
Flexible FOND Planning with Explicit Fairness Assumptions∗

Ivan D. Rodriguez,1 Blai Bonet,1 Sebastian Sardiña,2 Hector Geffner1,3

1Universitat Pompeu Fabra, Barcelona, Spain
2RMIT University, Melbourne, Australia
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Abstract

We consider the problem of reaching a propositional goal
condition in fully-observable non-deterministic (FOND)
planning under a general class of fairness assumptions that
are given explicitly. The fairness assumptions are of the form
A/B and say that state trajectories that contain infinite occur-
rences of an action a from A in a state s and finite occurrence
of actions from B, must also contain infinite occurrences of
action a in s followed by each one of its possible outcomes.
The infinite trajectories that violate this condition are deemed
as unfair, and the solutions are policies for which all the
fair trajectories reach a goal state. We show that strong and
strong-cyclic FOND planning, as well as QNP planning, a
planning model introduced recently for generalized planning,
are all special cases of FOND planning with fairness assump-
tions of this form which can also be combined. FOND+ plan-
ning, as this form of planning is called, combines the syntax
of FOND planning with some of the versatility of LTL for ex-
pressing fairness constraints. A new planner is implemented
by reducing FOND+ planning to answer set programs, and
the performance of the planner is evaluated in comparison
with FOND and QNP planners, and LTL synthesis tools.

Introduction
FOND planning is planning with fully observable, non-
deterministic state models specified in compact form where
a goal state is to be reached (Cimatti et al. 2003). In its
most common variant, strong-cyclic planning, one is inter-
ested in policies that reach states from which the goal can be
reached following the policy (Cimatti, Roveri, and Traverso
1998a; Daniele, Traverso, and Vardi 1999). In another com-
mon variant, strong planning (Cimatti, Roveri, and Traverso
1998b), one is interested in policies that reach a goal state
in a bounded number of steps. Each form of FOND plan-
ning is adequate under a suitable fairness assumption; in the
case of strong planning, that non-determinism is adversarial
(or “unfair”); in the case of strong-cyclic planning, that non-
determinism is fair, in that none of the possible outcomes of
a non-deterministic action can be skipped forever.
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FOND planning has become increasingly important as
a way of solving other types of problems such as proba-
bilistic (MDP) planning, where actions have a probabilis-
tic effect on states (Bertsekas and Tsitsiklis 1996; Geffner
and Bonet 2013), LTL planning, where goals to be reached
are generalized to temporal conditions that must be satis-
fied possibly by plans with cycles (Calvanese, De Giacomo,
and Vardi 2002; Camacho, Bienvenu, and McIlraith 2019;
Aminof et al. 2019), and generalized planning, where plans
are not for single instances but for collections of instances
(Srivastava, Immerman, and Zilberstein 2011; Hu and De
Giacomo 2011), and they can be obtained from suitable ab-
stractions encoded as QNP planning problems (Srivastava
et al. 2011; Bonet and Geffner 2020).

A critical limitation of strong, strong-cyclic, and QNP
planners, is that the fairness assumptions are implicit in their
models and solvers, and as a result, cannot be combined.
These combinations, however, are often needed (Camacho
and McIlraith 2016; Ciolek et al. 2020), and indeed, a recent
FOND planner handles combinations of fair and adversar-
ial actions in what is called Dual FOND planning (Geffner
and Geffner 2018). In this work, we go beyond this integra-
tion by also enabling the representation and combination of
the conditional fairness assumptions that underlie QNP plan-
ning. This is achieved by extending FOND planning with
a general class of fairness assumptions that are given ex-
plicitly as part of the problem. The fairness assumptions are
pairs A/B of sets of actions A and B that say that state tra-
jectories that contain infinite occurrences of actions a from
A in a state s, and finite occurrences of actions fromB, must
also contain infinite occurrences of action a in the state s
followed by each one of its possible outcomes. The infinite
trajectories that violate this condition are regarded as unfair.
The solutions of a FOND problem with conditional fairness
assumptions of this type, called a FOND+ problem, are the
policies for which all fair state trajectories reach the goal.

We show that strong, strong-cyclic, and QNP planning,
are all special cases of FOND+ planning where the fair-
ness assumptions underlying these models can be combined.
FOND+ planning extends the syntax and semantics of
FOND planning with some of the versatility of the LTL lan-
guage for expressing fairness constraints. The conditional



fairness assumptions A/B correspond to the LTL formulas
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for each action a ∈ A, each state s, and each possible out-
come Ei of the action a, where s stands for the conjunction
of literals that s makes true. However, unlike LTL synthesis
and planning that are 2EXP-Complete (Pnueli and Rosner
1989; Camacho, Bienvenu, and McIlraith 2019; Aminof, De
Giacomo, and Rubin 2020), FOND+ planning is in NEXP
(non-deterministic exponential time).

A planner for FOND+ is obtained by reducing FOND+

planning over the explicit state space to an elegant answer
set program (ASP), a convenient and high-level alternative
to SAT (Brewka, Eiter, and Truszczyński 2011; Lifschitz
2019; Gebser et al. 2012), using the facilities provided by the
CLINGO ASP solver (Gebser et al. 2019). The performance
of this ASP-based planner is evaluated in comparison with
FOND and QNP planners, and LTL synthesis tools.

The paper is organized as follows. We review first strong
and strong-cyclic FOND planning, and QNP planning. We
introduce then FOND+ planning, where the assumptions un-
derlying these models are stated explicitly and combined,
and present a description of the ASP-based FOND+ plan-
ner, an empirical evaluation, and a discussion.

