
Completeness of Online Planners for Partially Observable Deterministic Tasks

Blai Bonet and Gabriel Formica and Melecio Ponte
Departamento de Computación

Universidad Simón Bolı́var, Caracas, Venezuela
bonet@ldc.usb.ve, {gformica,mponte}@ac.labf.usb.ve

Abstract

Partially observable planning is one of the most general and
useful models for dealing with complex problems. In recent
years there have been significant progress on the development
of planners for deterministic models that offer strong theoret-
ical guarantees over certain subclasses of tasks. These guar-
antees however are difficult to establish as they often involve
reasoning about features that are specific to the planner and
subclass of tasks. In this paper we develop a formal frame-
work for reasoning about online planning over deterministic
tasks, identify a set of general conditions that are sufficient
to guarantee completeness, and obtain novel and simple plan-
ners that are complete over non-trivial and interesting classes
of tasks. Building on top state-of-the-art online planners, we
implement some of our ideas and make a comparison with a
state-of-the-art online planner.

Introduction
Partially observable planning is one of the most general and
useful models for dealing with complex problems (Ghallab,
Nau, and Traverso 2004; Geffner and Bonet 2013). In recent
years there have been significant progress in the develop-
ment of planners for such tasks (Bonet and Geffner 2014b;
Maliah et al. 2014; Brafman and Shani 2012).

Planners can be classified as offline or online systems. In
the offline approach, the planner computes a full contingent
solution that solves the task by considering all the possi-
ble initial states, all the possible state transitions, and all
the sensing signals that the agent may perceive. This ap-
proach seems appealing as a system confronted with such
a task needs to compute a full contingent solution only
once. However, the computational burden for computing
(and storing) a complete solution are prohibitive in practice
except for very small or simple problems (Rintanen 2004;
Haslum and Jonsson 1999). In the online approach, the
agent is interested in solving the task for the current, but un-
known, initial state and thus only cares about the execution
that unfolds as it interacts with the environment. The online
approach is thus computationally feasible for a significantly
broader class of tasks as the planner only needs to decide at
each decision time what is the next action to apply given the
observed execution.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A main target of recent research is the class of determin-
istic tasks in which transitions and sensing are both deter-
ministic. Many of the current state-of-the-art solvers offer
strong guarantees over restricted subclasses of deterministic
tasks (Bonet and Geffner 2014b; Brafman and Shani 2012;
Bonet and Geffner 2011), but the proofs and techniques used
to establish such guarantees are often complex and specific
to the combination of planner and subclass of problems.

In this paper we develop a general and formal framework
for understanding and reasoning about online planning on
partially observable deterministic tasks, define general and
relevant properties for planners, and obtain a set of suffi-
cient conditions that guarantee soundness and completeness.
In doing so, we identify a class of problems for which a
planner implementing a trivial action selection mechanism is
guaranteed to be sound and complete; something that at first
seems surprising as there is the common belief that the ac-
tion selection problem is intractable even on relatively sim-
ple tasks.

The paper is organized as follows. In the next section we
characterize the class of problems considered and recall ba-
sic notions about planning with partial information. Then,
we give a brief but general account of offline and online
planners, and formalize the notion of protocol, that norms
the execution of online planners, and the notions of sound-
ness and completeness. Online planners are then character-
ized over the dimensions of belief tracking and action se-
lection, and formal results are presented. We finish by pre-
senting three simple complete planners that extend the LW1
planner (Bonet and Geffner 2014b), some experimental re-
sults, and a brief summary.

Model and Executions
Problems and planners are characterized using state models,
even though problems are presented to planners in the form
of compact specifications over suitable languages.

A Partially observable deterministic (POD) planning task
is a tuple P = (S,A, Sinit, SG, f, O,Ω) where:

1. S is a finite state space,
2. A is a finite set of actions, where A(s) ⊆ A is the set of

actions that are applicable at state s ∈ S,
3. Sinit ⊆ S is the set of possible initial states,
4. SG ⊆ S is the set of goal states,

5. f : S × A → S is a deterministic transition function
where f(s, a) is the unique state that results after apply-
ing the action a ∈ A(s) in the state s ∈ S,

6. O is a finite set of observation (tokens), and
7. Ω : S × A → O is a deterministic sensing model where

Ω(s, a) is the token observed by the agent upon reaching
the state s after applying the action a.

For simplicity we do not consider action costs but these can
be easily fixed in the model.

The model is partially observable because the agent re-
ceives information about the system only through the ob-
servations. Under deterministic sensing, there is always a
unique possible observation after executing an action, but
since the underlying system state is unknown to the agent,
the observation does not necessarily reveal the hidden state
as other states may be also consistent with it. The agent thus
needs to keep track of the possible states by maintaining a
belief state. Belief states are sets of states associated with
the observable executions (Geffner and Bonet 2013). For-
mally, an (observable) execution is a finite interleaved se-
quence 〈a0, o0, a1, o1, . . .〉 of actions and observations. The
belief state bτ associated with the execution τ is inductively
defined as
• bτ = Sinit for the empty execution τ = 〈〉,
• b〈τ,a〉 = {f(s, a) : s ∈ bτ}, and
• b〈τ,a,o〉 = {s ∈ b〈τ,a〉 : Ω(s, a) = o}.

Let us consider two executions τ and τ ′. The execution
that consists of τ followed by τ ′ is denoted by 〈τ, τ ′〉. In
such a case, we say that τ is a prefix of 〈τ, τ ′〉 and that 〈τ, τ ′〉
is an extension of τ (or that 〈τ, τ ′〉 extends τ). We also write
τ ′ ≤ τ when τ ′ is a prefix of τ , and τ ′ < τ when τ ′ ≤ τ
and τ ′ 6= τ .

An execution τ is admissible if: (1) bτ 6= ∅ and (2) for
each prefix 〈τ ′, a〉 of τ , the action a is applicable at bτ ′ .
An action a is applicable at belief b iff a ∈ A(s) for each
state s ∈ b. All executions τ considered in this paper are
implicitly assumed to be admissible.

An execution τ = 〈a0, o0, a1, o1, . . .〉 is possible for state
s (or, briefly, that τ is for s) iff there is a state trajectory
〈s0, a0, s1, a1 . . .〉 with s0 = s and that for i ≥ 0: (1) the
action ai is applicable at bτ0:i where τ0:i is the prefix of τ
containing i pairs (a, o), (2) si+1 = f(si, ai), and (3) oi =
Ω(si+1, ai). By determinism such state trajectory is unique
if it exists. We refer to it as the state trajectory induced by τ
and seeded at s. We say that an execution τ is goal-reaching
iff bτ ⊆ SG. We denote by Tinit the set made of the empty
execution and all the executions that end in an observation
and are for some initial state s ∈ Sinit.

