Learning Planning Representations from Traces via SAT

Blai Bonet

Universidad Simón Bolívar, Venezuela

ICAPS. October 26-30, 2020

Collaborators

Learning Planning Representations

Given set of traces, where trace is sequence of observation-label pairs

 $o_0, \ell_0, o_1, \ell_1, \ldots, o_n$

Want **symbolic model for planning** (e.g. STRIPS model) that **explains** the input traces, and is **general** (i.e. works for "bigger instances")

This is general setting; main challenges are:

- What are the assumptions on the input (traces)?
- What's the form of the sought model? and what's it mean to be general?
- How is the model used on new instances?

Motivation

Model-based approach for planning is successful and robust:

- steady development of theory, methods and solvers
- models can be understood, analyzed, composed into bigger models, etc.

But models are needed:

- which are often complex and hand-crafted
- and thus planning (technology) is difficult to deploy in real-world settings

(Deep) RL doesn't need full models and has shown impressive results, but **latent representations** are opaque and difficult to understand or analyze [Groshev, 2018; Garnelo et al., 2016; Marcus, 2018; etc]

Learning planning representations that are general is a step forward in bridging the gap between **model-based solvers** and **model-free learners**

Indeed, learned models can be combined with general solvers based on DL [Toyer et al., 2018; Bueno et al., 2019; Issakkimuthu et al., 2018; Garg et al., 2018; etc]

Outline

- 1. Learning first-order STRIPS models for classical planning
- 2. Qualitative Numerical Planning (QNP): Language for generalized planning
- 3. Learning QNP abstractions from symbolic traces
- 4. Learning QNP abstractions from non-symbolic traces provided by teacher
- 5. Wrap Up

Example: Hanoi

Set of non-symbolic traces on 3-disk and 3-peg instance

Under the assumption:

- states associated with unique obs
- different states associated with diff. obs

Input traces are **summarized** into **single directed graph** (27 nodes, 78 edges)

MoveDisk(from,to,d):

Static: BIGGER(from,d), BIGGER(to,d), NEQ(from,to)
Prec: -clear(from), clear(to), clear(d), Non(from,d), -Non(d,from), Non(d,to)
Effect: clear(from), -clear(to), Non(d,from), -Non(d,to)

Partially Observable, Symbolic, and Non-Symbolic Traces

Trace $o_0, \ell_0, o_1, \ell_1, \ldots$ is induced by state trajectory $s_0, a_0, s_1, a_1, \ldots$

- observation o_i corresponds to state s_i : $s_i \longrightarrow o_i$
- label ℓ_i corresponds to action a_i : $a_i \longrightarrow \ell_i$

Trace is **non-symbolic** iff each observation and label is **flat** (i.e. has no "structure"), for example, given by **images**

Set of traces is:

- complete if each possible transition (s,a,s') is represented by (o,ℓ,o')
- fully observable (or free of confusion) if each state yields single observation, and no different states with same observation

Canonical Representation of Input

Under the following assumptions about the input set ${\boldsymbol{T}}$ of traces:

- each trace is **non-symbolic** (e.g., images)
- complete and fully observable

Input T is represented by directed and labeled graph $G_T = (V, L, E)$:

- ${\boldsymbol{V}}$ is set of observations in the traces in ${\boldsymbol{T}}$
- L is set of labels in the traces in ${\cal T}$
- E is set of labeled edges (o,ℓ,o') that appear as transitions in T

Example: In Hanoi, graph $G_T =$ encodes a complete and fully observable set T of non-symbolic traces

First-Order STRIPS Domains

A (first-order) STRIPS domain is a pair (σ, A) where

- σ is first-order language made of constants and relations; e.g., $\{a^0, u^1, r^2)$ denotes language with constant a, and unary and binary predicates u and r
- A is set of action schemas $a(\bar{x}) = (Pre, Eff)$ where \bar{x} is vector of variables, and Pre and Eff are sets of σ -literals with free vars in \bar{x}

Example: Problem of Hanoi can be encoded in STRIPS with language $\sigma = \{clear^1, on^2, BIGGER^2\}$ and single action:

MoveDisk(?disk,?src,?dst):

Prec : *clear*(?*disk*), *clear*(?*dst*), *on*(?*disk*, ?*src*), *BIGGER*(?*dst*, ?*disk*) **Effect** : $\neg on$ (?*disk*, ?*src*), $\neg clear$ (?*dst*), *clear*(?*src*), *on*(?*disk*, ?*dst*)

STRIPS Instances and State Graphs

STRIPS instance for domain $D = (\sigma, A)$ is tuple I = (O, Init, G) where

- O is set of **object names** that extend σ with constants
- Init and G are sets of literals that denote the initial and goal states