FOND Planning
A FOND model is a tuple M = 〈S, s0, SG, Act, A, F 〉,
where S is a finite set of states, s0 ∈ S is the initial state,
SG ⊆ S is a non-empty set of goal states, Act is a set of
actions, F (a, s) is the set of successor states when action a
is executed in state s, and A(s) ⊆ Act is the set of actions
applicable in state s, such that a ∈ A(s) iff F (a, s) 6= ∅.
A FOND problem P is a compact description of a FOND
model M(P ) in terms of a finite set of atoms, so that the
states s in M(P ) correspond to truth valuations over the
atoms, represented by the set of atoms that are true. The
standard syntax for FOND problems is a simple extension of
the STRIPS syntax for classical planning. A FOND problem
is a tuple P = 〈At, I, Act,G〉 where At is a set of atoms,
I ⊆ At is the set of atoms true in the initial state s0, G is the
set of goal atoms, andAct is a set of actions with atomic pre-
conditions and effects. IfEi represents the set of positive and
negative effects of an action in the classical setting, action
effects in FOND planning can be deterministic of the form
Ei, or non-deterministic of the form oneof (E1, . . . , En).

A policy π for a FOND problem P is a partial function
mapping non-goal states into actions. A policy π for P de-
fines a set of, possibly infinite, compatible state trajecto-
ries s0, s1, s2, . . ., also called π-trajectories, where si+1 ∈
F (ai, si) and ai = π(si) for i ≥ 0. A trajectory τ compati-
ble with π is maximal if it is infinite, or is finite of the form
τ = s0, . . . , sn, for some n ≥ 0, and either sn is the first
state in the sequence being a goal state, π(sn) 6∈ A(sn) (i.e.,
the action prescribed at sn is not applicable), or π(sn) = ⊥
(i.e., no action is prescribed). Likewise, the policy π reaches
a state s if there is a π-trajectory s0, . . . , sn where s = sn,
and π reaches a state s′ from a state s if there is a π-trajectory
s0, . . . , sn where s = si and s′ = sj for 0 ≤ i ≤ j ≤ n.
A state s is recurrent in trajectory τ if it appears an infinite

number of times in τ . The strong and strong-cyclic solutions
or policies are usually defined as follows:
Definition 1 (Solutions). A policy π is a strong solution for
a FOND problem P if all the maximal π-trajectories reach
a goal state, and it is a strong-cyclic solution if π reaches a
goal state from any state reached by π.

The strong solutions correspond also to the strong-cyclic
solutions that are acyclic; namely, where the policies π do
not give rise to π-trajectories that can visit a state more
than once. Alternatively, strong and strong-cyclic solutions
can be understood in terms suitable notions of fairness that
establish which π-trajectories are deemed possible. If we
say that a policy π solves problem P when all the fair π-
trajectories reach the goal, then in strong planning, all π-
trajectories are deemed fair, while in strong-cyclic planning,
all π-trajectories are deemed fair except those containing a
recurrent state s that is followed a finite number of times by
a successor s′ ∈ F (π(s), s).

In order to make this alternative “folk” characterization
of strong and strong-cyclic planning explicit, let us say that
all the actions in strong FOND planning are adversarial
(or “unfair”), and that all the actions in strong-cyclic FOND
planning are fair. The state trajectories that are deemed fair
in each setting can then be expressed as follows:
Definition 2. If all the actions are adversarial, all π-
trajectories are fair. If all the actions are fair, a π-trajectory
τ is fair iff states s that occur an infinite number of times in
τ , are followed an infinite number of times by each possible
successor s′ of s given π, s′ ∈ F (π(s), s).

Provided with these notions of fairness, strong and strong-
cyclic solutions can be characterized equivalently as:
Theorem 3. A policy π is a strong (resp. strong-cyclic) solu-
tion of a FOND problem P iff all the fair trajectories com-
patible with π in P reach the goal, under the assumption
that all actions are adversarial (resp. fair).

Methods for computing strong and strong-cyclic solu-
tions for FOND problems have been developed based on
OBDDs (Cimatti et al. 2003), explicit forms of AND/OR
search (Mattmüller et al. 2010), classical planners (Muise,
McIlraith, and Beck 2012), and SAT (Chatterjee, Chmelı́k,
and Davies 2016). Some of these planners actually handle a
combination of fair and adversarial actions, in what is called
Dual FOND planning (Geffner and Geffner 2018).

QNP Planning
Qualitative numerical planning problems (QNPs) were in-
troduced by Srivastava et al. (2011) as a model for gener-
alized planning, that is, planning for multiple classical in-
stances at once. QNPs have been used since in other works
(Bonet et al. 2017; Bonet, Frances, and Geffner 2019) and
have been analyzed in depth by Bonet and Geffner (2020).

The syntax of QNPs is an extension of STRIPS prob-
lems P = 〈At, I,O,G〉 with negation where At is a set
of ground (boolean) atoms, I is a maximal consistent set
of literals from At describing the initial situation, G is a
set of literals describing the goal situation, and O is a set
of (ground) actions with precondition and effect literals. A



QNP Q = 〈At, V, I, O,G〉 extends a STRIPS problem with
a set V of numerical variables X that can be decremented
or incremented qualitatively; i.e., by indeterminate positive
amounts, without making the variables negative. A numer-
ical variable X can appear in action effects as X↑ (incre-
ments) andX↓ (decrements),while literals of the formX =0
or X > 0 (an abbreviation of X 6=0) can appear everywhere
else (initial situation, preconditions, and goals). The literal
X > 0 is a precondition of all actions with X↓ effects.