Offline vs. Online Planners
An offline planner is an algorithm that given task P , out-
puts a valid plan for P . A plan for P is a partial non-
deterministic function π : Tinit → 2A \ ∅ such that π is
downward closed and π(τ) ⊆ A(s) for each s ∈ bτ and
τ ∈ Dom(π). Plan π is downward closed iff for each execu-
tion τ = 〈a0, o0, . . . , an−1, on−1〉, if π is defined on τ , then
π is also defined on τ0:i and ai ∈ π(τ0:i) for i = 0, 1, . . . , n.

The plan π is valid iff it guarantees to reach a goal from any
initial state (i.e., for each initial state s ∈ Sinit and each ex-
ecution τ for s on which π is defined, there is an extension
τ ′ = 〈τ, τ ′′〉 for s on which π is defined and bτ ′ ⊆ SG).

An offline planner computes a complete plan for a given
task whose size is often exponential in the number of states
(Rintanen 2004). In many cases, however, the agent is typ-
ically interested in solving the task for a given initial but
hidden state, and thus only interested in generating a single
goal-reaching execution. Planners that guide the agent to
generate such executions are called online planners.

Formally, an online planner π is an algorithm that on
input 〈P, τ〉, where P is a task and τ ∈ Tinit is an ex-
ecution for some initial state, outputs a non-empty subset
π(τ) = π(P, τ) of actions applicable at bτ . An online plan-
ner is thus just an algorithm that generates applicable actions
given an observable execution.

We formalize the utilization of the planner by the agent
with the notion of an online protocol. An online protocol is a
pair L = (P, s) made of the task P and a hidden initial state
s ∈ Sinit. The protocol interacts with the online planner π
as follows:1

1. Let λ = 〈s〉 be the empty state trajectory seeded at s
2. Let τ = 〈〉 be the empty execution
3. While bπτ * SG (i.e. bπτ is not a goal belief) do
4. Run π on input 〈P, τ〉 to obtain set of actions π(τ)

5. If π(τ) is empty, return FAILURE
6. Non-deterministically choose action a ∈ π(τ)

7. Let state s′ := f(Last(λ), a) and token o := Ω(s′, a)

8. Update λ := 〈λ, a, s′〉 and τ := 〈τ, a, o〉.
The condition in the while loop refers to the belief bπτ that
is computed by π in order to approximate the true belief bτ .
The protocol fails when π(τ) is empty, meaning the plan-
ner is not able to produce an applicable action, or succeeds
when the agent (i.e. planner) is sure of reaching the goal. If
bπτ is replaced by bτ in the stopping condition, the protocol
succeeds once a goal belief is reached, even if the agent is
not aware of it, an odd situation when the planner models a
fully autonomous agent.

Executions τ such that bπτ ⊆ SG are called strong goal-
reaching executions for π. The protocol is thus designed to
succeed once a strong goal-reaching execution is generated.

A planner π is sound iff it generates admissible execu-
tions, and it is complete for a class P of tasks iff for every
task P ∈ P , the above process succeeds for every protocol
L = 〈P, s〉 where s ∈ Sinit.

Components of an Online Planner
We characterize general online planning in terms of two
components, belief tracking and action selection.

1A protocol L = (P, s) is a formalization of the process of exe-
cuting the online planner π on the task P assuming that the hidden
initial state is s. Other formalizations are possible. For example, a
formalization in which the protocol is a stateless black box that re-
ceives the task P , the planner π, the ongoing state-trajectory λ, and
the ongoing execution τ , and that outputs updated state-trajectory
and execution after one action in π(τ) is selected and applied.

Belief Tracking
As a sound planner π must output actions that are applicable
at each possible current state, the planner must calculate an
approximation bπτ for bτ for identifying applicable actions.
We do not ask planners to compute bτ exactly since this is
computationally intractable (Bonet and Geffner 2014a). An
approximation of belief bτ is thus a belief b that contains
bτ because if an action a is applicable at b, then a is also
applicable at bτ . As the approximation becomes coarser, the
set of candidate actions becomes smaller as each candidate
action must be applicable at each state in the approximation.
In the extreme case, a poor approximation may leave the
planner with no action to choose from.

In our framework, the approximation bπτ is handled as an
explicit subset of states. Planners however may represent
approximations in different forms (Brafman and Shani 2016;
Bonet and Geffner 2014b; Maliah et al. 2014; Brafman and
Shani 2012; Albore, Palacios, and Geffner 2009).

Action Selection
Even exact knowledge of the set of applicable actions is not
sufficient to guarantee completeness. In some tasks, an early
bad choice of actions may cause the problem to become un-
solvable. But the picture is worse because even in fully ob-
servable problems and complete connected state spaces, in
which there are no dead ends or uncertainty, a bad choice of
actions may cause the planner to loop on state space prevent-
ing it for generating a goal-reaching execution. For example,
in a problem where the agent is initially at the middle of a
1 × n grid and the goal is to reach one of the extremes, ei-
ther position 1 or n, the agent may loop if it interleaves the
actions to go left and to go right infinitely often.

We thus extend the scope of the framework by considering
action selection mechanisms that return sequences of actions
instead of single actions. Formally, we consider an action se-
lection mechanism that receives the execution τ and the ap-
proximation b = bπτ computed by belief tracking, and gener-
ates a set π(τ, b) of action sequences with the constraint that
the first action in each sequence is applicable at b. This gen-
eral form of action selection is motivated by the way some
planners work. Two remarks:

• If π is a planner that computes action sequences, we ob-
tain a planner that returns applicable actions by defining
π(τ) = {First(σ) : σ ∈ π(τ, b)} where b = bπτ .

• Planners that generate sequences usually select one se-
quence σ and “stick with σ” until exhausting σ or reach-
ing an action in σ that is not applicable at the current belief
approximation. Such planners can be fit into the model:
the first time that an action is requested for execution τ ,
the planner generates and picks one sequence σ and out-
puts the first action a in σ. The protocol then generates
the observation o associated to the action a and the plan-
ner is called again but now on the execution τ ′ = 〈τ, a, o〉.
The planner then retrieves the last computed sequence σ,
which was stored in a cache, and checks whether the next
action a′ in σ is applicable at bπτ ′ . In the affirmative, the
next action to execute is a′. Else, the planner discards
the cached sequence and computes a new sequence from

scratch using the new belief approximation bπτ ′ . A planner
that operates in this manner is called a committed planner.

