
Learning Planning Representations from
Traces via SAT

Blai Bonet

Universidad Simón Boĺıvar, Venezuela

ICAPS. October 26–30, 2020

Collaborators

2 of 57

Learning Planning Representations

Given set of traces, where trace is sequence of observation-label pairs

o0, `0, o1, `1, . . . , on

Want symbolic model for planning (e.g. STRIPS model) that explains the
input traces, and is general (i.e. works for “bigger instances”)

This is general setting; main challenges are:

– What are the assumptions on the input (traces)?

– What’s the form of the sought model? and what’s it mean to be general?

– How is the model used on new instances?

3 of 57

Motivation

Model-based approach for planning is successful and robust:

– steady development of theory, methods and solvers

– models can be understood, analyzed, composed into bigger models, etc.

But models are needed:

– which are often complex and hand-crafted

– and thus planning (technology) is difficult to deploy in real-world settings

(Deep) RL doesn’t need full models and has shown impressive results, but
latent representations are opaque and difficult to understand or analyze
[Groshev, 2018; Garnelo et al., 2016; Marcus, 2018; etc]

Learning planning representations that are general is a step forward in
bridging the gap between model-based solvers and model-free learners

Indeed, learned models can be combined with general solvers based on DL
[Toyer et al., 2018; Bueno et al., 2019; Issakkimuthu et al., 2018; Garg et al., 2018; etc]

4 of 57

Outline

1. Learning first-order STRIPS models for classical planning

2. Qualitative Numerical Planning (QNP): Language for generalized planning

3. Learning QNP abstractions from symbolic traces

4. Learning QNP abstractions from non-symbolic traces provided by teacher

5. Wrap Up

5 of 57

Example: Hanoi

Set of non-symbolic traces on 3-disk and 3-peg instance

Under the assumption:

– states associated with unique obs

– different states associated with diff. obs

Input traces are summarized into single
directed graph (27 nodes, 78 edges)

MoveDisk(from,to,d):
Static: BIGGER(from,d), BIGGER(to,d), NEQ(from,to)
Prec: -clear(from), clear(to), clear(d), Non(from,d), -Non(d,from), Non(d,to)
Effect: clear(from), -clear(to), Non(d,from), -Non(d,to)

6 of 57

Partially Observable, Symbolic, and Non-Symbolic Traces

Trace o0, `0, o1, `1, . . . is induced by state trajectory s0, a0, s1, a1, . . .

– observation oi corresponds to state si: si oi

– label `i corresponds to action ai: ai `i

Trace is non-symbolic iff each observation and label is flat (i.e. has no
“structure”), for example, given by images

Set of traces is:

– complete if each possible transition (s, a, s′) is represented by (o, `, o′)

– fully observable (or free of confusion) if each state yields single
observation, and no different states with same observation

s

o

o′
o

s

s′
Neither or

7 of 57

Canonical Representation of Input

Under the following assumptions about the input set T of traces:

– each trace is non-symbolic (e.g., images)

– complete and fully observable

Input T is represented by directed and labeled graph GT = (V,L,E):

– V is set of observations in the traces in T

– L is set of labels in the traces in T

– E is set of labeled edges (o, `, o′) that appear as transitions in T

Example: In Hanoi, graph GT = encodes a complete and
fully observable set T of non-symbolic traces

8 of 57

First-Order STRIPS Domains

A (first-order) STRIPS domain is a pair (σ,A) where

– σ is first-order language made of constants and relations; e.g.,
{a0, u1, r2) denotes language with constant a, and unary and binary
predicates u and r

– A is set of action schemas a(x̄) = (Pre,Eff) where x̄ is vector of
variables, and Pre and Eff are sets of σ-literals with free vars in x̄

Example: Problem of Hanoi can be encoded in STRIPS with language
σ = {clear1, on2, BIGGER2} and single action:

MoveDisk(?disk,?src,?dst):

Prec : clear(?disk), clear(?dst), on(?disk, ?src), BIGGER(?dst, ?disk)

Effect : ¬on(?disk, ?src), ¬clear(?dst), clear(?src), on(?disk, ?dst)

9 of 57

STRIPS Instances and State Graphs

STRIPS instance for domain D = (σ,A) is tuple I = (O, Init,G) where

– O is set of object names that extend σ with constants

– Init and G are sets of literals that denote the initial and goal states

STRIPS model is tuple M = (D, I) made of domain D = (σ,A) and
instance I = (O, Init,G)

M spans labeled and directed graph GM made of states that are reachable
from state denoted by Init (via grounded actions), and labeled edges
(s, a(ō), s′) where a(ō) is the ground action that maps state s into s′

10 of 57

Hanoi in STRIPS

Language σ = {d00, d01, d02, d03, peg00 , peg01 , peg02 , clear1, on2, BIGGER2}

Static: BIGGER(pegi, dj) and BIGGER(di, dj) for i < j

clear(d0), on(d0, peg0),

clear(d3), on(d3, d2), on(d2, peg1),

clear(d1), on(d1, peg2)

clear(d3), on(d3, d2), on(d2, d1),

on(d1, d0), on(d0, peg2)

MoveDisk(?disk,?src,?dst):

Prec : clear(?disk), clear(?dst), on(?disk, ?src), BIGGER(?dst, ?disk)

Effect : ¬on(?disk, ?src), ¬clear(?dst), clear(?src), on(?disk, ?dst)
11 of 57

Learning Task for STRIPS Models: Find Isomorphism

Graph GT Graph GM

Traces T (input) Model M (output)

ISOMORPHIC

12 of 57

Learning Task for STRIPS Models

For complete and fully observable set T of non-symbolic traces,
represented by GT over labels L, find M = (σ,A,O, Init,G) such that

– each action schema a(x̄) in A is associated with label `a in L

– GM and GT are isomorphic graphs with respect to labels {`a : a(x̄) ∈ A}

I.e., 1-1 and onto map f between the vertices of GM and GT such that
(s, a(ō), s′) ∈ GM iff (f(s), `a, f(s′)) ∈ GT