A simple example of a QNP is Q = 〈At, V, I, O,G〉 with
At = {p}, V = {n}, I = {¬p, n> 0}, G = {n=0}, and
actions O = {a, b} given by

a = 〈p, n> 0;¬p, n↓〉 and b = 〈¬p; p〉

where 〈C;E〉 denotes an action with preconditions C and
effects E. Thus action a decrements n and negates p that
is a precondition of a, and b restores p. This QNP repre-
sents an abstraction of the problem of clearing a block x
in Blocksworld instances with stack/unstack actions that in-
clude a block x. The numerical variable n stands for the
number of blocks above x, and the boolean variable p stands
for the robot gripper being empty. A policy π that solves Q
can be expressed by the rules:

if p and n> 0, do a and if ¬p ∧ n> 0, do b .

A key property of QNPs is that while numerical planning
is undecidable (Helmert 2002), qualitative numerical plan-
ning is not. Indeed, a sound and complete, two-step method
for solving QNPs was formulated by Srivastava et al. (2011):
the QNP Q is converted into a standard FOND problem
P = TD(Q) and its (strong-cyclic) solution is checked for
termination. The QNP solutions are in correspondence with
the strong-cyclic plans of the direct translation P = TD(Q)
that terminate. Moreover, since the number of policies that
solve P is finite, and the termination of each can be verified
in finite time, plan existence for QNPs is decidable. More
recent work has shown that the complexity of QNP plan-
ning is the same as that of FOND planning by introducing
a polynomial reduction from the former into the latter, and
another in the opposite direction (Bonet and Geffner 2020).

We do not need to get into the formal details of QNPs but
it is useful to review the direct translation TD of a QNP Q
into a FOND problem P = TD(Q), and the notion of ter-
mination (Srivastava et al. 2011). Concretely, the translation
TD replaces each numerical variable n by a boolean atom
pn that stands for the (boolean) expression n = 0. Then,
occurrences of the literal n = 0 in the initial situation, ac-
tion preconditions, and goals are replaced by pn, while oc-
currences of the literal n > 0 in the same contexts are re-
placed by ¬pn. Likewise, effects n↑ are replaced by effects
¬pn, and effects n↓ are replaced by non-deterministic effects
oneof (pn,¬pn). Actions in the FOND problem P = TD(Q)
with effects ¬pn (i.e., n > 0) are said to “increment n,”
while actions with effects oneof (pn,¬pn) (i.e., either n > 0
or n = 0) are said to “decrement n,” even if there are no nu-
merical variables in P but just boolean variables. This infor-
mation needs to be preserved in the translation P = TD(Q),
as the semantics of P is not the semantics of FOND prob-
lems as assumed by strong or strong-cyclic planners.

Termination and SIEVE

A policy π for the FOND problemP = TD(Q) is said to ter-
minate if all the state trajectories in P that are compatible
with the policy π and with the fairness assumptions under-
lying the QNP Q, are finite. Termination is the result of the
absence of cycles in the policy that could be traversed for-
ever. The latter arises when a cycle includes an action that
decrements a numerical variable and none that increments
it. Since numerical variables cannot become negative such
cycles eventually terminate.

The procedure called SIEVE (Srivastava et al. 2011) pro-
vides a sound and complete termination test that runs in
time that is polynomial in the number of states reached by
the policy. SIEVE can be understood as an efficient imple-
mentation of the following procedure that operates on a pol-
icy graph G(P, π) induced by the FOND problem P and the
policy π, where the nodes are the states s that can be reached
in P via the policy π, and the edges correspond to the state
transitions (s, s′) that are possible given the policy π (i.e.,
s′ ∈ F (π(s), s)).

Starting with the graph G = G(P, π), SIEVE iteratively
removes edges from G until G becomes acyclic or does not
admit further removals. In each iteration, an edge (s, s′) is
removed from G if π(s) is an action that decrements a vari-
able x that is not incremented along any path in G from s′

back to s. SIEVE accepts the policy π iff SIEVE renders the
resulting graph G acyclic. It can be shown that the resulting
graph G is well defined (i.e., it is the same independently
of the order in which edges are removed), and that SIEVE
removes an edge (s, s′) when it cannot be traversed by the
policy an infinite number of times.

It is useful to capture the logic of SIEVE in terms of an
inductive definition that considers states instead of edges:

Definition 4 (QNP Termination). Let π be a policy for the
FOND problem P = TD(Q) associated with the QNP Q.
The policy π terminates in P iff every state s that is reach-
able by π in P terminates, where a state s terminates iff:1

1. there is no cycle on node s (i.e., no path from s to itself),
2. every cycle on s contains a state s′ that terminates, or
3. π(s) decrements a variable x, and every cycle on s con-

taining a state s′ for which π(s′) increments x, also con-
tains a state s′′ that terminates.

Theorem 5. Let Q be a QNPs and π a policy. Then, SIEVE
accepts the policy graph G(P, π) iff policy π terminates in
P , where P = TD(Q).

Since solutions to QNPs Q are known to be the strong-
cyclic policies of the FOND problem P = TD(Q) that
are accepted by SIEVE (Srivastava et al. 2011; Bonet and
Geffner 2020), the solutions for Q can also be expressed as:

Theorem 6. A policy π is a solution to a QNP Q iff π is a
strong-cyclic solution of P = TD(Q) that terminates.

1This inductive definition and the ones below imply that there is
a unique sequence of state subsets S0, S1, . . . , Sk such that Si+1

is Si augmented with all the states that can be added to Si when
assuming that the only terminating states are those in Si.



The characterization that results from this theorem has
been used to verify QNP solutions but not for comput-
ing them. Indeed, the only available complete QNP plan-
ner is based on a polynomial reduction of QNP planning
into strong-cyclic FOND planning that avoids the termina-
tion test (Bonet and Geffner 2020).