STRIPS model is tuple M=(D,I) made of domain $D=(\sigma,A)$ and instance I=(O,Init,G)

M spans labeled and directed graph \mathcal{G}_M made of states that are reachable from state denoted by Init (via grounded actions), and labeled edges $(s, a(\bar{o}), s')$ where $a(\bar{o})$ is the ground action that maps state s into s'

Hanoi in STRIPS

Language $\sigma = \{d_0^0, d_1^0, d_2^0, d_3^0, peg_0^0, peg_1^0, peg_2^0, clear^1, on^2, BIGGER^2\}$

Static: $BIGGER(peg_i, d_j)$ and $BIGGER(d_i, d_j)$ for i < j

 $clear(d_0), on(d_0, peg_0),$ $clear(d_3), on(d_3, d_2), on(d_2, peg_1),$ $clear(d_1), on(d_1, peg_2)$ $clear(d_3), on(d_3, d_2), on(d_2, d_1),$ $on(d_1, d_0), on(d_0, peg_2)$

MoveDisk(?disk,?src,?dst):

 $\begin{array}{l} \mathbf{Prec}: clear(?disk), \ clear(?dst), \ on(?disk, ?src), \ BIGGER(?dst, ?disk) \\ \mathbf{Effect}: \neg on(?disk, ?src), \ \neg clear(?dst), \ clear(?src), \ on(?disk, ?dst) \end{array}$

Learning Task for STRIPS Models: Find Isomorphism

Learning Task for STRIPS Models

For complete and fully observable set T of non-symbolic traces, represented by G_T over labels L, find $M = (\sigma, A, O, Init, G)$ such that

- each action schema $a(\bar{x})$ in A is associated with label ℓ_a in L
- \mathcal{G}_M and G_T are isomorphic graphs with respect to labels $\{\ell_a : a(\bar{x}) \in A\}$

I.e., 1-1 and onto map f between the vertices of \mathcal{G}_M and G_T such that $(s, a(\bar{o}), s') \in \mathcal{G}_M$ iff $(f(s), \ell_a, f(s')) \in G_T$

In such case, we say that M solves (or explains) the input T (or G_T)

Example: STRIPS model for Hanoi solves $G_T = \bigotimes_{t=1}^{t} M_{t}$

Learning Task for STRIPS Models: General

Given input sets of traces T_1, T_2, \ldots, T_n , find STRIPS domain D and instances I_1, I_2, \ldots, I_n for D such that

– each model $M_i = (D, I_i)$ solves the input T_i

If $\mathcal{T} = \{T_1, T_2, \ldots\}$ is class of sets of traces, domain D is general for \mathcal{T} if for each T_i , there is instance I_i for D such that $M_i = (D, I_i)$ solves T_i

Often, single and small T_i enough to learn domain D that is general for an infinite class \mathcal{T} , yet

- we can't **prove** that D is indeed general for class \mathcal{T}
- but we can verify that D is general for given finite subset of ${\mathcal T}$

Bounded Combinatorial Task

A STRIPS model $M = (\sigma, A, O, Init, G)$ has

- finite but arbitrary large first-order language σ
- finite but arbitrary large set of action schemas \boldsymbol{A}
- finite but arbitrary large set of objects ${\cal O}$

that make the space ${\mathcal M}$ of models ${\color{black} \textbf{unbounded}}$

However, if α is a vector of **hyperparameters** that bound

- number predicates and max. arity
- number of different atoms used in \boldsymbol{D}
- number of action schemas and max. number of arguments
- number of objects in O

then subclass $\mathcal{M}_{\alpha} = \{M \in \mathcal{M} : M \text{ complies with bounds in } \alpha\}$ is finite

STRIPS Learner: Learning as Combinatorial Search

For increasing sequence of hyperparameters $\alpha_1 \prec \alpha_2 \prec \alpha_3 \prec \cdots$, the learning task can be solved by

- **1**. k := 1
- 2. While true do
- 3. Set $\alpha := \alpha_k$
- 4. Find domain $D = (\sigma, A)$ and instances I_1, \ldots, I_n such that $M_i = (D, I_i)$ is in \mathcal{M}_{α} and solves G_{T_j} , for $j = 1, \ldots, n$
- 5. If successful, return domain D and instances I_1, \ldots, I_n
- 6. Otherwise, set k := k + 1

Step 4 can be solved in finite time since M_{α} is finite. In practice, outer loop is stopped after sufficiently large α

Step 4 is combinatorial task tackled with SAT. Yet, crucial idea is to find model M such that G_T and \mathcal{G}_M are isomorphic!