In such case, we say that M solves (or explains) the input T (or GT)

Example: STRIPS model for Hanoi solves GT =

13 of 57

Learning Task for STRIPS Models: General

Given input sets of traces T1, T2, . . . , Tn, find STRIPS domain D and
instances I1, I2, . . . , In for D such that

– each model Mi = (D, Ii) solves the input Ti

If T = {T1, T2, . . .} is class of sets of traces, domain D is general for T if
for each Ti, there is instance Ii for D such that Mi = (D, Ii) solves Ti

Often, single and small Ti enough to learn domain D that is general for an
infinite class T , yet

– we can’t prove that D is indeed general for class T

– but we can verify that D is general for given finite subset of T

14 of 57

Bounded Combinatorial Task

A STRIPS model M = (σ,A,O, Init,G) has

– finite but arbitrary large first-order language σ

– finite but arbitrary large set of action schemas A

– finite but arbitrary large set of objects O

that make the space M of models unbounded

However, if α is a vector of hyperparameters that bound

– number predicates and max. arity

– number of different atoms used in D

– number of action schemas and max. number of arguments

– number of objects in O

then subclass Mα = {M ∈M : M complies with bounds in α} is finite

15 of 57

STRIPS Learner: Learning as Combinatorial Search

For increasing sequence of hyperparameters α1 ≺ α2 ≺ α3 ≺ · · · , the
learning task can be solved by

1. k := 1

2. While true do

3. Set α := αk

4. Find domain D = (σ,A) and instances I1, . . . , In such that
Mi = (D, Ii) is in Mα and solves GTj , for j = 1, . . . , n

5. If successful, return domain D and instances I1, . . . , In

6. Otherwise, set k := k + 1

Step 4 can be solved in finite time since Mα is finite. In practice, outer loop
is stopped after sufficiently large α

Step 4 is combinatorial task tackled with SAT. Yet, crucial idea is to
find model M such that GT and GM are isomorphic!

16 of 57

Encoding in SAT

For vector α of hyperparameters, SAT theory is partitioned into layers:

– zero-th layer T 0
α encodes general domain D

– i-th layer T iα encodes instance Ii and assures GMi
is isomorphic to GTi

,
i = 1, . . . , n

Propositional theory is Tα = T 0
α ∪

⋃n
i=1 T

i
α

T 0
α

T 1
α T 2

α · · · T n−1α T nα

(edges indicate sharing of variables between subtheories)

17 of 57

Domain Encoding (Sketch): T 0
α

• α sets #preds (max. arity), #actions (max. args), #atoms, #static preds

• Atoms for all schemas enumerated as m0,m1, . . .; e.g., on(?x, ?y), clear(?z), . . .

Propositions (decision), others (implied) not shown:

– label(a, l): assign label l to schema a

– p0(a,m)/p1(a,m): atom m is neg/pos precondition of schema a

– e0(a,m)/e1(a,m): atom m is neg/pos effect of schema a

– arity(p, i): predicate symbol p has arity i

– is(m, p): atom m is p-atom

– at(m, i, ν): i-th arg of atom m is (action) argument ν;
[e.g., a(?x, ?y) and m = p(?y)⇒ at(m, 1, 2)]

– un(u, a, ν): schema a uses static unary predicate u on argument ν

– bin(b, a, ν, ν′): schema a uses static binary predicate b on arguments ν and ν′

Theorem

Soundness: Satisfying assignment µ for T 0
α encodes domain Dµ bounded by α.

Completeness: Domain D bounded by α induces satisfying assignment µD for T 0
α,

and DµD = D
18 of 57

Instance Encoding (Sketch): T iα

Encoding of instance Ii that defines model Mi = (D, Ii)

• α bounds #objects in instance Ii

• Ground atoms enumerated as k0, k1, . . .; e.g. on(A,B), clear(B), . . .

Propositions (decision), others (implied) not shown:

– gr(k, p): ground atom k refers to predicate symbol p

– gr(k, i, o): i-th argument of ground atom k is object o

– φ(k, s): boolean value of ground atom k at state s

– r(u, o): true if u(o) holds for static unary predicate u

– s(b, o, o′): true if b(o, o′) holds for static binary predicate b

Satisfying assigment defines interpretation for σ-literals on all states in GTi ,
and gives value to unary and binary static predicates

Formulas in T iα ensure interpretation is consistent, and different states give
different value to at least some grounded atom k

19 of 57

Isomorphism (Sketch): Also in T iα
Propositions (decision), others (implied) not shown:

– mp(t, a): transition t is mapped to action schema a

– mf(t, k,m): ground atom k is mapped to atom m in transition t

– gtuple(a, ō): true if a(ō) is a ground instance of a

Edges in GTi correspond to edges in GM :

– mp(t, a) map transitions to actions and mf(t, k,m) arguments to objects

– Formulas in T iα ensure interpretation of atoms across transitions agree with
preconditions and effects of actions

Edges in GM correspond to edges in GTi :

– Lack of edges in GTi explained by model M , and applicable actions are applied

– Formulas in T iα ensure both

Theorem

(Soundness) SAT assignment µ for Tα encodes D and I1, . . . , In bounded by α
such that Mi = (D, Ii) solves GTi . (Completeness) If D and I1, . . . , In are
bounded by α such that (D, Ii) solves GTi , there is SAT assignment µ for Tα

20 of 57

Example: Hanoi: Input and Output

MoveDisk(from,to,d):
Static: BIGGER(from,d), BIGGER(to,d), NEQ(from,to)
Prec: -clear(from), clear(to), clear(d), Non(from,d), -Non(d,from), Non(d,to)
Effect: clear(from), -clear(to), Non(d,from), -Non(d,to)