Online planners that compute sequences usually implement
action selection with classical planners (Bonet and Geffner
2014b; Maliah et al. 2014; Brafman and Shani 2012; Bonet
and Geffner 2011; Albore, Palacios, and Geffner 2009;
Palacios and Geffner 2009). Such online planner π, when
called upon an execution τ , works by creating a classical
(planning) problem that captures the knowledge in bπτ and
the knowledge dynamics of the task (using suitable proposi-
tional encodings (Petrick and Bacchus 2002)), and that im-
plements a limited form of inference over the encoding. A
classical planner then computes a plan for the classical prob-
lem whose first action, by design, is guaranteed to be appli-
cable at the approximation bπτ .

Formal Results
Thus far we have formalized planners and protocols, notions
of soundness/completeness, and characterized online plan-
ners by the belief tracking and action selection components.

The completeness of a planner π depends on a delicate
balance between the inferential and planning power in π.
The inferential power is related to how well the belief track-
ing component approximates the beliefs bτ for the observed
executions τ , while the planning power is related to the qual-
ity of the action sequences σ generated by π.

We begin by defining properties about inference. An execu-
tion τ that is possible for some initial state and that ends in
an action a is a branch point if there are two different obser-
vations o and o′ such that the extensions 〈τ, o〉 and 〈τ, o′〉 are
both possible; in such case, we say that o and o′ are possible
after τ . In deterministic tasks, if τ is an execution for initial
state s then |bτ | ≤ |Sinit|, and the inequality is strict when τ
contains a branch point; i.e. when τ contains a prefix that is a
branch point. These facts are direct consequences of the de-
terminism in transitions and sensing (Bonet 2009). Indeed,
if {o1, . . . , om} ⊆ O is the set of observations that are pos-
sible after a branch point τ , then |bτ | =

∑
1≤i≤m |b〈τ,oi〉|

since b〈τ,oi〉 and b〈τ,oj〉 are disjoint for i 6= j. These remarks
motivate the following:
Definition 1 (Exact Inference). Planner π implements exact
inference iff bπτ = bτ for each execution τ for an initial state.

Definition 2 (Monotone Inference). Planner π has mono-
tone inference iff |bπτ | ≤ |bπτ ′ | for each initial state s ∈ Sinit,
each execution τ for s, and each prefix τ ′ of τ .

Definition 3 (Asserting Inference). Let τ be an execution
for an initial state s and τ ′ be a proper prefix of τ . Planner
π has asserting inference for the pair (τ, τ ′) iff |bπτ | < |bπτ ′ |.

Monotone inference says that the approximations gener-
ated by π along a fixed execution have non-increasing car-
dinalities, while asserting inference for (τ, τ ′) says that the
inference implemented by π is powerful enough to rule out
(in hindsight) at least one state from bπτ ′ . The following re-
sult is direct from above definitions:
Lemma 4. Let π be an online planner. If π implements ex-
act inference, then π has monotone inference and asserting

inference for all pairs (τ, τ ′) for which τ ′ < τ and there is
a branch point τ ′′ such that τ ′ ≤ τ ′′ ≤ τ .

We now consider the planning component. A plan for state
s is a sequence σ = 〈a0, . . . , an−1〉 of actions that induce a
goal-reaching state trajectory seeded at s; i.e. a state trajec-
tory 〈s0, a0, . . . , sn〉 with s0 = s and sn ∈ SG. A sequence
σ is a weak plan for belief b iff it is a plan for at least one
state s in b (Cimatti et al. 2003).
Definition 5 (Weak Planner). Planner π is a weak planner
iff for each belief approximation b = bπτ : (1) every sequence
σ in π(τ, b) is a weak plan for b, and (2) π(τ, b) is non-empty
whenever there is a weak plan for b.
Definition 6 (Covering Planner). Planner π is covering iff
π(τ) contains all the actions that are applicable at bτ , where
τ is any execution for an initial state s.

We also need a property to link the inference and planning
components. Let τ = 〈a0, o0, . . . , an, on〉 be an execution
for initial state s, and let 〈s0, a0, . . . , sn+1〉 be the unique
state trajectory seeded at s that is induced by τ . For a finite
action sequence σ = 〈an+1, an+2, . . .〉 such that an+1 is
applicable at bτ , let us define the execution

τ [σ] = 〈τ, . . . , an+k, on+k〉 = 〈a0, o0, . . . , an+k, on+k〉 ,
with induced state trajectory 〈s0, a0, . . . , sn+k+1〉, where k
is the maximum integer, 1 ≤ k ≤ |σ|, such that:
– ai is applicable at bτi where τi = τ [σ]0:i is the prefix of
τ [σ] of length 2i, for i = 0, 1, . . . , n+ k,

– si+1 = f(si, ai) for i = 0, 1, . . . , n+ k, and
– oi = Ω(si+1, ai) for i = 0, 1, . . . , n+ k.
The idea is to extend the execution τusing the actions in σ
as much as possible. The fact that τ can be extended with at
least on action, i.e. k ≥ 1, is direct by the assumption that
an+1 is applicable at bτ . Clearly, (1) τ [σ] extends τ , (2) τ [σ]
is possible for the initial state s, and (3) the state trajectory
induced by τ [σ] extends the state trajectory induced by τ .
The length of τ [σ] satisfies |τ [σ]| ≤ |τ |+ 2|σ| with equality
only when all actions in σ are used in τ [σ].
Definition 7 (Effective Planner). Planner π is effective iff
for each execution τ for an initial state s, and each action
sequence σ ∈ π(τ, b) where b = bπτ , either bπτ [σ] ⊆ SG or π
has asserting inference for the pair (τ [σ], τ) .

Intuitively, π is effective iff it either produces a sequence
σ ∈ π(τ, bπτ) that generates a strong goal-reaching execu-
tion, making the protocol to succeed, or the belief tracking
component is able to discard at least one state that was pre-
viously deemed as possible after τ .

Finally, we define the target class of planning tasks as those
that are connected, and then give sufficient conditions for
completeness of online planners:
Definition 8 (Solvable Tasks). A planning task P is solvable
(or goal connected) iff there is a plan for every state s in P .
Theorem 9 (Main). Let P be a solvable task and let π be a
sound and committed online planner for P . If π is a weak
and effective planner and π has monotone inference, then π
is complete for P .