Encoding in SAT

For vector α of hyperparameters, SAT theory is partitioned into layers:

- zero-th layer T^0_α encodes general domain D
- *i*-th layer T^i_{α} encodes instance I_i and assures \mathcal{G}_{M_i} is isomorphic to G_{T_i} , $i=1,\ldots,n$

Propositional theory is $T_{\alpha} = T_{\alpha}^0 \cup \bigcup_{i=1}^n T_{\alpha}^i$

(edges indicate sharing of variables between subtheories)

Domain Encoding (Sketch): T^0_{α}

- α sets #preds (max. arity), #actions (max. args), **#atoms**, #static preds
- Atoms for all schemas enumerated as m_0, m_1, \ldots ; e.g., $on(?x, ?y), clear(?z), \ldots$

Propositions (decision), others (implied) not shown:

- label(a, l): assign label l to schema a
- p0(a,m)/p1(a,m): atom m is neg/pos precondition of schema a
- e0(a,m)/e1(a,m): atom m is neg/pos effect of schema a
- arity(p, i): predicate symbol p has arity i
- is(m,p): atom m is p-atom
- at(m,i,
 u): *i*-th arg of atom m is (action) argument u;

[e.g., a(?x, ?y) and $m = p(?y) \Rightarrow at(m, 1, 2)$]

- $un(u, a, \nu)$: schema a uses static unary predicate u on argument ν
- $bin(b,a,\nu,\nu'):$ schema a uses static binary predicate b on arguments ν and ν'

Theorem

Soundness: Satisfying assignment μ for T^0_{α} encodes domain D_{μ} bounded by α . **Completeness:** Domain D bounded by α induces satisfying assignment μ_D for T^0_{α} , and $D_{\mu_D} = D$

Instance Encoding (Sketch): T^i_{α}

Encoding of instance I_i that defines model $M_i = (D, I_i)$

- α bounds #objects in instance I_i
- Ground atoms enumerated as k_0, k_1, \ldots ; e.g. $on(A, B), clear(B), \ldots$

Propositions (decision), others (implied) not shown:

- $gr(\boldsymbol{k},\boldsymbol{p}):$ ground atom \boldsymbol{k} refers to predicate symbol \boldsymbol{p}
- gr(k, i, o): *i*-th argument of ground atom k is object o
- $\phi(k,s):$ boolean value of ground atom k at state s
- r(u, o): true if u(o) holds for static unary predicate u
- s(b, o, o'): true if b(o, o') holds for static binary predicate b

Satisfying assignment defines interpretation for σ -literals on all states in G_{T_i} , and gives value to unary and binary static predicates

Formulas in T^i_α ensure interpretation is consistent, and different states give different value to at least some grounded atom k

Isomorphism (Sketch): Also in T^i_{α}

Propositions (decision), others (implied) not shown:

- mp(t, a): transition t is mapped to action schema a
- mf(t, k, m): ground atom k is mapped to atom m in transition t
- $gtuple(a, \bar{o})$: true if $a(\bar{o})$ is a ground instance of a

Edges in G_{T_i} correspond to edges in \mathcal{G}_M :

- mp(t,a) map transitions to actions and mf(t,k,m) arguments to objects
- Formulas in T^i_α ensure interpretation of atoms across transitions agree with preconditions and effects of actions

Edges in \mathcal{G}_M correspond to edges in G_{T_i} :

- Lack of edges in G_{T_i} explained by model M, and applicable actions are applied
- Formulas in T^i_{α} ensure both

Theorem

(Soundness) SAT assignment μ for T_{α} encodes D and I_1, \ldots, I_n bounded by α such that $M_i = (D, I_i)$ solves G_{T_i} . **(Completeness)** If D and I_1, \ldots, I_n are bounded by α such that (D, I_i) solves G_{T_i} , there is SAT assignment μ for T_{α}

Example: Hanoi: Input and Output

MoveDisk(from,to,d):

Static: BIGGER(from,d), BIGGER(to,d), NEQ(from,to)
Prec: -clear(from), clear(to), clear(d), Non(from,d), -Non(d,from), Non(d,to)
Effect: clear(from), -clear(to), Non(d,from), -Non(d,to)

Example: Gripper: Input and Output


```
Static: PAIR (room, gripper)
Prec: at(room), Nfree(gripper), hold(gripper,ball), Nat(room,ball)
Effect: -Nfree(gripper), -hold(gripper, ball), -Nat(room, ball)
```

Pick(ball,room,gripper):

Static: PAIR (room, gripper) **Prec:** at (room), -Nfree (gripper), -hold (gripper, ball), -Nat (room, ball) Effect: Nfree(gripper), hold(gripper, ball), Nat(room, ball)