FOND+ Planning
In this section, we move from strong, strong-cyclic, and
QNP planning to the FOND+ setting where the fairness as-
sumptions underlying these models can be explicitly stated
and combined. A FOND+ planning problem Pc = 〈P,C〉
is a FOND problem P extended with a set C of fairness as-
sumptions:
Definition 7. A FOND+ problem Pc = 〈P,C〉 is a FOND
problem P extended with a set C of (conditional) fairness
assumptions of the form Ai/Bi, i = 1, . . . , n and where
each Ai is a set of non-deterministic actions in P , and each
Bi is a set of actions in P disjoint from Ai.

The fairness assumptions play no role in constraining the
state trajectories that are possible by following a policy π,
the so-called π-trajectories:
Definition 8. A state trajectory compatible with a policy π
for the FOND+ problem Pc = 〈P,C〉 is a state trajectory
that is compatible with π in the FOND problem P .

However, while in strong and strong-cyclic FOND plan-
ning all actions are considered as adversarial and fair, re-
spectively, in the FOND+ setting, each action is labeled fair
or unfair depending on the assumptions in C and the trajec-
tory where the action occurs. We define what it means for an
action a = π(s) to behave “fairly” in a recurrent state s of
an infinite π-trajectory as follows:
Definition 9. The occurrence of the action π(s) in a recur-
rent state s of a π-trajectory τ associated with the FOND+

problem Pc = 〈P,C〉 is fair if for some fairness assumption
A/B ∈ C, it is the case that π(s) ∈ A and all the actions in
B occur finitely often in τ .

The meaning of a conditional fairness assumption A/B
is that the actions a ∈ A can be assumed to be fair in any
recurrent state s of a π-trajectory τ , provided that the condi-
tion on B holds in τ ; namely, that actions in B do not occur
infinitely often in τ . Otherwise, if any action in B occurs
infinitely often in τ , then a is said to be unfair or adver-
sarial. Once actions π(s) occurring in recurrent states s are
“labeled” in this way, the standard notion of fair trajectories
(Definition 2) extends naturally to FOND+ problems:
Definition 10. A π-trajectory τ for a FOND+ problem Pc =
〈P,C〉 is fair if for every recurrent state s in τ where the
action π(s) is fair and every possible successor s′ of s due
to action π(s) (i.e., s′ ∈ F (π(s), s)), state s is immediately
followed by state s′ in τ an infinite number of times.
The solution of FOND+ problems can then be expressed in
a standard way as follows:
Definition 11 (Solutions). A policy π solves the FOND+

problem Pc = 〈P,C〉 if the maximal π-trajectories that are
fair reach the goal.

s0

s1

s2

g
a

a

b

b

b

b

Figure 1: Example model for FOND problem P with 4
states, non-deterministic actions a and b, and goal state g.

A number of observations can be drawn from these defini-
tions. Let us say that one wants to model a non-deterministic
action a whose behavior is fair in that it always displays all
its possible effects infinitely often in every recurrent state s
such that π(s) = a. To do so, we consider a fairness con-
straint A/B in C such that a ∈ A and B is empty. On the
other hand, to model an adversarial action b, one whose be-
havior is not fair (may not yield all its effects infinitely often
in a recurrent state s with π(s) = b), we do not include b
in any set A. This immediately suggests the way to capture
standard strong and strong-cyclic planning as special forms
of FOND+ planning:

Theorem 12. The strong solutions of a FOND problem P
are the solutions of the FOND+ problem Pc = 〈P, ∅〉.
Theorem 13. The strong-cyclic solutions of a FOND prob-
lem P are the solutions of the FOND+ problem Pc =
〈P, {A/∅}〉, where A is the set of all the non-deterministic
actions in P .

Similarly, QNP problems are reduced to FOND+ prob-
lems in a direct way, in this case, making use of both the
headA and the conditionB in the fairness assumptionsA/B
in C:

Theorem 14. The solutions of a QNP problem Q are the
solutions of the FOND+ problem Pc = 〈P,C〉 where P =
TD(Q) and C is the set of fairness assumptions Ai/Bi, one
for each numerical variable xi in Q, such that Ai contains
all the actions in P that decrement xi, and Bi contains all
the actions in P that increment xi.

Example
By explicitly stating the fairness assumptions underlying
strong, strong-cyclic, and QNP planning, FOND+ planning
integrates these planning models as well. We illustrate the
new possibilities with an example.

Let P be a FOND problem with state set {s0, s1, s2, g},
two non-deterministic actions a and b, initial and goal states
being s0 and g, respectively. Action a can only be applied
in state s0, leading to either s1 or s2, whereas action b can
be applied only in s1 and s2, leading, in both cases, to either
s0 or g; see Figure 1. The FOND problem P admits a single
policy, namely, π(s0) = a and π(s1) = π(s2) = b, which
we analyze in the context of different FOND+ problems
Pi = 〈P,Ci〉 that can be built on top of P using different
sets of fairness assumptions Ci. For convenience, in the sets
Ci, we use a/b to denote the fairness assumption {a} / {b},



and a to denote the assumption {a} /∅. The marks ’3’ and
’7’ express that the policy π solves or does not solve, resp.,
the FOND+ problem Pi, where Ci is:
7 C1 = {}; a and b are adversarial.
3 C2 = {a, b}; a and b are fair.
7 C3 = {a}; a is fair and b is adversarial.
3 C4 = {b}; b is fair and a is adversarial.
7 C5 = {a/b}; a is conditionally fair on b; b adversarial.
7 C6 = {a, b/a}; QNP like: a : x1↓, x2↑ and b : x2↓.
3 C7 = {b, a/b}; QNP like: b : x1↓, x2↑ and a : x2↓.
7 C8 = {a/b, b/a}; QNP like: a : x1↓, x2↑ and b : x2↓, x1↑.

