)’, ‘VarSucc(x, y)’ and
‘VarLast(x)’. The last three type of fluents are static fluents
that are set in the initial situation and implement an static
order of the objects that refer to propositional variables.

Let us briefly explain how the iteration works. The initial
situation contains the static fluents defining the Var and Cls
types, and the binary relationsN(x, y) and P (x, y), plus the
fluent Need-F[ΦUNSAT], while the goal contains only Holds-
F[ΦUNSAT]. Initially, the only applicable action is A1, which
sets T as the empty relation and adds Need-F[ψUNSAT]. Al-
though not shown, this fluent triggers actions for achieving a
proof of ψUNSAT for the current T , which as a side effect add
Holds-F[ψUNSAT] once ψUNSAT is proved. If ψUNSAT is proved,
A2 becomes the only applicable operator and it removes
Holds-F[ψUNSAT] and adds Marker(x) for the first variable

[A1] STARTPROOF:
Pre: Need-F[ΦUNSAT]
Eff: for each x ∈ Var: not-T(x) ,
¬Need-F[ΦUNSAT] , Need-F[ψUNSAT]

[A2] NEXTITERATE(x):
Pre: Holds-F[ψUNSAT] , VarFirst(x)
Eff: ¬Holds-F[ψUNSAT] , Marker(x)

[A3] NEXTOVEREXCLUDEDOBJECT(x):
Pre: Marker(x) , not-T(x)
Eff: ¬not-T(x) , T(x) , ¬Marker(x) , Need-F[ψUNSAT]

[A4] NEXTOVERINCLUDEDOBJECT(x, y):
Pre: Marker(x) , T(x) , VarSucc(x, y)
Eff: ¬T(x) , not-T(x) , ¬Marker(x) , Marker(y)

[A5] FINISHPROOF(x):
Pre: Marker(x) , T(x) , VarLast(x)
Eff: ¬T(x) , not-T(x) , ¬Marker(x) , Holds-F[ΦUNSAT]

Figure 1: Actions for iterating over the 2n unary relations T that
encode the truth-assignments for n propositions in UNSAT.

x in the static order. After A2, A3 must be applied and it
changes T from the model corresponding to 0. . . 00 to the
model corresponding to 0. . . 01, and adds Need-F[ψUNSAT]
that asks for a proof of ψUNSAT for the new T . This itera-
tion proceeds in a similar manner until proving ψUNSAT for
the last model corresponding to 1. . . 11, a time at which
A5 becomes the only applicable action and adds Holds-
F[ΦUNSAT].1

This iteration also works for relations of arity k > 1. The
only requirement is to replace x and y with k-tuples, and
have fluents that implement the static order over k-tuples.

In the case of SAT, the new translation differs from the old
by having fluents for the SO formula ΦSAT and by “passing
control” to the actions that prove Holds-F[ψSAT] in a way
similar to UNSAT; Fig. 2 shows the operators for SAT.

The translations for SAT and UNSAT share a common
“protocol” that controls which operators become active or
inactive depending on which part of the formula is being
proved. This protocol is designed to allow the composition
of the two types of SO quantifiers, and thus to make a trans-
lation for PH. For example, a formula in Σp

2 of the form
Φ = (∃T t1)(∀Rt2)ψ can be decomposed as Φ = (∃T t1)Ψ
with Ψ = (∀Rt2)ψ, so that operators like the ones for SAT,
with fluents Need- and Holds-F[Ψ], may be combined with
operators like the ones for UNSAT with fluents Need- and
Holds-F[ψ]. In such combination, the E4 operator for the
inner SO existential must delete the fluents for the subfor-
mulas in order to have a “fresh state” for the next proof.

Horizon Windows for SAT-based Planners
Given an SO formula Φ describing a property Π and a struc-
ture A encoding an instance of the problem, one wants to
decide whether or not the instance satisfies the property. The
translation generates in polytime (in the size ofA) a STRIPS

1The fluents Marker, etc. are for the SO quantifier ∀T . When
composing translations, each SO quantifier has its own fluents.

[E1] STARTPROOF:
Pre: Need-F[ΦSAT]
Eff: for each x ∈ Var: not-T(x), ¬T(x) , ¬Need-F[ΦSAT] , Guess

[E2] SETTRUE(x):
Pre: Guess ; Eff: T(x) , ¬not-T(x)

[E3] PROOFSUBFORMULA:
Pre: Guess ; Eff: ¬Guess , Need-F[ψSAT]

[E4] FINISHPROOF:
Pre: Holds-F[ψSAT] ; Eff: ¬Holds-F[ψSAT] , Holds-F[ΦSAT]

Figure 2: Actions that implement the second-order existential
quantifier in SAT.