Example: Blocksworld: Input

Labels: MoveToTable, MoveFromTable, Move

Example: Blocksworld: Output

Graph: 73 nodes + 240 edges

Labels: MoveToTable, MoveFromTable, Move

MovetoTable(x,y):

```
Static: NEQ(x,y)
Prec: -Nclear(x), Nclear(y), -Ntable-OR-Non(x,y), Ntable-OR-Non(x,x)
Effect: -Nclear(y), -Ntable-OR-Non(x,x), Ntable-OR-Non(x,y)
```

MoveFromTable(x,y,d):

```
Static: NEQ(x,y), EQ(y,d)
Prec: -Nclear(x), -Nclear(d), -Ntable-OR-Non(x,x), Ntable-OR-Non(x,y)
Effect: Nclear(d), Ntable-OR-Non(x,x), -Ntable-OR-Non(x,y)
```

Move(x,z,y):

Generalized Planning: The Challenge

Generalized planning is about obtaining a **general plan or strategy** for solving collections of planning problems

For example, find general strategy to achieve **fixed goal** in all Blocksworld problems, independently of number or initial configuration of blocks

 $\mathsf{Get}\; A \; \mathsf{clear}$

 $\mathsf{Get}\; A \; \mathsf{on}\; B$

Get tower A, B, C, D, E

Generalized Planning: Motivation

Why solve individual problems from scratch if it's possible to learn general plan in one shot?

Lots of current research in **deep (reinforcement) learning** is about computation of general plans or policies; e.g. [Espeholt et al., 2018; Groshev et al., 2018; Chevalier-Boisvert et al., 2019; François-Lavet et al. 2019]

Generalized planning gives us a crisp vocabulary to talk about general plans [Levesque, 2005; Hu & De Giacomo, 2011; B. & Geffner, 2015; Belle & Levesque, 2016; Jiménez et al., 2019; Illanes & McIlraith, 2019]

Qualitative Numerical Planning

Simple and expressive language for **generalized planning**, introduced by [Srivastava et al., 2011]:

- QNP is propositional abstraction for underlying collection ${\cal Q}$ of planning instances
- solutions for QNP are policies that solves all planning problems in $\ensuremath{\mathcal{Q}}$
- after proper reduction to FOND, solved with off-the-shelf FOND planner

QNP problems are similar to STRIPS problems but extended with **numerical** variables that can be incremented or decremented **qualitatively**

QNP Example: clear(x)

Goal: Remove all blocks above fixed block x

QNP $Q_{clear} = (F, V, I, A, G)$ captures all Blocksworld problems:

- $F = \{H\}$ where H denotes whether gripper holds a block
- $V = \{n\}$ where n "counts" blocks above x (n > 0 iff some block above x) - $I = \{\neg H, n > 0\}$ - $G = \{n=0\}$

 $x = \mathsf{block}\ A$

QNP Example: Actions for clear(x)

- $\mathit{Putaway} = \langle H; \neg H \rangle$ puts held block on table or block not above x
- $\mathit{Pick-above-x} = \langle \neg H, n > 0; H, n \downarrow \rangle$ picks the top block above x
- Put-above- $x = \langle H; \neg H, n \uparrow \rangle$ puts block being held on top block above x
- Pick-other = $\langle \neg H; H \rangle$ picks block not above x

Block x is block A:

 $x = \mathsf{block}\;A$

Example: QNP Abstraction for clear(x)

Observation projection for $Q_{clear} = \left(F, V, I, A, G \right)$ where

-
$$F = \{H\}$$
 and $V = \{n\}$

-
$$I=\{\overline{H},n>0\}$$
 and $G=\{n\!=\!0\}$

- Actions in A: Putaway = $\langle H; \neg H \rangle$, Pick-above- $x = \langle \neg H, n > 0; H, n \downarrow \rangle$, Put-above- $x = \langle H; \neg H, n \uparrow \rangle$, and Pick-other = $\langle \neg H; H \rangle$

Example: QNP Solution for clear(x)

Observation projection for $Q_{clear} = \left(F, V, I, A, G \right)$ where

-
$$F = \{H\}$$
 and $V = \{n\}$

-
$$I=\{\overline{H},n>0\}$$
 and $G=\{n\!=\!0\}$

- Actions in A: Putaway = $\langle H; \neg H \rangle$, Pick-above- $x = \langle \neg H, n > 0; H, n \downarrow \rangle$, Put-above- $x = \langle H; \neg H, n \uparrow \rangle$, and Pick-other = $\langle \neg H; H \rangle$