Proof. Suppose that π is not complete. Then there is a pro-
tocol L = 〈P, s〉 such that π either fails or loops. Failure
is not possible since P is solvable and thus there is always
a plan for every state s ∈ bπτ ; i.e. π(τ) 6= ∅ since π is a
weak planner. Therefore, π loops and generates an infinite
execution τ = 〈a0, o0, a1, o1, . . .〉 for state s.

Since π is a committed planner, the actions in τ come
from sequences σ computed by π. A new sequence σ is
computed at the beginning and each time the previous com-
puted sequence is exhausted or terminated early. We say that
an index i ≥ 0 is a generation index in τ if a new sequence
σ for bπτi is computed, where τi denotes the prefix of τ of
length 2i.

We show below that for each generation index i ≥ 0,
either bπτi is a singleton or there is index j > i such that
|bπτj | < |b

π
τi |. Let us assume for the moment that this is true.

Using π’s monotonicity, there must be a generation index
i∗ ≥ 0 for which the approximation b = bπτ∗ , with τ∗ = τi∗ ,
is a singleton {s∗}. At this point, since π is a weak planner
and P is solvable, π(τ∗, b) 6= ∅ and each σ ∈ π(τ∗, b) is a
plan for s∗. Since π is a committed planner, the chosen σ is
executed until exhaustion and the planner generates a strong
goal-reaching execution contradicting the supposition.

We conclude the proof by showing that for each genera-
tion index i ≥ 0, bπτi is a singleton or there is j > i such that
|bπτj | < |b

π
τi |. Suppose that b = bπτi is not a singleton and let

σ ∈ π(τi, b). By definition of committed planner, there is in-
dex j > i such that τj = τi[σ] (i.e. a non-empty prefix of σ is
executed). Since π is effective and τ is infinite, τi[σ] cannot
be a strong goal-reaching execution. Therefore, π has assert-
ing inference for the pair (τi[σ], τi); i.e. |bπτj | < |b

π
τi |.

Randomized Protocols
We now see an interesting result. If π implements exact in-
ference and π(τ) contains all actions that are applicable at
bτ (i.e. π is a covering planner), then π is complete over a
non-trivial set of tasks when the protocol is randomized. A
protocolL is randomized when it makes a randomized selec-
tion of the action a in π(τ) (line 6 of the protocol); i.e., each
action a in π(τ) has non-zero probability of being chosen by
L. The tasks to consider are those that are strongly-solvable:
Definition 10. A planning task P is strongly solvable iff for
each execution τ for an initial state s, there is an extension
τ ′ = 〈τ, τ ′′〉 for s that reaches the goal (i.e. bτ ′ ⊆ SG).

The solvable and strongly-solvable conditions are re-
lated but not equivalent. Solvability is about goal-
connectness in state space while strong-solvability is about
goal-connectness in belief space. There are tasks that are
solvable but not strongly solvable, and vice versa. Since a
random walk visits all states in a fully connected graph with
probability 1, a random walk generates a goal-reaching ex-
ecution with probability 1 on a strongly solvable task. Such
a walk is obtained when a randomized protocol is combined
with a covering planner:
Theorem 11. Let P be a strongly solvable planning task
and let π be a sound online planner for P . If π is a covering
planner, then π generates a goal-reaching (as opposed to
strong goal-reaching) execution with probability 1.

This result does not say that a covering planner π is guar-
anteed to be complete for randomized protocols. The issue
is that generating a goal-reaching execution is not enough
for succeeding at the protocol. Additionally, just like a ran-
dom walk may take a long time to reach a certain state in
a connected graph (Koenig and Simmons 1996), generating
a goal-reaching execution by above process may require a
very large number of steps. We finish this section by notic-
ing that the standard (and simple) notion of fairness over ex-
ecutions cannot be naively used to replace a randomized pro-
tocol with a “fair protocol” while preserving Theorem 11.

Complete Planners
The formal properties can be used to define planners that are
complete for certain classes of problems. We consider three
such classes and define one complete planner for each class.

The first class consists of tasks that are solvable and that
have observable goals:

Definition 12. A task P has observable goals iff for each
execution τ for some initial state s, bτ contains a goal state
iff bτ is a goal belief; i.e. bτ ∩ SG 6= ∅ iff bτ ⊆ SG.

This definition captures the intuition. If o∗ ∈ O is an
observation with Ω(s, a) = o∗ for all actions a iff s ∈ SG,
then upon reaching a goal state s and observing o∗, the other
states in bτ must be goal states as well. Conversely, for an
observation o 6= o∗ and execution τ ending in o, every state
s in bτ cannot be a goal state.

Consider a belief tracking mechanism that is exact over a
class P of solvable tasks with observable goals. Let πsingle
be a committed planner that implements exact belief track-
ing. When in need of an action for the belief bτ associated
with execution τ , πsingle selects a state s ∈ bτ and returns
a plan σ for the classical problem P [τ, s], where P [τ, s] is
constructed to satisfy the following conditions:

• There is a plan for P [τ, s] (as the task is solvable),
• Any plan for P [τ, s] is a plan for s,
• For any plan σ = 〈a0, . . . , an〉 for P [τ, s], there is ex-

ecution τ ′ = 〈a0, o0, . . . , an, on〉 and state trajectory
〈s0, a0, . . . , an, sn+1〉 seeded at s and induced by τ ′ such
that, for i = 0, 1, . . . , n: (1) ai ∈ A(si), si+1 = f(si, ai)
and oi = Ω(si+1, ai), and (2) ai is applicable at b〈τ,τ ′i〉
where τ ′i is the prefix of τ ′ of length 2i.

In words, the classical task P [τ, s] must be solvable for each
execution τ and state s ∈ bτ , and each plan σ for P [τ, s]
must be consistent with an execution τ ′ for s. There are
different ways to construct P [τ, s], and some of them corre-
spond to simple modifications of existing planners.

Let us show that πsingle is indeed complete. By assump-
tion, the belief tracking implemented by πsingle is exact and
thus, by Lemma 4, π has monotone and asserting inference
for the pair (τ, τ ′) whenever there is a branch point τ ′′ with
τ ′ ≤ τ ′′ ≤ τ . On the other hand, πsingle is a committed and
weak planner. Therefore, by Theorem 9, πsingle is complete
if it is an effective planner:

Lemma 13. Let P be a planning task with observable goals.
The planner πsingle is effective over P .