The subtle cases are the last four. The policy π does not
solve P5 because there are trajectories like τ = s0, s1, s0,
s2, s0, s1, s0, . . . that are fair but do not reach the goal. The
reason is that while a/b ∈ C5, the occurrences of the action
a = π(s0) in the recurrent state s0 in τ are not fair. Thus,
both a and b have an adversarial semantics in τ . The policy
π does not solve P6 either, because in the same trajectory τ ,
the action a is fair in s0 as a ∈ C6 but b is not fair in either s1
or s2, as the assumption b/a is in C6 but a occurs infinitely
often in τ . As a result, τ is fair but non-goal reaching in P6.
The situation is different in P7, where b is fair and a is unfair.
Here, τ is unfair, as any other trajectory in which some or
all the states s0, s1, and s2 occur infinitely often. This is
because b being fair in s1 and s2 means that the transitions
(s1, g) and (s2, g) cannot be skipped forever, and the goal
must be reached eventually. Finally, in P8, the trajectory τ
becomes fair again, as both a and b are adversarial in τ .

Termination and SIEVE+ for FOND+

We now consider the computation of policies for FOND+

problems. Initially, we look for a procedure to verify if a
policy π solves a problem Pc = 〈P,C〉, and then transform
this verification procedure into a synthesis procedure.

The solutions for FOND+ problems are policies that ter-
minate in the goal, a termination condition that combines
and goes beyond the solution concept for QNPs that only
requires goal reachability (strong-cyclicity) and termination
(finite trajectories). The termination condition for FOND+

planning can be expressed as follows:
Definition 15 (FOND+ termination). Let π be a policy for
the FOND+ problem Pc=〈P,C〉. State s in P terminates iff
1. s is a goal state,
2. s is fair and some state s′ ∈ F (π(s), s) terminates, or
3. s is not fair, all states s′ ∈ F (π(s), s) terminate, and
F (π(s), s) is non-empty.

where s is fair if for someAi/Bi in C, π(s) ∈ Ai, and every
path that connects s to itself and that contains a state s′ with
π(s′) ∈ Bi, also contains a state s′′ that terminates.

FOND+ termination expresses a procedure similar to
SIEVE, that we call SIEVE+, that keeps labeling states s
as terminating (the same as removing all edges from s in
the policy graph) until no states are left or no more states
can be labeled. The key difference with SIEVE is that the

removals are done backward from the goal as captured in
Definition 15. This is strictly necessary for SIEVE+ to be a
sound and complete procedure for FOND+ problems:

Theorem 16. A policy π solves the FOND+ problem Pc =
〈P,C〉 iff all the states s that are reachable by π terminate
according to Definition 15.

The solutions to FOND+ problems cannot be character-
ized as those of QNPs, as policies that are strong-cyclic and
terminating in the sense that the policy cannot traverse edges
in the policy graph forever. The policy π for the example P5

is indeed strong-cyclic and terminating in this sense, but as
shown above, it does not solve P5. The policy terminates
because the action a cannot be done forever, but it does not
terminate in a goal state. In QNPs, this cannot happen, as
strong-cyclic policies that are terminating, always terminate
in a goal state.

FOND+ and Dual FOND Planning
FOND+ planning subsumes Dual FOND planning where
fair and adversarial actions can be combined. In order to
show that, let us first recall the latter:

Definition 17 (Geffner and Geffner, 2018). A Dual FOND
problem is a FOND problem where the non-deterministic
actions are labeled as either fair or adversarial. A policy π
solves a Dual FOND problem P iff for all reachable state
s, π(s)∈A(s), and there is a function d from reachable
states into {0, . . . , |S|} such that 1) d(s)=0 for goal states,
2) d(s′)<d(s) for some s′ ∈ F (π(s), s) if π(s) is fair, and
3) d(s′)<d(s) for all s′ ∈ F (π(s), s) if π(s) is adversarial.

For showing that this semantics coincides with the seman-
tics of a suitable fragment of FOND+ planning, let us recast
this definition as a termination procedure:

Definition 18 (Dual FOND termination). Let π be a policy
for the Dual FOND problem P . A state s in P terminates iff

1. s is a goal state,

2. π(s) is fair and some s′ ∈ F (π(s), s) terminates, or

3. π(s) is adversarial, all states s′ ∈ F (π(s), s) terminate,
and F (π(s), s) is non-empty.

Theorem 19. π is a solution to a Dual FOND problem P iff
for every non-goal state s reachable by π, π(s) ∈ A(s) and
s terminates according to Definition 18.

The only difference between the termination for Dual
FOND and the one for FOND+ (Def. 15) is that in the for-
mer the fair and adversarial labels are given, while in the
latter they are a function of the explicit fairness assumptions
and policy. It is easy to show however that Dual FOND prob-
lems correspond to the class of FOND+ problems with con-
ditional fairness assumptions A/B with empty B:

Theorem 20. A policy π solves a Dual FOND problem P ′

iff π solves the FOND+ problem Pc = 〈P,C〉 where P is
like P ′ without the action labels, and C = {A/B} where A
contains all the actions labeled as fair in P ′, andB is empty.



FOND-ASP: An ASP-based FOND+ Planner
The characterization of FOND+ planning given in Theo-
rem 16 allows for a transparent and direct implementation
of a sound and complete FOND+ planner. For this, the plan-
ner hints a policy π and then each state reachable by π is
checked for termination using Definition 15. The problem
of looking for a policy that satisfies this restriction can be
expressed in SAT, although we have found it more con-
venient to express it as an answer set program, a conve-
nient and high-level alternative to SAT (Brewka, Eiter, and
Truszczyński 2011; Lifschitz 2019; Gebser et al. 2012), us-
ing the facilities provided by CLINGO (Gebser et al. 2019).