QNP Syntax

 $\mathsf{QNP}\xspace$ is tuple Q=(F,V,I,A,G) where

- F is a finite set of propositions
- V is a finite set of numerical variables
- I is a set of F+V-literals, where V-literals are X=0 or X>0 for X in V
- G is goal condition given by F+V-literals
- A is set of actions. Each has **precondition** Pre(F+V-literals), **boolean effects** Eff (F-literals), and **numerical effects** N (atoms $X\uparrow$ or $X\downarrow$) with restriction that if $X\downarrow$ in N, then X > 0 must be in Pre

Numerical vars affected only qualitatively, and tested for zero

Plan-existence for QNPs **decidable** [Srivastava et al., 2011] whereas it is **undecidable** for numerical planning [Helmert, 2002]

Example: QNP for Gripper

 $\mathsf{QNP}\ Q_{gripper} = (F,V,I,A,G) \text{:}$

- $F = \{T\}$ where T iff at(A)
- $V = \{b, c, g\}$ where b counts balls at $B, \ c$ balls held, and g free grippers
- $I=\{T,b>0,c=0,g>0\}$ and $G=\{c=0,b=0\}$
- Abstract actions are:
 - $\mathit{Move} = \langle \neg T; T \rangle$ and $\mathit{Leave} = \langle T; \neg T \rangle$
 - $\textit{Pick-at-B} = \langle \neg T, b > 0, g > 0; b \downarrow, c \uparrow, g \downarrow \rangle$
 - Drop-at- $B = \langle \neg T, c > 0; b\uparrow, c\downarrow, g\uparrow \rangle$
 - Drop-at- $A = \langle T, c > 0; c \downarrow, g \uparrow \rangle$

Example: Solution for Gripper

QNP Solutions

QNP solutions are the strong-cyclic solutions that terminate

- Strong-cyclic means that each reachable state is connected to a goal state
- π terminates if each infinite induced trajectory terminates
- Infinite trajectory denoted by $s_0, s_1, \dots [s_i, \dots, s_m]^*$ where $\{s_i, \dots, s_m\}$ is set of recurrent states (loop)
- Such trajectory terminates iff there is variable X that is decremented but not incremented in loop

Example: loop terminates because variable b is decremented by *Pick-at-B* but not incremented in loop

Learning QNPs from Symbolic Traces

QNPs are expressive and effective!

QNPs can be learned from symbolic traces [B., Francès & Geffner, 2019]

We assume that observations in traces correspond to **full symbolic** representations of states in a planning representation of the task

Main challenge is to learn **concepts** that define features (booleans and numericals); e.g. number of free grippers or blocks above A, distances, etc

From pool of concepts that define pool of features, select **minimal subset** that **explain transitions in traces**

System learns QNPs that are translated into FOND problems and solved

QNP Learner (Symbolic Traces)

Input: STRIPS domain D, set S of symbolic traces over D, and bound N for concept complexity

Output: QNP model Q that explain traces

Method:

- Use atom schemas and fixed concept grammar to generate pool of concepts: all concepts with complexity ≤ N
- Interpretation of concept C at state s is subset of objects C(s); these define features:
 - boolean feature p when $|C(s)| \in \{0,1\}$ for all states s
 - numerical feature n = |C(s)| when |C(s)| > 1 for at least some state s
- From pool of features \mathcal{F} , construct SAT theory $T(\mathcal{S},\mathcal{F})$ that "separates" states and transitions in sample \mathcal{S}
- Recover QNP model from solution of SAT theory $T(\mathcal{S},\mathcal{F})$

SAT Theory for Learning QNPs

Input:

- $\mathcal{S}=\text{transitions}~(s,s')$ in set of traces
- $\mathcal{F}=\mathsf{pool}$ of features f together with interpretations f(s) at each s in $\mathcal S$

Propositional variables:

- selected(f) for each f in ${\mathcal F}$ to select ${\mathcal F}\text{-subset}$
- $D_1(s,t)$ iff selected features distinguish states s and t in ${\cal S}$
- $D_2(s,s',t,t')$ iff selected features distinguish trans. (s,s') and (t,t') in ${\cal S}$

Formulas:

 $\begin{array}{l} - \ D_1(s,t) & (\text{for states } s \text{ and } t \text{ such that only one is goal}) \\ - \ \bigwedge_{t'} D_2(s,s',t,t') \implies D_1(s,t) & (\text{for each } (s,s') \text{ and } t \text{ in } \mathcal{S}) \\ - \ D_1(s,t) \iff \bigvee_f selected(f) & (\text{for } f \text{'s that distinguish } s \text{ and } t) \\ - \ D_2(s,s',t,t') \iff \bigvee_f selected(f) & (\text{for } f \text{'s that dist. } (s,s') \text{ and } (t,t')) \end{array}$