Proof. Let τ = 〈a0, o0, . . . , an, on〉 be an execution for an
initial state s, and let σ = 〈an+1, an+2, . . .〉 be a plan for
P [τ, s′] where s′ ∈ bτ . We need to show that if bτ [σ] * SG
then π has asserting inference for the pair (τ [σ], τ).

If |τ [σ]| = |τ | + 2|σ| (i.e. σ is fully used in τ [σ]), the
state s′ in bτ is mapped into a goal state in bτ [σ] because
σ is a plan for s′. Therefore, bτ [σ] ⊆ SG since goals are
observable.

Consider the case bτ [σ] * SG. Let τ [σ] = 〈a0, o0, . . . ,
an+k, on+k〉 where an+k is the last action in σ that appears
in τ [σ]; the action an+k+1 in σ does not appear in τ [σ] be-
cause it is not applicable at bτ [σ]. By construction of P [τ, s′],
there is an execution τ ′ = 〈an+1, o

′
n+1, . . .〉 and a state tra-

jectory 〈s′n+1, an+1, . . .〉 that is seeded at s′ and induced by
τ ′ such that an+j is applicable at the belief b〈τ,τ ′j〉 where τ ′j
is the prefix of τ ′ ending in o′n+j , for j = 1, 2, We then
have two executions τ [σ] and 〈τ, τ ′j〉 such that

1. both executions end in observations: τ [σ] ends in on+k
and 〈τ, τ ′j〉 ends in o′n+k,

2. both executions are different since an+k+1 is applicable
at b〈τ,τ ′j〉 but non applicable at bτ [σ],

3. both executions have a non-empty common prefix (since
the action an+1 belongs to both) that ends in an observa-
tion.

Let τ ′′ be the largest common prefix of τ [σ] and 〈τ, τ ′〉.
Then, τ ′′ is a branch point of τ [σ] with τ < τ ′′ <
τ [σ]. By Lemma 4, π has asserting inference for the pair
(τ [σ], τ).

Theorem 14. Let P be a planning task that is solvable and
with observable goals. The planner πsingle is sound and com-
plete for P .

The planner πsingle is quite similar to the “belief replan-
ning” algorithm of Cassandra, Kaelbling, and Kurien (1996)
but in the deterministic logical setting. Theorem 14 pro-
vides a strong completeness guarantee for πsingle on solvable
tasks with observable goals, while Cassandra, Kaelbling,
and Kurien are not able to provide such guarantee.

For the second class of problems, we consider planning tasks
that are strongly solvable, and a belief tracking component
that is exact over such tasks. Let πall be an online planner
that implements exact belief tracking and that returns the set
of all applicable actions at bτ . Since π implements exact
inference and is a covering planner, Theorem 11 gives

Theorem 15. Let P be a strongly solvable planning task.
The planner πall is sound for P and complete under any ran-
domized protocol L.

Finally, for the last class of problems, we relax the assump-
tion that π implements exact belief tracking by assuming
that the tasks have observable goals:

Theorem 16. Let P be a strongly solvable planning task
with observable goals, and let π be a sound and covering
planner for P . Then, π is complete for P under any ran-
domized protocol L.

Proof. By Theorem 11, the protocol and planner generate a
goal-reaching execution τ . Since π is sound, bπτ contains a
goal state. Since P has observable goals, bπτ ⊆ SG.

Analysis and Variations of LW1
LW1 is an online planner for deterministic tasks that is com-
plete on problems of width equal to 1 (Bonet and Geffner
2014b). This section briefly describes LW1, discusses its
completeness with respect to the framework, and describes
four variations that were implemented and tested.

Planning tasks in LW1 are specified with a language based
on multivalued variables. A task P = (V, I, A,G,W) is a
tuple where V is a set of state variables X , each with a
domain DX , I is a valuation for all variables in V , G is a
conjunction ofX-literals (where anX-atom is a proposition
of the form X = x, for some variable X and value x ∈ DX ,
and an X-literal is an X-atom or its negation), A is a set
of actions, and W specifies the sensing model. Each action
a ∈ A is given by its precondition Pre(a) and a set of con-
ditional effects of the form a : C → E, where Pre(a) and
C are sets of X-literals, and E is a set of X-atoms (positive
X-literals). The state space associated to problem P is the
set of all complete valuations over the state variables.

The sensing model W consists of a collection of observ-
able variables Y , each with domain DY , and boolean for-
mulas Wa(Y = y) over X-literals where a is an action, Y
is an observable variable, and y ∈ DY is a value for Y .
There is no need to have formulas Wa(Y = y) for each
combination of a, Y and y. If there is no model for action
a, the action has no observable effects. On the other hand,
the existence of a formula Wa(Y = y) entails that the atom
Y = y is observed after a is applied whenever the formula
Wa(Y = y) holds in the resulting state. There are some
requirements that the sensing model needs to satisfy: (1) if
Wa(Y = y) is given for at least one value y ∈ DY , formulas
Wa(Y = y′) for every other value y′ ∈ DY must be pro-
vided as well (else, the specification is incomplete), (2) the
formulaWa(Y = y)∧Wa(Y = y′) must be inconsistent for
every pair y, y′ of different values for Y (else, the model is
non-deterministic), and (3) the formula

∨
y∈DY

Wa(Y = y)
must be valid (else, the observed value for Y may not be
well defined).2

A crucial condition for completeness is that every formula
Wa(Y = y) must be in positive DNF format meaning that
each sensing model must be a DNF formula without negative
literals. This is a universal language in this setting as each
boolean formula is equivalent to a DNF formula, and each
negative literal X 6= x is equivalent to

∨
x′∈DX ,x′ 6=xX =

x′. However, short formulas may suffer an exponential blow
up when transformed into positive DNF format.

A task P induces a state model S(P) = (S,A, Sinit,
SG, f, O,Ω) that we do not formalize here; see (Bonet and
Geffner 2014b). Likewise, we do not formalize the notion
of width but just say that the width w(X) for variable X
refers to the maximum number of non-determined variables
that are relevant to X , while the width w(P) of a task P is

2LW1 also accepts preconditions Pre(Y) for observable vari-
ables Y , but they are not considered here.

the maximum w(X) over the variables X that appear in the
goal, or in an action precondition.