21 of 57

Example: Gripper: Input and Output

M
ov
e

Pi
ck

Pi
ck

Pi
ckPi
ck

Pi
ck

Pi
ck

M
ov
e

Dr
op

Pi
ck

Pi
ck

M
ov
e

Dr
op

Pi
ck

Pi
ck

M
ov
e

Dr
op

Pi
ck

Pi
ck

M
ov
e

Dr
op

Pi
ck

Pi
ck

M
ov
e

Dr
op

Pi
ck

Pi
ck

M
ov
e

Dr
op

Pi
ck

Pi
ck

M
ov
e

Dr
op

Dr
op

M
ov
e

Dr
op

Dr
op

M
ov
e

M
ov
e

Dr
op

Dr
op

Dr
op

M
ov
e

Dr
op

Dr
op

M
ov
e

M
ov
e

Dr
op

Dr
op

Dr
op

M
ov
e

M
ov
e

Dr
op

Dr
op

Dr
op

M
ov
e

M
ov
e

Dr
op

M
ov
e

Dr
op

M
ov
e

Dr
op

Pi
ck

Pi
ck

M
ov
e

M
ov
e

Dr
op

Dr
op

M
ov
e

Dr
op

Dr
op

M
ov
e

Dr
op

Dr
op

M
ov
e

Dr
op

Dr
op

Pi
ckPi
ck

M
ov
e

M
ov
e

Dr
op

Dr
op

M
ov
e

Dr
op

Dr
op

Pi
ck

Pi
ck

M
ov
e

M
ov
e

Pi
ck

Pi
ck

Pi
ck

Pi
ck

Pi
ck

Dr
op

M
ov
e

Pi
ck

Dr
op

M
ov
e

M
ov
e

Pi
ck

Pi
ck

Pi
ck

Pi
ck

Pi
ck

M
ov
e

Dr
op

Pi
ck

Dr
op

M
ov
e

Pi
ck

Dr
op

M
ov
e

Pi
ck

Dr
op

M
ov
e

Pi
ck

Dr
op

M
ov
e Pi
ck

Dr
op

M
ov
e

M
ov
e

Pi
ck

Pi
ckPi
ck

Pi
ck

Pi
ck

M
ov
e

Dr
op

Pi
ck

Dr
op

M
ov
e

Pi
ck

M
ov
e

Dr
op

Pi
ckDr
op

M
ov
e

Dr
op

M
ov
e

Pi
ck

Pi
ck

Pi
ck

Pi
ck

Pi
ck

M
ov
e

Dr
op

M
ov
e

Pi
ck

Dr
op

M
ov
e

Pi
ck

Pi
ck

Pi
ck

Pi
ck

Pi
ck

M
ov
e

Dr
op

M
ov
e

Pi
ck

M
ov
e

Dr
op

Pi
ck

M
ov
e

Dr
op

Pi
ck

Dr
op

M
ov
e

Pi
ck

Dr
op

M
ov
e

Pi
ck

Dr
op

M
ov
e

Pi
ck

Pi
ck

Pi
ck

Pi
ck

Pi
ck

M
ov
e

Dr
op

M
ov
e

Pi
ck

M
ov
e

Dr
op

Pi
ck

Dr
op

M
ov
e

Pi
ck

Dr
op

Dr
op

M
ov
e

Dr
op

Dr
op

M
ov
e

Dr
op

Dr
op

M
ov
e

M
ov
ePi
ck

Pi
ck

Dr
op

Dr
op

M
ov
e

Dr
op

Dr
op

M
ov
e

M
ov
e

Pi
ck

Pi
ck

Dr
op

Dr
op

M
ov
e

M
ov
e

Pi
ckPi
ck

M
ov
e

Dr
op

Dr
op

M
ov
e

Dr
op

Dr
op

Dr
op

M
ov
e

Dr
op

M
ov
e

Dr
op

M
ov
e

Dr
op

M
ov
e

M
ov
e

Dr
op

Dr
op

M
ov
e

Dr
op

Dr
op Dr
op

M
ov
e

Dr
op

M
ov
e

M
ov
e

Dr
op

Dr
op

M
ov
e

Dr
op

Dr
op

Pi
ck

M
ov
e

Pi
ck

Dr
op

Pi
ck

M
ov
e

Pi
ck

Dr
op

Pi
ck

M
ov
e

Pi
ck

Dr
op

Pi
ck

M
ov
e

Pi
ck

Dr
op

Pi
ck

M
ov
e

Pi
ck

Dr
op

Pi
ck

M
ov
e Pi
ck

Dr
op

Pi
ck

Pi
ck

Pi
ck

Pi
ckPi
ck

Pi
ck

M
ov
e

M
ov
e

Graph: 88 nodes + 280 edges

Labels: Move, Drop, Pick

Move(from,to):
Static: CONN(from,to)
Prec: at(from), -at(to)
Effect: -at(from), at(to)

Drop(ball,room,gripper):
Static: PAIR(room,gripper)
Prec: at(room), Nfree(gripper), hold(gripper,ball), Nat(room,ball)
Effect: -Nfree(gripper), -hold(gripper,ball), -Nat(room,ball)

Pick(ball,room,gripper):
Static: PAIR(room,gripper)
Prec: at(room), -Nfree(gripper), -hold(gripper,ball), -Nat(room,ball)
Effect: Nfree(gripper), hold(gripper,ball), Nat(room,ball)