Recovering QNP from Assignment

Selected features define boolean and numerical features in the QNP

Each transition (s, s') is mapped into transition (t, t') over selected features, and defines QNP action with precondition t and effect given by the change of value across (t, t')

Multiple actions (t,t^\prime) are often collapsed into simpler action by removing superfluous preconditions and effects

Theorem

 $T(\mathcal{S},\mathcal{F})$ is SAT iff there is sound QNP abstraction relative to $\mathcal S$ and $\mathcal F$

Learned QNPs: Gripper

Training set: traces from 2 instances with 4 and 5 balls each

Learned features (selected) from $|\mathcal{S}| = 403$ and $|\mathcal{F}| = 130$:

- T = "whether robot is in target room" = $at \sqcap C_A$
- b = "number of balls not in target room" = $|\exists at. \neg C_A|$
- c = "number of balls being held by robot" = $|\exists \textit{hold}.C_u|$
- g = "number of free grippers (available capacity)" = |empty|

Learned abstract actions:

- $Drop = \langle T, c > 0; c \downarrow, g \uparrow \rangle$
- Move-fully-loaded = $\langle \neg T, c > 0, g = 0; T \rangle$
- Move-half-loaded = $\langle \neg T, c > 0, g > 0, b = 0; T \rangle$
- $\textit{Pick} = \langle \neg T, b > 0, g > 0; b \downarrow, g \downarrow, c \uparrow \rangle$
- Leave = $\langle T, c = 0, g > 0; \neg T \rangle$

Solution works for any number of balls and grippers!

Example: Solution for (Learned) Gripper

Model Q learned and translated into FOND in less than 1 sec. FOND-SAT [Geffner & Geffner, 2018] solves the FOND problem in less than 13 secs after 11 calls to SAT solver

Learned QNPs: Pick Rewards in Grid

Inspired from RL work [Garnelo, Arulkumaran & Shanahan, 2016]

Training set: 2 instances 4×4 , 5×5 , diff. dist. of blocked cells and rewards

Learned Features (selected) from |S| = 568 and |F| = 280:

- r = "number of remaining rewards" = |reward|
- d = "min. dist. to closest reward" = $dist(at, adj: \neg blocked, reward)$

Learned abstract actions:

- Move-to-closest-reward = $\langle r > 0, d > 0; d\downarrow \rangle$
- Collect = $\langle d = 0, r > 0; r \downarrow, d \uparrow \rangle$

Solution works for any grid dimension, number of rewards, and distribution of blocked cells!

Example: Solution for (Learned) Rewards

Model Q is learned and translated into FOND is less than 1 sec. FOND-SAT solves the FOND problem in less than 1 sec after 4 calls to SAT solver

Learning QNPs from Non-Symbolic Traces

Focus on fully-observable and complete sets of non-symbolic traces

Any planning problem solved with single numerical feature n that counts "steps to reach goal" and single QNP action $\langle n > 0; n \downarrow \rangle$

This is valid QNP but:

- this QNP model lacks structure
- computing value of n at state s is **intractable** (in general)

To get meaningful models with tractable features, we'll assume the traces are **annotated by teacher**

Goal is to learn QNP model that explains the teacher

Annotated Traces

The teacher is responsible for

- marking transitions as good or bad according to his/her preferences
- assigning labels to good transitions (possibly single label)
- assigning colors to states (disinguishing states, at least goals/non-goals)

The set T of traces then define a graph ${\cal G}_T$ such that

- subgraph spanned by good transitions makes up annotated DAG where each path leads to a goal state (teacher is responsible for this!)
- bad transitions correspond to back or cross edges in DAG
- states are assigned to different colors

Example: Annotated Traces

Blocksworld on(A, B) (4 blocks = 125 states):

Delivery of packages $(3 \times 3 \text{ and } 2 \text{ pkgs} = 414 \text{ states})$:

Target Class of QNP Models

Policy already hinted by teacher; want QNP policy determined by

- set of features (boolean and numerical)
- set of QNP actions
- mapping from abstract states (boolean valuations for features) into actions

Target class of models sliced with vectors α of hyperparameters that tell:

- number of boolean and numerical features
- number of abstract actions

Learning aims at regular policies that are guaranteed to terminate:

- policy is regular if there is ordering n_1, \ldots, n_m of numerical features such that if some action increases n_j , it must decrease some n_k with k > j

 \mathcal{M}_{lpha} denotes the (finite) class of QNP models bounded by lpha

QNP Learner (Non-Symbolic Traces)