Belief tracking is implemented at propositional level us-
ing K-literals of the form KL where L is an X-literal.
The K-literals KX = x and KX 6= x are denoted by
Kx and Kx̄ respectively. The interpretation of Kx (resp.
Kx̄) is that the agent knows X = x (resp. X 6= x). The
knowledge dynamics is captured by replacing each effect
a : C → E by support rules a : KC → KE, where
KC for C = L1 ∧ · · · ∧ Ln is KL1 ∧ · · · ∧ KLn, as-
serting that if the agent knows C then it would know E af-
ter the action a is applied. Cancellation rules of the form
a : ¬K¬C → ¬K¬E are also required, where ¬K¬C
stands for ¬K¬L1 ∧ · · · ∧ ¬K¬Ln. The cancellation rules
assert that if the agent deems C as possible then it would
deemE as possible after a. These rules combined with other
rules called action compilation, plus the filtration described
below, result in an exact factored belief tracking for tasks of
width equal to 1 (Bonet and Geffner 2014b).

Beliefs in LW1 are represented as sets of K-literals; i.e.,
as the set of facts that are known to the agent. Given the be-
lief bπ〈τ,a〉, representing the belief b〈τ,a〉, and upon observing
o, the CNF theory ∆ = bπ〈τ,a〉 ∧D ∧Ko is constructed and
the new belief bπ〈τ,a,o〉 is set to the collection of unit clauses
in the closure of ∆ by unit resolution. The clauses in D
stand for deductive rules over the variables’ domains, rules
Kx ⇒ Kx̄′ for X ∈ V and x, x′ ∈ DX with x 6= x′, and
rules

∧
x′∈DX ,x′ 6=xKx̄

′ ⇒ Kx for X ∈ V and x ∈ DX .
The clauses in Ko encode the filtering entailed by the ob-
servation o. These are formulas KC ⇒ K¬L for all terms
C ∧ L in the DNFs Wa(Y = y) such that o � Y 6= y.

Completeness of LW1
LW1 guarantees completeness on tasks of width 1, and
soundness on tasks of width greater than or equal to 1. As
seen in experiments, LW1 seems to be complete on some
tasks of width bigger than 1 (Bonet and Geffner 2014b).

The completeness over tasks of width 1 rests on two facts:
an exact belief tracking and an action selection mechanism
that conforms to a weak and effective planner. The action
selection for a given execution τ is done by computing a
plan for a classical task H(P) whose encoding captures ex-
act belief tracking on P and that permits the plan to make
assumptions about the outcome of the observable variables.
During plan execution, if one of the assumed observations
does not materialize, the requirements on the form of the
sensing model plus the width w(P) = 1 of the task (prov-
ably) imply that at least one piece of information is learned
by the agent. This information is either that X = x holds or
X = x is impossible for some state variable X and value
x ∈ DX . Thus, the belief state after the execution τ [σ] is ei-
ther a goal belief, if σ is fully executed, or it has cardinality
strictly smaller than the cardinality of bτ for execution τ .

Variations on LW1
We build on top of LW1’s implementation that provides the
planner, protocol and benchmarks.

The first variation, denoted by LW1[WL], is essen-
tially LW1 but where unit propagation is implemented us-
ing watched literals (Moskewicz et al. 2001; Qu 2006).
LW1[WL] also improves other aspects that result in im-
proved performance and provides the baseline for compar-
isons. LW1[WL] has thus the same completeness guarantees
of LW1, being complete over tasks of width equal to 1.

The second variation, denoted by LW1[R], is obtained by
using LW1[WL]’s belief tracking but replacing the action se-
lection with a simple randomized strategy: if bτ is a single-
ton, use the action selection in LW1[WL], else choose a ran-
dom applicable action. We thus basically move the action
selection performed by a randomized protocol inside LW1.
By Theorem 16, LW1[R] is complete for strongly-solvable
tasks with observable goals.

In the third variation, denoted by LW1[AC3], we enhance
the inferential power of belief tracking on problems of width
larger than 1 by replacing unit propagation with an inference
done by arc consistency, implemented by AC3, on a CSP
(Mackworth 1977; Russell and Norvig 2009). This varia-
tion only applies to problems in which all the hidden vari-
ables are static, meaning that the variables are not affected
by the actions. On these problems, we construct a CSP with
two types of variables: one variable X with domain DX

for each hidden state variable X , and one variable MB for
each sensing model Wa(Y = y) that refers to a subset B of
state variables and whose domain DMB

consists of all joint
valuations for the variables in B. The CSP has binary con-
straints that relates the variables X with the variables MB ,
for X ∈ B, and that enforce the consistency of the valua-
tions. Each time that an observation o such that o � Y 6= y
is received after applying action a, all the joint valuation in
the domain of MB that make Wa(Y = y) true are removed,
and consistency is re-established with AC3. This is basi-
cally a restricted implementation of beam tracking (Bonet
and Geffner 2014a).

The last variation, denoted by LW1[AC3R], uses the AC3
inference combined with randomized action selection. A
characterization of the classes of tasks on which LW1[AC3]
and LW1[AC3R] are complete is left for future work.

Experiments
The experiments were performed using FF (Hoffmann and
Nebel 2001) as the underlying classical planner on an Ama-
zon EC2 cluster consisting of Intel Xeon ES-2686 v4 CPUs
running at 2.30 GHz and with limits of 8Gb of RAM and 3
hours of time. We compare the four variations of LW1 with
results reported by Bonet and Geffner (2014b).

Table 1 shows the results for LW1[WL] and LW1[R] on
the set of standard benchmarks. The table reports figures
for number of problems in the benchmark (#sim), number
of problems solved, avg. calls to the classical planner, avg.
length of the executions found, avg. total time, avg. prepro-
cessing time, and the avg. time invested in finding the exe-
cution without considering preprocessing time. Preprocess-
ing time includes the time spent for parsing and grounding
the input files, but most importantly, it includes the prepro-
cessing time for the underlying classical planner across all
the calls. As the underlying planner is used off-the-shelf, it

parses and grounds the same domain each time it is called.
On simple classical tasks, very often, preprocessing is re-
sponsible for the major fraction of runtime.