22 of 57

Example: Blocksworld: Input

Stack

Stack

Stack

Stack

Stack

Stack

Stack

Stack

Stack

Stack

Stack

Stack

Newtower

Move

Move

Stack

Stack

Stack

Stack

Newtower

Move

Move

Stack

Stack

Stack Stack

Newtower

Move

Move

Stack Stack

StackStack

Newtower

Move

Move

Stack

Stack

Stack

Stack

Newtower

Move

Move

Stack

Stack

Stack

Stack

Newtower

Move

Move

Stack

Stack

Stack

Stack

Newtower

Move

Move

Stack

Stack

Stack

Stack

Newtower

Move

Move

Stack

Stack

Stack

Stack

Newtower

Move

Move

StackStack

StackStack

Newtower

Move

Move

Stack

Stack

Stack

Stack

Newtower

Move

Move

Stack

Stack

Stack

Stack

Newtower

Move

Move

Stack

Stack

Stack

Stack

Newtower

Newtower

Move

Move

Newtower

Newtower

Move

Move

Newtower

Move

Stack

Newtower

MoveStack

Newtower

Newtower

Move

Move

Newtower

Newtower

Move

Move

Newtower

MoveStack

Newtower

Move

Stack

Newtower

Newtower

Move

Move

Newtower

Newtower

Move

Move

Newtower

Move Stack

Newtower

Move Stack

Newtower

Newtower

Move

Move

Newtower

Newtower

Move

Move

Newtower

Move

Stack

Newtower

Move

Stack

Newtower

Newtower

Move

Move

Newtower

Move

Stack

Newtower

Move Stack

Newtower

Newtower

Move

Move

Newtower

Move

Stack

Newtower

MoveStack

Newtower

Newtower

Move

Move

Newtower

Move

Stack

Newtower

Move Stack

Newtower

Newtower

Move

Move

Newtower

Move

Stack

Newtower

Move

Stack

Newtower

MoveStack

Newtower

MoveStack

Newtower

Move

Stack

Newtower

Move Stack

Newtower

Move Stack

Newtower

Move

Stack

Newtower

Move

Stack

Newtower

MoveStack

Newtower

Newtower

Newtower

Newtower

Newtower

Newtower

NewtowerNewtower

Newtower

Newtower

Newtower

Newtower

Newtower

Newtower

Newtower

Newtower

Newtower

Newtower

NewtowerNewtower

Newtower Newtower

Newtower

Newtower

Graph: 73 nodes + 240 edges

Labels: MoveToTable, MoveFromTable, Move 23 of 57

Example: Blocksworld: Output

Graph: 73 nodes + 240 edges

Labels: MoveToTable, MoveFromTable, Move

MovetoTable(x,y):
Static: NEQ(x,y)
Prec: -Nclear(x), Nclear(y), -Ntable-OR-Non(x,y), Ntable-OR-Non(x,x)
Effect: -Nclear(y), -Ntable-OR-Non(x,x), Ntable-OR-Non(x,y)

MoveFromTable(x,y,d):
Static: NEQ(x,y), EQ(y,d)
Prec: -Nclear(x), -Nclear(d), -Ntable-OR-Non(x,x), Ntable-OR-Non(x,y)
Effect: Nclear(d), Ntable-OR-Non(x,x), -Ntable-OR-Non(x,y)

Move(x,z,y):
Static: NEQ(x,z), NEQ(z,y), NEQ(x,y)
Prec: -Nclear(x), Nclear(y), -Nclear(z), Ntable-OR-Non(x,x),

Ntable-OR-Non(x,z), -Ntable-OR-Non(x,y)
Effect: Nclear(z), -Nclear(y), Ntable-OR-Non(x,y), -Ntable-OR-Non(x,z)

24 of 57

Generalized Planning: The Challenge

Generalized planning is about obtaining a general plan or strategy for
solving collections of planning problems

For example, find general strategy to achieve fixed goal in all Blocksworld
problems, independently of number or initial configuration of blocks

Get A clear

A

E

C

D

B

Get A on B

A

B

D

E

C

Get tower A,B,C,D,E

D

E

B

A

C

25 of 57

Generalized Planning: Motivation

Why solve individual problems from scratch if it’s possible to learn
general plan in one shot?

Lots of current research in deep (reinforcement) learning is about
computation of general plans or policies; e.g. [Espeholt et al., 2018; Groshev et

al., 2018; Chevalier-Boisvert et al., 2019; François-Lavet et al. 2019]

Generalized planning gives us a crisp vocabulary to talk about general plans
[Levesque, 2005; Hu & De Giacomo, 2011; B. & Geffner, 2015; Belle & Levesque, 2016;

Jiménez et al., 2019; Illanes & McIlraith, 2019]

Planning

Learning Representation

Generalized
Planning

26 of 57

Qualitative Numerical Planning

Simple and expressive language for generalized planning, introduced by
[Srivastava et al., 2011]:

– QNP is propositional abstraction for underlying collection Q of planning
instances

– solutions for QNP are policies that solves all planning problems in Q

– after proper reduction to FOND, solved with off-the-shelf FOND planner

QNP problems are similar to STRIPS problems but extended with numerical
variables that can be incremented or decremented qualitatively

27 of 57

QNP Example: clear(x)

Goal: Remove all blocks above fixed block x

QNP Qclear = (F, V, I, A,G) captures all Blocksworld problems:

– F = {H} where H denotes whether gripper holds a block

– V = {n} where n “counts” blocks above x (n>0 iff some block above x)

– I = {¬H,n> 0}
– G = {n=0}

x = block A

¬H, n = 2

A

E

C

D

B

H, n = 1

A

E

D

B

C

¬H, n = 0

A D

B

C

E

28 of 57

QNP Example: Actions for clear(x)

– Putaway = 〈H;¬H〉 puts held block on table or block not above x

– Pick-above-x = 〈¬H,n> 0;H,n↓〉 picks the top block above x

– Put-above-x = 〈H;¬H,n↑〉 puts block being held on top block above x

– Pick-other = 〈¬H;H〉 picks block not above x

Block x is block A:

x = block A

¬H, n = 2

A

E

C

D

B

H, n = 1

A

E

D

B

C

Pick-above-x

Put-above-x

¬H, n = 1

A

E

D

B

C
Putaway

Pick-other

29 of 57

Example: QNP Abstraction for clear(x)

Observation projection for Qclear = (F, V, I, A,G) where

– F = {H} and V = {n}

– I = {H,n> 0} and G = {n= 0}

– Actions in A: Putaway = 〈H;¬H〉, Pick-above-x = 〈¬H,n> 0;H,n↓〉,
Put-above-x = 〈H;¬H,n↑〉, and Pick-other = 〈¬H;H〉