Like in task for learning STRIPS models:

- Input consists of sets T_1, \ldots, T_n of traces defining graphs G_{T_1}, \ldots, G_{T_n}
- For vector α of hyperparameters, SAT theory T_α is decomposed as

$$T_{\alpha} = T_{\alpha}^0 \cup \bigcup_{i=1}^n T_{\alpha}^i$$

where T^0_{α} encodes QNP model and policy, and each T^i_{α} encodes feature values for states in T_i and conditions to ensure isomorphism between model and subtree of annotated DAG for G_{T_i}

- Policy encoded in T^0_{α} is strong-cyclic and regular, thus QNP solution
- Abstract states in QNP are colored and bijection from G_{T_i} to QNP model **must respect coloring**

Example: QNP Models and Solutions

Blocksworld on(A, B):

Variables: XI X0 p1 p0 ad//bick prec=(p1), eff=(-p1), reset(X0), dec(X1)} al//bick prec=(p1,X00,X1>0), eff=(p1,dec(X0)} al/wit: prec=(p1,X00,X1>0), eff=(p0,p1,dec(X1)} al/wit: prec=(p0,p1), eff=(p0,p1), deff=(p0,p1,dec(X1)) ad//bick: prec=(-p0,p1), eff=(p0,p1), dec(X1)}

Delivery of packages:

Variables: X2 X1 X0 p0 a0/Move: pre=(X0=0,X1>0,X2>0), eff=(dec(X1)) a1/Fick: pre=(p0,X2>0), eff=(-p0) a2/Move: pre=(p0,X2>0), eff=(dec(X0)) a2/Move: pre=(-p0,X0>0,X1=0),X2>0), eff=(p0,reset(X0),reset(X1),dec(X2))

Wrap Up

- Learning planning representations is step towards bridging the gap between model-based solvers and model-free learners
- Learned models are general and can be used for different purposes
- Learning from non-symbolic inputs formulated in terms of crisp and simple principle (graph isomorphism), independent of target class of models
- Learning task reduced to combinatorial task, modeled and solved via SAT
- QNPs for generalized planning can also be learned from symbolic traces and resulting models solved with off-the-shelf FOND planners

What's Not Been Discussed

- Relax assumptions: full observability and completeness of traces
- Target class: first-order vs. propositional models (e.g., STRIPS vs. Grounded STRIPS or PSVN), other languages beside STRIPS or QNPs
- **Grounding problem;** e.g., how to use learned model in image-based settings where intepretation of atoms is not directly available

Related Work

- Planning/MDP methods that assume symbolic information on the input, either language, objects, number of arguments, etc [Diuk et al., 2008; Yang et al., 2007; Arora et al., 2018; Aineto et al., 2019; Cresswell et al., 2013]
- Inductive logic programming methods [Khardon, 1999; Martin & Geffner, 2004; Fern et al., 2004]
- Learning grounded STRIPS models using autoencoders [Konidaris et al., 2018, Asai, 2019; Asai & Fukunaga, 2018; Asai & Muise, 2020]
- DL of general policies from PDDL models [Toyer et al., 2018; Bueno et al., 2019; Issakkimuthu et al., 2018; Garg et al., 2018]
- Generalized planning and QNPs [Hu & De Giacomo, 2011; Srivastava et al., 2011;
 B. & Geffner, 2015, 2018, 2020; B. et al., 2017, 2019; Jiménez et al., 2019; Illanes & McIlraith, 2019]
- DRL generate policies without prior symbolic knowledge, but latent repr. aren't general and lack transparency, reusability, and compositionality [Mnih et al., 2015; Groshev et al., 2018; Chevalier-Boisvert, 2019; François-Lavet et al., 2019; Marcus, 2018; Lake & Baroni, 2017; Garnelo et al., 2016]

Current and Future Work

- Learn from **partially observable traces**, where same obs can come from different states
- Apply learned models in **non-symbolic settings:** learn from image-based traces, apply model to image-based setting

Bibliography (1 of 4)