For lack of space we do not include the results of Bonet
and Geffner (2014b), yet we observe that LW1[WL] im-
proves with respect to LW1 on every domain except doors
that has similar performance, and diagonal wumpus that
has degraded performance. On the other hand, the exper-
iments were performed on faster CPUs, but the improve-
ments of one or more orders of magnitude in localize and
rocksample cannot be explained by the differences in hard-
ware. LW1[R] has in general better total time than LW1[WL]
as it makes very few calls to the classical planner, except
when the resulting executions are excessively long like in
doors and wumpus. As predicted, LW1[R] remains com-
plete on the tasks that comply with the conditions of The-
orem 11. Medpks is a task with easily reachable dead-ends
and LW1[R] solves no instance.

Table 2 shows results when an inference based on AC3
is used. We see a behavior similar to Table 1 in which the
randomized planner is usually faster as it makes very few
calls to the underlying classical planner. In the mines do-
main the coverage increases significantly as the inference
provided by AC3 is stronger than unit propagation on this
domain (Bonet and Geffner 2014a). LW1[AC3] fails to solve
an instance of mines when the underlying planner fails to
compute a weak plan. As LW1[AC3R] makes much fewer
calls to the underlying planning, we do not observe this be-
haviour for LW1[AC3R] on mines. On the other hand, ob-
serve that LW1[AC3R] finds optimal executions in mines be-
cause all valid executions on mines have equal length.

Summary

We presented a formal framework for understanding and
reasoning about online planning for deterministic tasks in
which planners are characterized by their belief tracking and
actions selection components, and in which their use by an
agent is formalized with the notion of online protocol. We
then defined formal properties about belief tracking, action
selection, and the relation between the two, and obtained
sufficient conditions for the completeness of planners. We
implemented and tested four variations of the state-of-the-
art LW1 online planner. In the experiments we observed
that replacing unit propagation with a more powerful, but
still tractable, AC3 algorithm increases the scope of tasks
that can be solved. Likewise, we identified a simple ran-
domized variation of LW1 that is complete, when combined
with a suitable belief tracking component, on non-trivial and
interesting classes of problems.

For the future, we want to study necessary conditions for
completeness, extend results over non-deterministic tasks,
and incorporate notions of landmarks in order to weaken the
requirements for the action selection mechanism.

Acknowledgements. We thank the anonymous reviewers
for useful comments and pointers to related work.

LW1 using UP with watched literals (LW1[WL]) Randomized LW1[WL] (LW1[R])

average avg. time in seconds average avg. time in seconds

domain problem #sim solved calls length total prep. exec. solved calls length total prep. exec.

clog 7 12 12 2.25 17.75 0.14 0.12 0.02 12 1.00 24.58 0.14 0.12 0.01
clog huge 3125 3125 6.97 45.59 5.91 5.37 0.54 3125 1.00 160.80 7.54 7.36 0.18

colorballs 9-5 1000 1000 64.65 127.15 342.40 335.65 6.75 1000 1.00 1458.74 17.18 13.14 4.04
colorballs 9-7 1000 1000 68.78 147.31 615.22 604.87 10.35 1000 1.00 1906.71 30.38 22.03 8.35

doors 17 1000 1000 62.16 119.67 446.25 441.38 4.87 1000 1.00 1357.29 31.35 22.26 9.09
doors 19 1000 1000 78.42 160.51 1058.41 1049.58 8.83 1000 1.00 1783.98 58.41 39.84 18.57
ebtcs 50 50 50 25.50 26.48 1.84 1.41 0.43 50 1.00 46.40 0.12 0.11 0.01
ebtcs 70 70 70 35.50 36.49 4.96 4.14 0.82 70 1.00 71.93 0.18 0.16 0.01

localize 15 134 134 8.34 15.00 4.04 3.79 0.25 134 1.00 416.22 0.82 0.60 0.21
localize 17 169 169 9.75 17.00 12.77 12.36 0.41 169 1.00 569.71 1.58 1.10 0.48
medpks 150 151 151 1.99 1.99 20.49 20.39 0.11 0 — — — — —
medpks 199 200 200 2.00 2.00 42.52 42.35 0.16 0 — — — — —

rocksample 8-12 1000 1000 6.00 96.60 1.78 0.82 0.96 1000 0.00 6494.78 0.40 0.21 0.19
rocksample 8-14 1000 1000 6.73 122.98 3.01 0.85 2.16 1000 0.00 7733.12 0.45 0.22 0.23

unix 3 28 28 17.00 46.54 1.88 1.59 0.29 28 1.00 406.39 0.30 0.26 0.04
unix 4 60 60 33.00 93.72 18.34 17.54 0.80 60 1.00 955.70 4.61 4.24 0.38

wumpus 5d 8 8 2.25 16.25 0.10 0.08 0.02 8 1.00 61.50 0.15 0.13 0.01
wumpus 10d 256 256 4.21 32.96 2.18 1.98 0.20 256 0.83 667.40 4.14 3.51 0.63
wumpus 15d 1000 1000 5.09 46.06 31.31 30.48 0.82 1000 0.77 1699.13 39.93 31.31 8.61
wumpus 20d 1000 1000 5.04 55.69 166.62 163.95 2.67 1000 0.86 3676.16 293.21 207.44 85.77
wumpus 25d 1000 1000 5.21 66.36 558.27 551.89 6.38 1000 0.70 5002.95 875.57 590.50 285.06

mines 4x3 100 34 2.71 14.00 1.14 1.10 0.04 34 0.00 14.00 0.13 0.13 0.00
mines 5x3 100 43 3.16 17.00 2.40 2.33 0.07 43 0.00 17.00 0.21 0.21 0.01
mines 4x4 100 35 3.91 18.00 8.91 8.75 0.16 35 0.00 18.00 0.77 0.75 0.02
mines 5x5 100 48 5.83 27.00 102.71 101.77 0.94 48 0.00 27.00 7.47 7.31 0.16
mines 6x6 100 37 8.51 38.00 599.53 594.15 5.38 37 0.00 38.00 52.24 51.51 0.73
mines 8x8 100 16 11.75 66.00 4003.97 3959.19 44.77 43 0.00 66.00 205.82 199.81 6.01

wumpus 5x5 100 100 9.95 13.65 0.79 0.59 0.20 100 0.00 132.66 0.24 0.21 0.04
wumpus 10x10 100 100 42.13 48.94 33.69 30.71 2.98 100 0.00 659.29 4.72 3.50 1.21
wumpus 15x15 100 100 105.04 118.35 769.96 754.05 15.90 100 0.00 1670.83 37.43 19.69 17.74

Table 1: Results for variations of LW1 where inference is done by unit propagation with watched literals and the action
selection is done by either using a classical planner (LW1[WL]) or using a randomized criterion (LW1[R]). Dash (—) means that
the planner solves no instance. Key columns are highlighted in gray.