H,n> 0 H,n> 0H,n=0

H,n=0

Pick-other

Pick-above-x : n↓Pick-above-x : n↓

Putaway

Put-above-x : n↑
Put-above-x : n↑

P
u
taw

ay

P
ic
k
-o
th
er

30 of 57

Example: QNP Solution for clear(x)

Observation projection for Qclear = (F, V, I, A,G) where

– F = {H} and V = {n}

– I = {H,n> 0} and G = {n= 0}

– Actions in A: Putaway = 〈H;¬H〉, Pick-above-x = 〈¬H,n> 0;H,n↓〉,
Put-above-x = 〈H;¬H,n↑〉, and Pick-other = 〈¬H;H〉

H,n> 0 H,n> 0H,n=0

H,n=0

Pick-other

Pick-above-x : n↓Pick-above-x : n↓

Putaway

Put-above-x : n↑
Put-above-x : n↑P

u
taw

ay

P
ic
k
-o
th
er

31 of 57

QNP Syntax

QNP is tuple Q = (F, V, I, A,G) where

– F is a finite set of propositions

– V is a finite set of numerical variables

– I is a set of F+V -literals, where V -literals are X=0 or X>0 for X in V

– G is goal condition given by F+V -literals

– A is set of actions. Each has precondition Pre (F+V -literals), boolean
effects Eff (F -literals), and numerical effects N (atoms X↑ or X↓) with
restriction that if X↓ in N , then X > 0 must be in Pre

Numerical vars affected only qualitatively, and tested for zero

Plan-existence for QNPs decidable [Srivastava et al., 2011] whereas it is
undecidable for numerical planning [Helmert, 2002]

32 of 57

Example: QNP for Gripper

QNP Qgripper = (F, V, I, A,G):

– F = {T} where T iff at(A)

– V = {b, c, g} where b counts balls at B, c balls held, and g free grippers

– I = {T, b> 0, c= 0, g > 0} and G = {c= 0, b= 0}

– Abstract actions are:

• Move = 〈¬T ;T 〉 and Leave = 〈T ;¬T 〉

• Pick-at-B = 〈¬T, b> 0, g > 0; b↓, c↑, g↓〉

• Drop-at-B = 〈¬T, c> 0; b↑, c↓, g↑〉

• Drop-at-A = 〈T, c> 0; c↓, g↑〉

33 of 57

Example: Solution for Gripper

T, b> 0, c=0, g > 0 T , b> 0, c≥ 0, g > 0 T , b=0, c> 0, g≥ 0

T, b=0, c> 0, g≥ 0

T, b=0, c=0, g > 0

T , b> 0, c> 0, g=0T, b> 0, c> 0, g≥ 0

Leave Pick-at-B

Move

Drop-at-A

Pick-at-B

Move

Drop-at-A

Pick-at-B

Drop-at-A

Drop-at-A

34 of 57

QNP Solutions

QNP solutions are the strong-cyclic solutions that terminate

– Strong-cyclic means that each reachable state is connected to a goal state

– π terminates if each infinite induced trajectory terminates

– Infinite trajectory denoted by s0, s1, . . . [si, . . . , sm]∗ where {si, . . . , sm}
is set of recurrent states (loop)

– Such trajectory terminates iff there is variable X that is decremented
but not incremented in loop

Example: loop terminates because variable b is decremented by Pick-at-B
but not incremented in loop

T, b> 0, c=0, g > 0 T , b> 0, c≥ 0, g > 0

T , b> 0, c> 0, g=0T, b> 0, c> 0, g≥ 0

Leave Pick-at-B

Pick-at-B

Move

Drop-at-A

Pick-at-B

Drop-at-A
35 of 57

Learning QNPs from Symbolic Traces

QNPs are expressive and effective!

QNPs can be learned from symbolic traces [B., Francès & Geffner, 2019]

We assume that observations in traces correspond to full symbolic
representations of states in a planning representation of the task

Main challenge is to learn concepts that define features (booleans and
numericals); e.g. number of free grippers or blocks above A, distances, etc

From pool of concepts that define pool of features, select minimal subset
that explain transitions in traces

System learns QNPs that are translated into FOND problems and solved

36 of 57

QNP Learner (Symbolic Traces)

Input: STRIPS domain D, set S of symbolic traces over D, and bound N
for concept complexity

Output: QNP model Q that explain traces

Method:

– Use atom schemas and fixed concept grammar to generate pool of
concepts: all concepts with complexity ≤ N

– Interpretation of concept C at state s is subset of objects C(s); these
define features:

• boolean feature p when |C(s)| ∈ {0, 1} for all states s

• numerical feature n = |C(s)| when |C(s)| > 1 for at least some state s

– From pool of features F , construct SAT theory T (S,F) that
“separates” states and transitions in sample S

– Recover QNP model from solution of SAT theory T (S,F)
37 of 57

SAT Theory for Learning QNPs

Input:

– S = transitions (s, s′) in set of traces

– F = pool of features f together with interpretations f(s) at each s in S

Propositional variables:

– selected(f) for each f in F to select F-subset

– D1(s, t) iff selected features distinguish states s and t in S

– D2(s, s′, t, t′) iff selected features distinguish trans. (s, s′) and (t, t′) in S

Formulas:

– D1(s, t) (for states s and t such that only one is goal)

–
∧
t′ D2(s, s′, t, t′) =⇒ D1(s, t) (for each (s, s′) and t in S)

– D1(s, t) ⇐⇒
∨
f selected(f) (for f ’s that distinguish s and t)

– D2(s, s′, t, t′) ⇐⇒
∨
f selected(f) (for f ’s that dist. (s, s′) and (t, t′))

38 of 57

Recovering QNP from Assignment

Selected features define boolean and numerical features in the QNP

Each transition (s, s′) is mapped into transition (t, t′) over selected features,
and defines QNP action with precondition t and effect given by the change
of value across (t, t′)