The code for the back-end of the ASP-based FOND+

planner is shown in Figure 2. The front-end of the planner,
not shown, parses an input problem Pc = 〈P,C〉 and builds
a flat representation of Pc in terms of a number of ground
atoms that are shown in capitalized predicates in the figure.
The code in the figure and the facts representing the problem
are fed to the ASP solver CLINGO, which either returns a
(stable) model for the program or reports that no such model
exists. In the former case, a policy that solves Pc is obtained
from the atoms pi(S,A) made true by the model.

The set of ground atoms providing a flat representation of
the problem Pc contains the atoms STATE(s), ACTION(a),
and TRANSITION(s,a,s') for each (reachable) state s,
ground action a and transition s′ ∈ F (a, s) found in a reach-
ability analysis from the initial state s0. In addition, the set
includes the atoms INITIAL(s0), GOAL(s) for goal states
s, and ASET(i,a) and BSET(i,b) for a fairness assumption
Ai/Bi in C if a ∈ Ai and b ∈ Bi respectively.

The program for the FOND+ problem Pc is denoted as
T (Pc), while T (Pc, π) is used to refer to the program T (Pc)
but with the line 2 in Figure 2 replaced by facts pi(s,a)

when π(s) = a for a given policy π, and the integrity con-
straint in line 23 removed. A model M for T (Pc) encodes a
policy πM where πM (s) = a iff pi(s,a) holds in M . The
formal properties of the FOND-ASP planner are as follows:
Theorem 21. Let PC = 〈P,C〉 be a FOND+ problem, and
let π be a policy for P . Then,
1. There is a unique stable model M of T (Pc, π), and

terminate(s) ∈M iff s terminates (Definition 15).
2. The policy π solves Pc iff the model M for T (Pc, π) sat-

isfies the integrity constraint in line 23 in Figure 2.
3. M is a model of T (Pc) iff M is the model of T (Pc, πM )

and M satisfies the integrity constraints. Thus, FOND-
ASP is a sound and complete planner for FOND+.

4. Deciding if T (Pc, π) has a model is in P; i.e., FOND-ASP
runs in non-deterministic exponential time.

Complexity
A direct consequence of Theorem 21 is that the plan-
existence decision problem for FOND+ is in NEXP (i.e.,
non-deterministic exponential time). Since FOND problems
are easily reduced to FOND+ problems (Theorem 13) and
the plan-existence for FOND is EXP-Hard (Littman, Gold-
smith, and Mundhenk 1998; Rintanen 2004), plan-existence
for FOND+ is EXP-Hard as well. We conjecture that the

NEXP bound is loose and that plan-existence for FOND+ is
EXP-Complete. In contrast, LTL planning and synthesis is
2EXP-Complete (Pnueli and Rosner 1989).

Theorem 22. The plan-existence problem for FOND+ prob-
lems is in NEXP and it is EXP-Hard.

Experiments
We tested FOND-ASP on three classes of problems:2 FOND
problems, QNPs, and more expressive FOND+ problems
that do not fit in either class and that can only be ad-
dressed using LTL engines. On each class, we compare
FOND-ASP with the FOND solvers FOND-SAT (Geffner and
Geffner 2018) and PRP (Muise, McIlraith, and Beck 2012),
the QNP solver QNP2FOND (Bonet and Geffner 2020) using
FOND-SAT and PRP as the underlying FOND solver, and the
LTL-synthesis tool STRIX (Luttenberger, Meyer, and Sickert
2020). The pure (strong and strong-cyclic) FOND problems
are those in the FOND-SAT distribution, the QNPs are those
by (Bonet and Geffner 2020) and two new families of in-
stances that grow in size with a parameter. For more expres-
sive FOND+ planning problems, four new families of prob-
lems are introduced that extend the new QNPs with fair and
adversarial actions, with only some being solvable. The do-
main and goals of these problems are encoded in LTL in the
usual way, while the fairness assumptions A/B are encoded
as described in the introduction. In all the experiments, time
and memory bounds of 1/2 hour and 8GB are enforced.

The results are detailed below. In summary, we observe
the following. For pure FOND benchmarks, FOND-ASP does
not compete with specialized planners like PRP or FOND-
SAT as these problems span (reachable) state spaces that are
just too large. For QNPs, on the other hand, FOND-ASP does
better than FOND-SAT but worse than PRP on the FOND
translations. For expressive FOND+ problems, where these
planners cannot be used at all, FOND-ASP performs much
better than STRIX on both solvable and unsolvable problems.

FOND Benchmarks
FOND-ASP managed to solve a tiny fraction of the bench-
marks used for strong and strong-cyclic planning in the
FOND-SAT distribution. The number of reachable states in
these problems is large (tens of thousands or more) and the
size of the grounded ASP program is quadratic in that num-
ber. In general, this seems to limit the scope of FOND-ASP
to problems with no more than one thousand states approx-
imately, as suggested by the results in Table 1. We have ob-
served however that sometimes FOND-ASP manages to solve
strong planning problems with more than 100,000 states.
This may have to do with CLINGO’s grounder or with the
state space topology; we do not know the exact reason yet.

QNP Problems
The two families of QNPs involve the numerical variables
{xi}ni=1 that have all positive values in the initial state. The
goal is to achieve xn = 0. Problems in the QNP1 family are

2Planner available at https://github.com/idrave/FOND-ASP



1 % policy, edges, and connectedness
2 { pi(S,A) : ACTION(A) } = 1 :- STATE(S), not GOAL(S).
3 edge(S,T) :- pi(S,A), TRANSITION(S,A,T).
4 connected(S,T) :- edge(S,T).
5 connected(S,T) :- connected(S,X), edge(X,T), S != X.
6

7 % blocked(S,T) iff there is no (S,T)-path, or all such paths have a terminating state
8 blocked(S,T) :- STATE(S), STATE(T), not connected(S,T).
9 blocked(S,T) :- connected(S,T), terminate(S).