LW1 with AC3 (LW1[AC3]) Randomized LW1[AC3] (LW1[AC3R])

average avg. time in seconds average avg. time in seconds

domain problem #sim solved calls length total prep. exec. solved calls length total prep. exec.

doors 17 1000 1000 62.07 119.33 472.10 467.68 4.41 1000 1.00 1357.29 25.03 23.70 1.33
doors 19 1000 1000 78.34 161.97 1097.00 1089.35 7.65 1000 1.00 1783.98 44.58 42.51 2.07
ebtcs 50 50 50 25.50 26.48 1.88 1.47 0.42 50 1.00 46.40 0.09 0.09 0.01
ebtcs 70 70 70 35.50 36.49 5.41 4.60 0.81 70 1.00 71.93 0.14 0.13 0.01

mines 4x3 100 100 3.56 14.00 1.07 0.92 0.16 100 0.00 14.00 0.17 0.14 0.03
mines 5x3 100 100 3.78 17.00 2.43 2.17 0.27 100 0.00 17.00 0.29 0.23 0.06
mines 4x4 100 91 4.65 18.00 8.19 6.72 1.48 100 0.00 18.00 1.02 0.93 0.09
mines 5x5 100 98 5.66 27.00 145.47 85.28 60.19 100 0.00 27.00 11.23 10.79 0.43
mines 6x6 100 85 8.04 38.00 740.46 563.27 177.19 100 0.00 38.00 59.48 58.30 1.17
mines 8x8 100 30 10.60 66.00 4051.16 3602.81 448.35 100 0.00 66.00 194.57 189.81 4.76

wumpus 5x5 100 100 9.95 13.65 1.84 1.59 0.25 100 0.00 132.87 0.19 0.16 0.03
wumpus 10x10 100 100 42.13 48.94 128.66 125.21 3.45 100 0.00 659.71 3.79 2.86 0.93
wumpus 15x15 100 100 105.04 118.35 3733.90 3714.60 19.30 100 0.00 1671.56 41.68 27.85 13.82

Table 2: Results for variations of LW1 where inference is done by AC3 and the action selection is done by either using a
classical planner (LW1[AC3]) or using a randomized criterion (LW1[AC3R]). Evaluation is done in problems where the hidden
variables are static. Dash (—) means that the planner solves no instance. Key columns are highlighted in gray.

References
Albore, A.; Palacios, H.; and Geffner, H. 2009. A
translation-based approach to contingent planning. In Proc.
21st Int. Joint Conf. on Artificial Intelligence, 1623–1628.
Bonet, B., and Geffner, H. 2011. Planning under partial
observability by classical replanning: Theory and experi-
ments. In Proc. 22nd Int. Joint Conf. on Artificial Intelli-
gence, 1936–1941.
Bonet, B., and Geffner, H. 2014a. Belief tracking for plan-
ning with sensing: Width, complexity and approximations.
Journal of Artificial Intelligence Research 50:923–970.
Bonet, B., and Geffner, H. 2014b. Flexible and scalable par-
tially observable planning with linear translations. In Proc.
28th AAAI Conf. on Artificial Intelligence, 2235–2241.
Bonet, B. 2009. Deterministic POMDPs revisited. In
Bilmes, J., and Ng, A., eds., Proc. 25th Conf. on Uncer-
tainty in Artificial Intelligence, 59–66. Montreal, Canada:
AUAI Press.
Brafman, R. I., and Shani, G. 2012. Replanning in domains
with partial information and sensing actions. Journal of Ar-
tificial Intelligence Research 1(45):565–600.
Brafman, R. I., and Shani, G. 2016. Online belief tracking
using regression for contingent planning. Artificial Intelli-
gence 241:131–152.
Cassandra, A. R.; Kaelbling, L. P.; and Kurien, J. 1996. Act-
ing under uncertainty: Discrete bayesian model for mobile
robot navigation. In Proc. IEEE/RSJ Int. Conf. on Intelligent
Robot and Systems.
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P.
2003. Weak, strong, and strong cyclic planning via sym-
bolic model checking. Artificial Intelligence 147:35–84.
Geffner, H., and Bonet, B. 2013. A Concise Introduction
to Models and Methods for Automated Planning. Morgan &
Claypool Publishers.
Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.
Haslum, P., and Jonsson, P. 1999. Some results on the com-
plexity of planning with incomplete information. In Biundo,
S., and Fox, M., eds., Proc. 5th European Conf. on Planning,
308–318. Durham, UK: Springer: LNCS 1809.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Koenig, S., and Simmons, R. 1996. Easy and hard testbeds
for real-time search algorithms. In Proc. 13th Nat. Conf. on
Artificial Intelligence, 279–285.
Mackworth, A. K. 1977. Consistency in networks of rela-
tions. Artificial Intelligence 8:99–118.
Maliah, S.; Brafman, R. I.; Karpas, E.; and Shani, G. 2014.
Partially observable online contingent planning using land-
mark heuristics. In Proc. 24nd Int. Conf. on Automated
Planning and Scheduling, 163–171.
Moskewicz, M. W.; Madigan, C. F.; Zhao, Y.; Zhang, L.; and
Malik, S. 2001. Chaff: Engineering an efficient sat solver.

In Proc. 38th Annual Design Automation Conference, 530–
535. New York, USA: ACM.
Palacios, H., and Geffner, H. 2009. Compiling uncertainty
away in conformant planning problems with bounded width.
Journal of Artificial Intelligence Research 35:623–675.
Petrick, R., and Bacchus, F. 2002. A knowledge-based ap-
proach to planning with incomplete information and sens-
ing. In Ghallab, M.; Hertzberg, J.; and Traverso, P., eds.,
Proc. 6th Int. Conf. on Artificial Intelligence Planning Sys-
tems, 212–222. Toulouse, France: AAAI Press.
Qu, S. 2006. Fast incremental unit propagation by unify-
ing watched-literals and local repair. Master’s thesis, Mas-
sachusetts Institute of Technology.
Rintanen, J. 2004. Complexity of planning with partial
observability. In Zilberstein, S.; Koenig, S.; and Koehler,
J., eds., Proc. 14th Int. Conf. on Automated Planning and
Scheduling, 345–354. Whistler, Canada: AAAI Press.
Russell, S., and Norvig, P. 2009. Artificial Intelligence: A
Modern Approach. Prentice Hall, 3rd edition.