Multiple actions (t, t′) are often collapsed into simpler action by removing
superfluous preconditions and effects

Theorem

T (S,F) is SAT iff there is sound QNP abstraction relative to S and F

39 of 57

Learned QNPs: Gripper

Training set: traces from 2 instances with 4 and 5 balls each

Learned features (selected) from |S| = 403 and |F| = 130:

– T = “whether robot is in target room” = at u CA

– b = “number of balls not in target room” = |∃at.¬CA|
– c = ”number of balls being held by robot” = |∃hold.Cu|
– g = ”number of free grippers (available capacity)” = |empty|

Learned abstract actions:

– Drop = 〈T, c> 0; c↓, g↑〉
– Move-fully-loaded = 〈¬T, c> 0, g= 0;T 〉
– Move-half-loaded = 〈¬T, c> 0, g > 0, b= 0;T 〉
– Pick = 〈¬T, b> 0, g > 0; b↓, g↓, c↑〉
– Leave = 〈T, c= 0, g > 0;¬T 〉

Solution works for any number of balls and grippers!
40 of 57

Example: Solution for (Learned) Gripper

T, g > 0, c=0, b> 0 T, g > 0, c=0, b> 0 T , g > 0, c≥ 0, b> 0 T , g=0, c> 0, b=0

T , g > 0, c> 0, b=0T , g=0, c> 0, b> 0

T, g≥ 0, c> 0, b=0T , g=0, c> 0, b> 0

T, g≥ 0, c> 0, b=0

T, g=0, c> 0, b> 0T, g > 0, c=0, b> 0

T, g=0, c> 0, b=0

Push(b) Leave

Pick

Pick

Pick
Pick

M
o
ve-fu

lly-lo
a
d
edMove-half-loadedPush(c)

Push(c)

Move-fully-loaded

Drop

Drop

Drop

Drop

Po
p(
c)

Model Q learned and translated into FOND in less than 1 sec. FOND-SAT [Geffner &

Geffner, 2018] solves the FOND problem in less than 13 secs after 11 calls to SAT

solver

41 of 57

Learned QNPs: Pick Rewards in Grid

Inspired from RL work [Garnelo, Arulkumaran & Shanahan, 2016]

Training set: 2 instances 4× 4, 5× 5, diff. dist. of blocked cells and rewards

Learned Features (selected) from |S| = 568 and |F| = 280:

– r = “number of remaining rewards” = |reward |

– d = “min. dist. to closest reward” = dist(at, adj :¬blocked, reward)

Learned abstract actions:

– Move-to-closest-reward = 〈r > 0, d> 0; d↓〉

– Collect = 〈d= 0, r > 0; r↓, d↑〉

Solution works for any grid dimension, number of rewards, and
distribution of blocked cells!

42 of 57

Example: Solution for (Learned) Rewards

d> 0, r > 0 d> 0, r > 0 d=0, r > 0

d=0, r > 0 d> 0, r=0

Push(d) Move-to-closest-reward

Pop
(d)

Collect

Collect

Move-to-closest-reward

Model Q is learned and translated into FOND is less than 1 sec. FOND-SAT solves

the FOND problem in less than 1 sec after 4 calls to SAT solver

43 of 57

Learning QNPs from Non-Symbolic Traces

Focus on fully-observable and complete sets of non-symbolic traces

Any planning problem solved with single numerical feature n that counts
“steps to reach goal” and single QNP action 〈n> 0;n↓〉

This is valid QNP but:

– this QNP model lacks structure

– computing value of n at state s is intractable (in general)

To get meaningful models with tractable features, we’ll assume the traces
are annotated by teacher

Goal is to learn QNP model that explains the teacher

44 of 57

Annotated Traces

The teacher is responsible for

– marking transitions as good or bad according to his/her preferences

– assigning labels to good transitions (possibly single label)

– assigning colors to states (disinguishing states, at least goals/non-goals)

The set T of traces then define a graph GT such that

– subgraph spanned by good transitions makes up annotated DAG where
each path leads to a goal state (teacher is responsible for this!)

– bad transitions correspond to back or cross edges in DAG

– states are assigned to different colors

45 of 57

Example: Annotated Traces

Blocksworld on(A,B) (4 blocks = 125 states):

Put

Put

Put

PutPut

PutPut

Pick Pick Pick Pick Pick

Pick Pick Pick Pick

Pick

Pick Pick

Pick

Put

PutPutPut PutPut

Put

Put Put

PutPutPutPut

Pick Pick Pick Pick Pick Pick Pick

Pick PickPick

Pick

Pick Pick PickPick Pick Pick Pick

Pick

Put Put PutPut PutPut Put PutPut Put

Put

Put

PutPutPutPut

Pick Pick Pick Pick

Pick

Pick

PickPickPick Pick PickPickPick PickPick PickPickPick

Put Put PutPut PutPut Put PutPut Put

PickPick PickPickPick PickPick PickPickPick

Delivery of packages (3× 3 and 2 pkgs = 414 states):

Deliver

Move Move Move Move

Move Move PickMove PickMove PickPick

Move Move Move Move Move MovePick Move Move MovePick Move Move MovePickPick

Move Move Move Move MoveMoveMove DeliverMove Move MoveMove Move DeliverMove Move MoveMove Move DeliverMove Move Move Deliver

Move Move Move MoveMove Move Move Move Move MoveMove MoveMove MoveMove Move Move Move MoveMove MoveMove MoveMove Move Move Move Move Move MoveMove MoveMoveMove MoveMove

Move MoveDeliver Move Move Deliver Move MoveMove PickMove PickPickMove MoveDeliver MoveMove PickMove Move PickPickMove Move Deliver Move Move PickMove PickMove PickMove Move PickMove PickMove Pick