10 blocked(S,T) :- connected(S,T), terminate(T).
11 blocked(S,T) :- connected(S,T), blocked(X,T) : edge(S,X), connected(X,T).
12

13 % fair(S) iff for some A/B, pi(S) in A and each cycle over S that passes
14 % over X such that pi(X) in B contains a terminating state
15 fair(S) :- pi(S,A), ASET(I,A), blocked(X,S) : pi(X,B), BSET(I,B), not blocked(S,X).
16

17 % terminating states
18 terminate(S) :- GOAL(S).
19 terminate(S) :- fair(S), edge(S,T), terminate(T).
20 terminate(S) :- not fair(S), edge(S,_), terminate(T) : edge(S,T).
21

22 % reachable states must terminate
23 :- reachable(S), not terminate(S).
24 reachable(S) :- INITIAL(S).
25 reachable(S) :- reachable(X), not GOAL(X), edge(X,S).

Figure 2: The concise encoding in CLINGO of the ASP-based FOND+ planner tested (FOND-ASP). The FOND+ problem enters
through the predicates STATE/1, ACTION/1, INITIAL/1, GOAL/1, TRANSITION/3, ASET/2 and BSET/2, where ASET(i,A) (resp.
BSET(i,A)) iff action A belongs to Ai (resp. Bi) in the fairness assumption Ai/Bi. In CLINGO; the syntax “P : <cond>” used
in lines 11, 15, and 20 stands for the implicitly universally quantified conditional “if <cond> then P”.

solved by means of n sequential simple loops, while prob-
lems in the QNP2 family are solved using n nested loops.
The actions for problems in QNP1 are b = 〈¬p; p〉, a1 =
〈p;¬p, x1↓〉, and ai = 〈p, xi−1 =0;¬p, xi↓〉 for 1 < i ≤ n,
while those for QNP2 are b = 〈¬p; p〉, a1 = 〈p;¬p, x1↓〉,
and ai = 〈p, xi−1 =0;¬p, xi−1↑, xi↓〉, 1 < i ≤ n.

Table 1 shows the results for values of n in {2, 3, . . . , 10}
and different planners, along with the number of reachable
states in each problem. As can be seen, QNP2FOND/PRP
is the planner that scales best, followed by FOND-ASP,
QNP2FOND/FOND-SAT, and STRIX at the end. As men-
tioned, the performance of FOND-ASP is harmed by a large
number of reachable states. While the number of states for
the FOND translation produced by QNP2FOND is much
larger, as the translation involves extra propositions, this
number does not necessarily affect the performance of
FOND planners like FOND-SAT and PRP that can compute
compact policies. It is also interesting to see how quickly
the performance of the LTL engine STRIX degrades; it can-
not even solve qnp1-06 which has 14 states. The table also
shows results for QNP problems that capture abstractions
for four generalized planning problems, all of which involve
small state spaces (Bonet and Geffner 2020).

More Expressive FOND+ Problems
The third class of instances consists of four families of prob-
lems obtained from the two QNP families above. The new
problems are not “pure” QNPs, as they also involve actions
with non-deterministic effects on boolean variables that can

be adversarial or fair. Thus, these problems cannot be trans-
lated into FOND problems for the use of planners such as
PRP or FOND-SAT. For each family QNP1 and QNP2, two
new families f01 and f11 of problems are obtained by re-
placing the action b = 〈¬p; p〉 by the non-deterministic ac-
tion b′ = 〈¬p; oneof {p,¬p}〉, leaving the actions ai un-
touched. Since the action b′ does not appear in any fairness
assumption, it is adversarial and thus no problem in the class
f01 has a solution as the “adversary” may always choose
to leave p false. The family f11 is obtained on top of f01
by adding two additional booleans q and r, and two actions
c = 〈¬q; r, oneof {q,¬q}〉 and d = 〈r; q,¬r〉 such that:
1) the actions ai are modified by adding q as precondition
and ¬q as effect, and 2) the fairness assumption A/B with
A = {b′} and B empty is added. The problems in f11 thus
involve the QNP-like actions ai, the fair action b′, and the
adversarial action c, and they all have a solution.

Table 2 shows the result for FOND-ASP and STRIX as
these are the only solvers able to handle the combination
of fairness assumptions. As it can be seen, FOND-ASP scales
better than STRIX on all of these problems, the solvable ones
(families f11) and the unsolvable ones (families f01).

We finally tested FOND-ASP over the seven problems con-
sidered in a recent approach to program synthesis over un-
bounded data structures (Bonet et al. 2020). Although the
original specifications are in LTL, these can be all expressed
in FOND+ using different types of fairness assumptions.
The problems are solved easily by both FOND-ASP and
STRIX as their reachable state spaces have very few states.