problem P that has solution iff A � Φ. The problem P thus
may be solved with any complete planner to answer the orig-
inal question. However, SAT-based planners are inherently
incomplete when there is no solution, as they continue the
search forever unless an upper bound on the length of the
plan is given in advance.2

Porco, Machado, and Bonet (2011) show how to calculate
tight lower and upper bounds l(ψ) and u(ψ) on the number
of (parallel) actions needed to prove a first-order sentence ψ
once the interpretations of the relational symbols occurring
in ψ are fixed. We use such estimates to provide tight lower
and upper bounds l∗(Φ) and u∗(Φ) on the length of parallel
plans for SO formulas Φ. We proceed inductively:
1. For first-order ψ, l∗(ψ) = l(ψ) and u∗(ψ) = u(ψ).
2. If Φ = (∃Rt)Ψ, then l∗(Φ) = 3 + l∗(Ψ) and u∗(Φ) =

4 + u∗(Ψ) since operators E1, E3 and E4 always need to
be applied. If E2 is required, all applications can be per-
formed in one parallel step. Thus, if one dummy NoOp
action E5 is added, the lower bound l∗(Φ) can be pushed
by 1 unit to match the upper bound u∗(Φ).

3. If Φ = (∀Rt)Ψ, then

l∗(Φ) = 2kl∗(Ψ) + 2k + 2k+1 = 2k(3 + l∗(Ψ)) ,

and also for u∗(Φ), where k is the number of objects of
type t. This is so because A1 and A5 are executed, 2k

proofs of Ψ are required, and after each such proof A2 is
executed, and the number of bits flipped when increment-
ing a k-bit counter from zero to its maximum is 2k+1− 2
(Cormen, Leiserson, and Rivest 1990).

Experiments
We performed experiments on domains encoding different
propositional QBFs in CNF format, and on domains en-
coding non-3-colorability problems on graphs (denoted by
3Col). The QBFs span initial levels of PH, while 3Col is
coNP-complete. For example, we considered ∀∃-QBFs en-
coded with the SO formula

(∀TV1
1)(∃TV2

2)(∀y ∈ Cls)(∃x ∈ Var)[
P (x, y) ∧ [(V1(x) ∧ T1(x)) ∨ (V2(x) ∧ T2(x))]

]
∨[

N(x, y) ∧ [(V1(x) ∧ ¬T1(x)) ∨ (V2(x) ∧ ¬T2(x))]
]

2If P has n atoms, 2n is a trivial and non-informative bound.

∃∀ #∃ #∀ n + − time len PDDL

60 1 5 — 5 184.3 — 18.4
2 5 — 1 4,382.5 — 18.5

100 1 5 4 1 176.6 316 20.4
2 5 3 2 3,471.9 628 20.5

∃∀∃ #∃ #∀ #∃ n + − time len PDDL

10 2 30 5 — 5 4,199.2 — 17.5
2 50 5 — 5 2,313.9 — 18.4

30 2 30 5 — 5 3,210.7 — 18.5
2 50 5 — 5 3,166.3 — 19.4

50 2 30 5 — 1 3,313.4 — 19.4
2 50 5 3 2 3,450.9 640 20.4

∀∃ #∀ #∃ n + − time len PDDL

1 100 5 5 — 147.9 319 20.2

2 30 5 — 5 2,060.4 — 16.9
60 5 4 1 3,100.7 637 18.4
80 5 5 — 2,893.2 637 19.3

100 5 5 — 2,092.8 637 20.2

3 15 5 — — — — —

∀∃∀ #∀ #∃ #∀ n + − time len PDDL

1 60 1 5 1 — 404.7 635 21.1
60 2 5 — — — — 21.2
80 1 5 5 — 403.2 635 22.0

100 1 5 5 — 390.8 635 23.1

2 60 1 5 2 — 456.7 1,269 21.2
60 2 5 — — — — 21.3
80 1 5 5 — 499.5 1,269 22.1

100 1 5 5 — 454.9 1,269 23.2

Table 1: Random QBF problems with 150 clauses each and 4
types of QBFs: ∃∀, ∃∀∃, ∀∃ and ∀∃∀. Columns for number of
variables of each type, number of instances (n), number of positive
(+) and negative (−) instances, and averages for time (in seconds),
parallel plan length (for solved instances), and PDDL size (in KB).

where V1 and V2 are types that partition the variables into
universal and existential. Due to lack of space, we only
present results in Table 1 that correspond to random CNFs
of 150 clauses,3 3-CNF for ∃∀, ∀∃ and ∃∀∃ and 4-CNF for
∀∃∀ instances. All instances were solved with M (Rintanen
2010), and verified with a QBF solver, on a 2.33 GHz 5140
Xeon CPU with 2GB of RAM and 1.5 hours cutoff time.
The benchmark contains positive and negative instances.