Move MoveMovePick Move Move MovePick MoveMove MovePickPick MovePick Move MoveMovePick MoveMove MovePickPickMove Move Move MoveMove Move Move MovePickPick MoveMove MovePick PickMove Move Move MoveMove Move Move MovePick MovePick PickPickMove Move Move MoveMoveMove Move Move Move Move

MoveMove PickMove PickMove PickPick Move Move PickMove PickMove PickPick Move MoveMove Move MoveMove Move MoveMove MoveMove Move PickMove PickMove PickPick Move MoveMove MoveMove Move MoveMove MoveMoveMoveMove PickMove PickMove PickPick Move Move Move MoveMove MoveMove MoveMove Move Move MoveMove MoveMove Move

MoveMove Move Move MoveMove MoveMove MoveMoveMove MoveMoveMove MoveMove Move MoveMove MoveMove MoveMoveMove Move Move Move MovePick Move Move MovePick Pick MoveMoveMove MoveMoveMove Move MoveMoveMove MovePick Move Move Move MovePickPick MoveMove MoveMove MoveMove Move MovePick MovePick MovePickMove MovePick MovePick MovePick

Move MoveMoveMove Move MoveMove Move MoveMove Move MoveMoveMove MoveMove Move MoveMoveMove MoveMoveMove Move Move MoveMoveMove Move MoveMove MoveMoveMove MoveMove MoveMove MoveMove MoveMove MoveMove

Move MoveMove MoveMoveMove Move Move MoveMoveMove Move MoveMove MoveMoveMove MoveMove MoveMove MoveMoveMoveMove Move

MoveMove MoveMove

46 of 57

Target Class of QNP Models

Policy already hinted by teacher; want QNP policy determined by

– set of features (boolean and numerical)

– set of QNP actions

– mapping from abstract states (boolean valuations for features) into actions

Target class of models sliced with vectors α of hyperparameters that tell:

– number of boolean and numerical features

– number of abstract actions

Learning aims at regular policies that are guaranteed to terminate:

– policy is regular if there is ordering n1, . . . , nm of numerical features such
that if some action increases nj , it must decrease some nk with k > j

Mα denotes the (finite) class of QNP models bounded by α
47 of 57

QNP Learner (Non-Symbolic Traces)

Like in task for learning STRIPS models:

– Input consists of sets T1, . . . , Tn of traces defining graphs GT1
, . . . , GTn

– For vector α of hyperparameters, SAT theory Tα is decomposed as

Tα = T 0
α ∪

⋃n
i=1 T

i
α

where T 0
α encodes QNP model and policy, and each T iα encodes feature

values for states in Ti and conditions to ensure isomorphism between
model and subtree of annotated DAG for GTi

– Policy encoded in T 0
α is strong-cyclic and regular, thus QNP solution

– Abstract states in QNP are colored and bijection from GTi
to QNP model

must respect coloring

48 of 57

Example: QNP Models and Solutions
Blocksworld on(A,B):

Variables: X1 X0 p1 p0
a0/Pick: pre={p1}, eff={-p1}
a1/Pick: pre={p1,X0=0,X1>0}, eff={-p1,reset(X0),dec(X1)}
a2/Put: pre={-p1,X0>0,X1>0}, eff={p1,dec(X0)}
a3/Put: pre={-p1,X0=0}, eff={p1}
a4/Put: pre={p0,-p1,X0=0,X1>0}, eff={-p0,p1,dec(X1)}
a5/Pick: pre={-p0,p1}, eff={p0,-p1}

0000

0010
a3

0001 0011
a3a5

1000

1010

a3

1001

a4

a4

a1

a1

1100

a1

1011
a0

a2
1110a2

1101

a2

1111

a2

a0

a0

Delivery of packages:

Variables: X2 X1 X0 p0
a0/Move: pre={X0=0,X1>0,X2>0}, eff={dec(X1)}
a1/Pick: pre={p0,X2>0}, eff={-p0}
a2/Move: pre={p0,X0>0,X2>0}, eff={dec(X0)}
a3/Deliver: pre={-p0,X0=0,X1=0,X2>0}, eff={p0,reset(X0),reset(X1),dec(X2)}

0000

0001

0010

1000

a3

1111
a3

1100a0

a0
1101

a1

a2

a2

49 of 57

Wrap Up

• Learning planning representations is step towards bridging the gap
between model-based solvers and model-free learners

• Learned models are general and can be used for different purposes

• Learning from non-symbolic inputs formulated in terms of crisp and simple
principle (graph isomorphism), independent of target class of models

• Learning task reduced to combinatorial task, modeled and solved via SAT

• QNPs for generalized planning can also be learned from symbolic traces
and resulting models solved with off-the-shelf FOND planners

50 of 57

What’s Not Been Discussed

– Relax assumptions: full observability and completeness of traces

– Target class: first-order vs. propositional models (e.g., STRIPS vs.
Grounded STRIPS or PSVN), other languages beside STRIPS or QNPs

– Grounding problem; e.g., how to use learned model in image-based
settings where intepretation of atoms is not directly available

51 of 57

Related Work

– Planning/MDP methods that assume symbolic information on the input, either
language, objects, number of arguments, etc [Diuk et al., 2008; Yang et al., 2007;

Arora et al., 2018; Aineto et al., 2019; Cresswell et al., 2013]

– Inductive logic programming methods [Khardon, 1999; Martin & Geffner, 2004; Fern

et al., 2004]

– Learning grounded STRIPS models using autoencoders [Konidaris et al., 2018,

Asai, 2019; Asai & Fukunaga, 2018; Asai & Muise, 2020]

– DL of general policies from PDDL models [Toyer et al., 2018; Bueno et al., 2019;

Issakkimuthu et al., 2018; Garg et al., 2018]

– Generalized planning and QNPs [Hu & De Giacomo, 2011; Srivastava et al., 2011;

B. & Geffner, 2015, 2018, 2020; B. et al., 2017, 2019; Jiménez et al., 2019; Illanes &

McIlraith, 2019]

– DRL generate policies without prior symbolic knowledge, but latent repr. aren’t
general and lack transparency, reusability, and compositionality [Mnih et al., 2015;

Groshev et al., 2018; Chevalier-Boisvert, 2019; François-Lavet et al., 2019; Marcus,

2018; Lake & Baroni, 2017; Garnelo et al., 2016]

52 of 57

Current and Future Work

• Learn from partially observable traces, where same obs can come from
different states

• Apply learned models in non-symbolic settings: learn from image-based
traces, apply model to image-based setting

53 of 57

Bibliography (1 of 4)

– Aineto, Jiménez, Onaindia & Miquel Raḿırez. 2019. Model recognition as planning. In
ICAPS, 13-–21.