QNP2FOND

problem #states FOND-SAT PRP STRIX FOND-ASP

qnp1-02 6 0.08 0.09 3.35 0.00
qnp1-03 8 0.13 0.11 2.63 0.00
qnp1-04 10 0.28 0.14 5.21 0.00
qnp1-05 12 0.60 0.14 98.34 0.01
qnp1-06 14 1.27 0.15 — 0.01
qnp1-07 16 2.54 0.15 — 0.01
qnp1-08 18 5.54 0.17 — 0.01
qnp1-09 20 12.96 0.21 — 0.02
qnp1-10 22 26.70 0.19 — 0.02

qnp2-02 8 0.20 0.18 2.33 0.00
qnp2-03 16 1.77 0.30 2.31 0.01
qnp2-04 32 10.00 0.58 14.25 0.04
qnp2-05 64 50.24 1.15 885.37 0.20
qnp2-06 128 302.80 2.53 — 1.26
qnp2-07 256 1,969.35 4.02 — 7.14
qnp2-08 512 — 6.96 — 54.37
qnp2-09 1,024 — 13.22 — ***
qnp2-10 2,048 — 21.94 — ***

Clear 4 0.23 0.13 1.53 0.00
On 16 3.69 0.20 3.01 0.01
Delivery 12 4.07 0.27 1.50 0.01
Gripper 12 15.43 1.61 2.47 0.02

Table 1: Results for three families of QNPs for QNP2FOND
paired with the FOND solvers FOND-SAT and PRP, STRIX
(QNP translated to LTL), and FOND-ASP. Entries ’—’ and
’***’ denote out of time and memory, resp. Time is in secs.

Related Work
The work is related to three threads: SAT-based FOND plan-
ning, QNPs, and LTL synthesis. The SAT-based FOND plan-
ner by Chatterjee, Chmelı́k, and Davies (2016) expands the
state space in full, like FOND-ASP, but a more recent ver-
sion computes compact policies and provides support for
Dual FOND planning (Geffner and Geffner 2018). We have
used answer set programs as opposed to CNF encodings ex-
ploiting their high-level modeling language, the natural sup-
port for inductive definitions, and the competitive perfor-
mance of CLINGO (Gebser et al. 2019). FOND-ASP is also a
novel QNP planner which can handle non-deterministic ef-
fects on boolean variables. The formulation actually brings
QNP planning into the realm of standard FOND planning by
dealing with the underlying fairness assumptions explicitly.

The use of fairness assumptions connects also to works
on LTL planning and synthesis (Camacho, Bienvenu, and
McIlraith 2019; Aminof et al. 2019), and to works address-
ing temporally extended goals (De Giacomo and Vardi 1999;
Patrizi, Lipovetzky, and Geffner 2013; Camacho et al. 2017;
Camacho, Bienvenu, and McIlraith 2019; Aminof, De Gia-
como, and Rubin 2020). Our work can be seen as a spe-
cial case of planning under LTL assumptions (Aminof et al.
2019) that targets an LTL fragment that is relevant for FOND
planning and is computationally simpler. While it is possible
to express FOND+ tasks as LTL syntheses problems, and we
have shown how to do that, it remains to be seen whether the
task can be expressed in a restricted LTL fragment that ad-
mits more efficient techniques. While the strong fairness as-

f01 (unsolvable) f11 (solvable)

problem #states STRIX FOND-ASP #states STRIX FOND-ASP

qnp1-fxx-02 6 3.44 0.00 24 6.07 0.03
qnp1-fxx-03 8 2.42 0.01 32 6.20 0.04
qnp1-fxx-04 10 4.13 0.01 40 98.58 0.07
qnp1-fxx-05 12 93.85 0.01 48 — 0.11
qnp1-fxx-06 14 — 0.01 56 — 0.14
qnp1-fxx-07 16 — 0.01 64 — 0.19
qnp1-fxx-08 18 — 0.01 72 — 0.25
qnp1-fxx-09 20 — 0.02 80 — 0.39
qnp1-fxx-10 22 — 0.02 88 — 0.34

qnp2-fxx-02 8 3.22 0.00 32 5.85 0.04
qnp2-fxx-03 16 2.25 0.01 64 8.16 0.21
qnp2-fxx-04 32 11.38 0.04 128 236.89 1.55
qnp2-fxx-05 64 873.09 0.21 256 — 15.45
qnp2-fxx-06 128 — 1.25 512 — 46.67
qnp2-fxx-07 256 — 12.13 1,024 — ***
qnp2-fxx-08 512 — 39.56 2,048 — ***
qnp2-fxx-09 1,024 — *** 4,096 — ***
qnp2-fxx-10 2,048 — *** 8,192 — ***

Table 2: Results for four families of solvable/unsolvable
FOND+ problems obtained from the QNPs in Table 1 by
playing with the fairness assumptions. These problems are
handled only by STRIX and FOND-ASP. Entries ’—’ and
’***’ denote out of time and memory, resp. Time is in secs.

sumption on action effects that is required cannot be directly
encoded in GR(1) (Bloem et al. 2012), strong-cyclic FOND
planning has been encoded in Büchi Games (D’Ippolito,
Rodrı́guez, and Sardiña 2018), a special case of GR(1). It
remains to be investigated whether that encoding can be ex-
tended to deal with conditional fairness.

Summary
We have formulated an extension of FOND planning that
makes use of explicit fairness assumptions of the form A/B
where A and B are disjoints sets of actions. While in Dual
FOND planning actions are labeled as fair or unfair, in
FOND+ planning these labels are a function of the trajecto-
ries and the fairness assumptions: an action a ∈ A is deemed
fair in a recurrent state if a suitable condition on B holds.
In this way, FOND+ generalizes strong, strong-cyclic, Dual
FOND planning, and also QNP planning, which is actu-
ally the only planning setting, excluding LTL planning, that
makes use of the conditions B. We have implemented an ef-
fective FOND+ planner by reducing the problem to answer
set programs using CLINGO, and evaluated its performance
in relation to FOND and QNP planners, which handle less
expressive problems, and LTL synthesis tools, which han-
dle more expressive ones. We have shown that FOND+ is
in NEXP but have not shown yet whether it is in EXP, like
FOND and QNP planning.
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