SAT-based planners do not perform well in 3Col.
Thus, we tried the state-of-the-art search-based planner
LAMA’11 (Richter and Westphal 2010) for random G(n, p)
graphs (Bollobás 2001), for n ∈ {4, 5, . . . , 9} and p ∈
{ 15 ,

2
5 , . . . , 1}, on the same machine and with the same con-

traints on time and space. The results and statistics for the
average plan length and encoding size appear in Table 2.
Surprisingly, LAMA’11 is able to find very long plans in
short time; e.g., for graphs with 7 and 8 vertices, LAMA’11
found plans with more than 100,000 and 400,000 actions re-
spectively, in a few minutes. We believe that the success of
LAMA’11 for these instances is mainly due to the implicit
serialization of subgoals that results from the utilization of

3Generated with BLOCKSQBF (http://fmv.jku.at/blocksqbf)
that is based on the random model of Chen and Interian (2005).

V n + − time / + time /− plan len PDDL

4 5 1 4 0.1 0.8 1,731 0.4
5 5 2 3 0.6 67.9 6,695 0.6
6 5 2 3 3.4 464.9 26,163 0.7
7 5 2 2 74.8 1.6 102,935 0.8
8 5 1 2 624.0 5.9 406,851 1.0
9 5 — 1 — 0.3 — 1.1

Table 2: LAMA’11 on random 3Col instances. Columns for num-
ber of vertices (|V |), number of instances (n) and solved instances
(+ and −), and averages for time (in seconds, for + and − in-
stances), plan length (for + instances), and PDDL size (in KB).

V n + − time / + time /− plan len PDDL

4 5 1 4 1,850.1 0.1 1,731 0.4
5 5 — 3 — 11.7 — 0.6
6 5 — 3 — 81.9 — 0.7
7 5 — 2 — 0.2 — 0.8
8 5 — 2 — 1.0 — 1.0
9 5 — 1 — 0.0 — 1.1

Table 3: Blind search on random 3Col instances. Columns for
number of vertices (|V |), number of instances (n) and solved in-
stances (+ and −), and averages for time (in seconds, for + and −
instances), plan length (for + instances), and PDDL size (in KB).

multiple (open) queues with different heuristics (Richter and
Westphal 2010; Lipovetzky and Geffner 2012). Certainly,
these problems are not trivial for search-based planners as
shown in Table 3, where A* with a zero heuristic was used.

Discussion

We have extended the tool by Porco, Machado, and Bonet
(2011) with a type system and over arbitrary SO formulas
which capture the class PH: given such a formula Φ over
signature σ and a first-order structure A for σ, the tool gen-
erates a planning problem P that has solution iff A � Φ.
Since problems in PH don’t have short certificates in gen-
eral, the solutions for STRIPS problems generally have ex-
ponential length. Thus, we do not expect that planners based
on forward search in state space will be able to succeed un-
less heuristics that account for the multiple application of ac-
tions are used. However, the results for LAMA’11 on 3Col
contradict this expectation and thus deserve an explanation.
We conjecture that the reason for this success is the implicit
serialization of subgoals, but further investigation is needed.

The extension over formulas that capture PSPACE is now
foreseeable, as PSPACE equals SO plus transitive closure
(TC) (Immerman 1998), and TC is the computation of a con-
nectivity relation in an implicit graph which is a standard
practice in planning and STRIPS.

Acknowledgements

Experiments done on the Orion Cluster at the Departamento
de Tecnologı́a, Universitat Pompeu Fabra, Barcelona, Spain.

References
Bollobás, B. 2001. Random Graphs. Cambridge University
Press, second edition.
Chen, H., and Interian, Y. 2005. A model for generating
random quantified boolean formulas. In Proc. 19th Int. Joint
Conf. on Artificial Intelligence, 66–71.
Cormen, T.; Leiserson, C.; and Rivest, R. 1990. Introduction
to Algorithms. MIT Press.
Fagin, R. 1974. Generalized first-order spectra and
polynomial-time recognizable sets. American Mathematical
Society 7:27–41.
Immerman, N. 1998. Descriptive Complexity. Springer.
Lipovetzky, N., and Geffner, H. 2012. Width and serializa-
tion of classical planning problems. In Proc. 20th European
Conf. on Artificial Intelligence, 540–545.
Porco, A.; Machado, A.; and Bonet, B. 2011. Auto-
matic polytime reductions of NP problems into a fragment
of STRIPS. In Proc. 21st Int. Conf. on Automated Planning
and Scheduling, 178–185.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39(1):127–177.
Rintanen, J. 2010. Heuristics for planning with SAT. In Co-
hen, D., ed., Proc. 16th Int. Conf. on Principles and Practice
of Constraint Programming, 414–428. St. Andrews, Scot-
land: Springer: LNCS 6308.
Sipser, M. 2005. Introduction to Theory of Computation,
2nd Edition. Boston, MA: Thomson Course Technology.