- Aineto, Jiménez, Onaindia & Miquel Ramírez. 2019. Model recognition as planning. In ICAPS, 13-21.
- Arora, Fiorino, Pellier, Métivier & Pesty. 2018. A review of learning planning action models. The Knowledge Engineering Review 33:e20.
- Asai. 2019. Unsupervised grounding of plannable first-order logic representation from images. In ICAPS, 583–591.
- Asai & Fukunaga. 2018. Classical planning in deep latent space: Bridging the subsymbolic-symbolic boundary. In AAAI, 6094–6101.
- Asai & Muise. 2020. Learning Neural-Symbolic Descriptive Planning Models via Cube-Space Priors: The Voyage Home (to STRIPS). arXiv 2004:12850.
- Belle & Levesque. 2016. Foundations for generalized planning in unbounded stochastic domains. In KR, pp. 380–389.
- Bonet, De Giacomo, Geffner & Rubin. 2017. Generalized planning: Non-deterministic abstractions and trajectory constraints. In IJCAI, 873–879.
- Bonet, Francès & Geffner. 2019. Learning features and abstract actions for computing generalized plans. In AAAI, 2703–2710.
- Bonet & Geffner. 2015. Policies that generalize: Solving many planning problems with the same policy. In IJCAI, 2798–2804.
- Bonet & Geffner. 2018. Features, projections, and representation change for generalized planning. In IJCAI, 4667–4673.

Bibliography (2 of 4)

- Bonet & Geffner. 2020. Qualitative Numerical Planning: Reductions and Complexity. JAIR. Forthcoming.
- Bueno, de Barros, Mauá & Sanner. 2019. Deep reactive policies for planning in stochastic nonlinear domains. In AAAI, 7530–7537.
- Chevalier-Boisvert, Bahdanau, Lahlou, Willems, Saharia, Nguyen & Bengio. 2019. BabyAI: A platform to study the sample efficiency of grounded language learning. In ICLR.
- Cimatti, Pistore, Roveri & Traverso. 2003. Weak, strong, and strong cyclic planning via symbolic model checking. Artificial Intelligence, 147, 35–84.
- Cresswell, McCluskey & West. 2013. Acquiring planning domain models using LOCM. The Knowledge Engineering Review 28, 195—213.
- Diuk, Cohen & Littman. 2008. An object-oriented representation for efficient reinforcement learning. In ICML, 240–247.
- Espeholt, Soyer, Munos et al. 2018. IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures. arXiv preprint arXiv:1802.01561.
- Fern, Yoon & Givan. 2004. Approximate policy iteration with a policy language bias. In NIPS, 847–854.
- François-Lavet, Bengio, Precup & Pineau. 2019. Combined reinforcement learning via abstract representations. In AAAI, 3582–3589.
- Garg, Bajpai & Mausam. 2020. Symbolic Network: Generalized Neural Policies for Relational MDPs. arXiv:2002.07375.

Bibliography (3 of 4)

- Garnelo, Arulkumaran & Shanahan. 2016. Towards deep symbolic reinforcement learning. arXiv:1609.05518.
- Geffner & Geffner. 2018. Compact policies for fully observable non-deterministic planning as SAT. In ICAPS, 88–96.
- Groshev, Goldstein, Tamar, Srivastava & Abbeel. 2018. Learning generalized reactive policies using deep neural networks. In ICAPS, 408–416.
- Helmert. 2002. Decidability and undecidability results for planning with numerical state variables. In AIPS, 44–53.
- Hu & De Giacomo. 2011. Generalized planning: Synthesizing plans that work for multiple environments. In IJCAI, 918–923.
- Illanes & McIlraith. 2019. Generalized planning via abstraction: Arbitrary numbers of objects. In AAAI, 7610–7618.
- Issakkimuthu, Fern & Tadepalli. 2018. Training deep reactive policies for probabilistic planning problems. In ICAPS, 422–430.
- Jiménez, Segovia-Aguas & Jonsson. 2019. A review of generalized planning. The Knowledge Engineering Review, 34:e5.
- Khardon. 1999. Learning action strategies for planning domains. Artificial Intelligence 113(1-2):125–148.
- Konidaris, Pack Kaelbling & Lozano-Perez. 2018. From skills to symbols: Learning symbolic representations for abstract high-level planning. JAIR 61, 215–289.

Bibliography (4 of 4)

- Lake & Baroni. 2017. Generalization without systematicity: On the compositional skills of sequence-to-sequence recurrent networks. arXiv:1711.00350.
- Levesque. 2005. Planning with loops. In IJCAI, pp. 509-515.
- Marcus. 2018. Deep learning: A critical appraisal. arXiv:1801.00631.
- Martín & Geffner. 2004. Learning generalized policies from planning examples using concept languages. Applied Intelligence 20(1):9–19.
- Mnih et al. 2015. Human-level control through deep reinforcement learning. Nature, 518(7540).
- Srivastava, Zilberstein, Immerman & Geffner. 2011. Qualitative numeric planning. In AAAI.
- Toyer, Trevizan, Thiébaux & Xie. 2018. Action schema networks: Generalised policies with deep learning. In AAAI.
- Yang, Wu & Jiang. 2007. Learning action models from plan examples using weighted max-sat. Artificial Intelligence, 171(2-3), 107–143.