– Arora, Fiorino, Pellier, Métivier & Pesty. 2018. A review of learning planning action
models. The Knowledge Engineering Review 33:e20.

– Asai. 2019. Unsupervised grounding of plannable first-order logic representation from
images. In ICAPS, 583–591.

– Asai & Fukunaga. 2018. Classical planning in deep latent space: Bridging the
subsymbolic-symbolic boundary. In AAAI, 6094–6101.

– Asai & Muise. 2020. Learning Neural-Symbolic Descriptive Planning Models via
Cube-Space Priors: The Voyage Home (to STRIPS). arXiv 2004:12850.

– Belle & Levesque. 2016. Foundations for generalized planning in unbounded stochastic
domains. In KR, pp. 380–389.

– Bonet, De Giacomo, Geffner & Rubin. 2017. Generalized planning: Non-deterministic
abstractions and trajectory constraints. In IJCAI, 873–879.

– Bonet, Francès & Geffner. 2019. Learning features and abstract actions for computing
generalized plans. In AAAI, 2703–2710.

– Bonet & Geffner. 2015. Policies that generalize: Solving many planning problems with
the same policy. In IJCAI, 2798–2804.

– Bonet & Geffner. 2018. Features, projections, and representation change for
generalized planning. In IJCAI, 4667–4673.

54 of 57

Bibliography (2 of 4)

– Bonet & Geffner. 2020. Qualitative Numerical Planning: Reductions and Complexity.
JAIR. Forthcoming.

– Bueno, de Barros, Mauá & Sanner. 2019. Deep reactive policies for planning in
stochastic nonlinear domains. In AAAI, 7530–7537.

– Chevalier-Boisvert, Bahdanau, Lahlou, Willems, Saharia, Nguyen & Bengio. 2019.
BabyAI: A platform to study the sample efficiency of grounded language learning. In
ICLR.

– Cimatti, Pistore, Roveri & Traverso. 2003. Weak, strong, and strong cyclic planning
via symbolic model checking. Artificial Intelligence, 147, 35–84.

– Cresswell, McCluskey & West. 2013. Acquiring planning domain models using LOCM.
The Knowledge Engineering Review 28, 195—213.

– Diuk, Cohen & Littman. 2008. An object-oriented representation for efficient
reinforcement learning. In ICML, 240–247.

– Espeholt, Soyer, Munos et al. 2018. IMPALA: Scalable Distributed Deep-RL with
Importance Weighted Actor-Learner Architectures. arXiv preprint arXiv:1802.01561.

– Fern, Yoon & Givan. 2004. Approximate policy iteration with a policy language bias. In
NIPS, 847–854.

– François-Lavet, Bengio, Precup & Pineau. 2019. Combined reinforcement learning via
abstract representations. In AAAI, 3582–3589.

– Garg, Bajpai & Mausam. 2020. Symbolic Network: Generalized Neural Policies for
Relational MDPs. arXiv:2002.07375.

55 of 57

Bibliography (3 of 4)

– Garnelo, Arulkumaran & Shanahan. 2016. Towards deep symbolic reinforcement
learning. arXiv:1609.05518.

– Geffner & Geffner. 2018. Compact policies for fully observable non-deterministic
planning as SAT. In ICAPS, 88–96.

– Groshev, Goldstein, Tamar, Srivastava & Abbeel. 2018. Learning generalized reactive
policies using deep neural networks. In ICAPS, 408–416.

– Helmert. 2002. Decidability and undecidability results for planning with numerical state
variables. In AIPS, 44–53.

– Hu & De Giacomo. 2011. Generalized planning: Synthesizing plans that work for
multiple environments. In IJCAI, 918–923.

– Illanes & McIlraith. 2019. Generalized planning via abstraction: Arbitrary numbers of
objects. In AAAI, 7610–7618.

– Issakkimuthu, Fern & Tadepalli. 2018. Training deep reactive policies for probabilistic
planning problems. In ICAPS, 422–430.

– Jiménez, Segovia-Aguas & Jonsson. 2019. A review of generalized planning. The
Knowledge Engineering Review, 34:e5.

– Khardon. 1999. Learning action strategies for planning domains. Artificial Intelligence
113(1-2):125–148.

– Konidaris, Pack Kaelbling & Lozano-Perez. 2018. From skills to symbols: Learning
symbolic representations for abstract high-level planning. JAIR 61, 215–289.

56 of 57

Bibliography (4 of 4)

– Lake & Baroni. 2017. Generalization without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. arXiv:1711.00350.

– Levesque. 2005. Planning with loops. In IJCAI, pp. 509–515.

– Marcus. 2018. Deep learning: A critical appraisal. arXiv:1801.00631.

– Mart́ın & Geffner. 2004. Learning generalized policies from planning examples using
concept languages. Applied Intelligence 20(1):9–19.

– Mnih et al. 2015. Human-level control through deep reinforcement learning. Nature,
518(7540).

– Srivastava, Zilberstein, Immerman & Geffner. 2011. Qualitative numeric planning. In
AAAI.

– Toyer, Trevizan, Thiébaux & Xie. 2018. Action schema networks: Generalised policies
with deep learning. In AAAI.

– Yang, Wu & Jiang. 2007. Learning action models from plan examples using weighted
max-sat. Artificial Intelligence, 171(2-3), 107–143.

57 of 57

