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Bottom-up vs. Top-Down Representation Learning (1)

• Deep learning (DL) and Deep Reinforcement Learning (DRL) have revolutionised
the landscape of AI, exploiting power of stochastic gradient descent

• Yet DL and DRL struggle with OOD/structural generalization

. Inductive biases in neural architectures assumed to help but vague, informal

• Alternative: Language-based representation learning

. Don’t choose low-level arch and expect “right representation” to emerge

. Choose high-level language instead, and learn representations over language

• Separation between what is to be learned and how
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Bottom-up vs. Top-down Representation Learning (2)

• Yoshua Bengio at IJCAI 2021: System 2 Deep Learning: Higher-Level Cognition,
Agency, Out-of-Distribution Generalization and Causality:

“. . . Systematic generalization hypothesized to arise from efficient factor-
ization of knowledge into recomposable pieces corresponding to reusable
factors . . . ”

• Language-based representation learning:

. learn the “recomposable pieces” in a language

. recombinations and generalization will follow semantics

• Very much in line with traditional AI: just learn from data the representations
that have traditionally been crafted by hand

• Potential benefits: meaningful learning bias, semantics, transparency, reasoning
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Example: Minigrid/BabyAI [Chevalier-Boisvert et al., 2019]

. Task: Pick up grey box behind you, then go to grey key and open door

. Red triangle is agent at bottom right. Light-grey is field of view

. Learn controller that accepts goals and obs, and outputs action to do

. Like a “classical planning problem” but state representation not known, and
goals to be achieved reactively (not by planning) with policies that generalize
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DRL vs. Language-based Representation Learning

• Surprise is not that DL and DRL methods struggle in Minigrid, but that they
manage to generate meaningful behavior at all, given so little prior knowledge

• Yet methodology largely ad hoc: from intuitions to architectures and experi-
ments using baselines . . .

• From perspective of language-based representation learning, key questions are:

. What are the domain-independent languages for representing dynamics?

. What the languages for representing general reactive policies, subgoals?

. How can representations over such languages be learned?
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Outline of the Tutorial

• Background 1: Classical planning, planning width

• Languages for

. representing general dynamics

. representing general policies

. representing general subgoal structures (sketches; ‘intrinsic rewards”)

• Background 2: Qualitative numerical planning problems (QNPs)

• Learning representations over these languages:

. learning general dynamics

. learning general policies

. learning general subgoal structures

• Wrap up; Challenges

Copy of these slides at https://www.dtic.upf.edu/∼hgeffner/tutorial-2022.pdf
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Outline of the Tutorial (2)

• Tutorial is not a survey on learning to act and plan; too much for us; too much
for 1:30h

• Focus is on a coherent research thread that covers a lot of ground:

. Crisp and simple ideas and formulations for stating, understanding, and
addressing key problems

• Many open problems; many opportunities for research
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Background 1:

Classical Planning and Planning Width
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Background: Model for Classical AI Planning

A (classical) state model is a tuple S = 〈S, s0, SG, Act, A, f, c〉:

• finite and discrete state space S

• a known initial state s0 ∈ S
• a set SG ⊆ S of goal states

• actions A(s) ⊆ Act applicable in each s ∈ S
• a deterministic state-transition function s′ = f(a, s) for a ∈ A(s)

• positive action costs c(a, s), assumed 1 by default

A solution to the model or plan is a sequence of applicable actions a0, . . . , an that
maps s0 into SG

i.e. there must be state sequence s0, . . . , sn+1 such that ai ∈ A(si), si+1 = f(ai, si),
and sn+1 ∈ SG
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A Language for Classical Planning: STRIPS

• A (grounded) problem in STRIPS is a tuple P = 〈F,O, I,G〉:
. F is set of (ground) atoms

. O is set of (ground) actions

. I ⊆ F stands for initial situation

. G ⊆ F stands for goal situation

• Actions o ∈ O represented by

. Add list Add(o) ⊆ F

. Delete list Del(o) ⊆ F

. Precondition list Pre(o) ⊆ F

A problem P in STRIPS defines state model S(P ) in compact form . . .
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From Language to Models

STRIPS problem P = 〈F,O, I,G〉 determines state model S(P ) where

• the states s ∈ S are collections of atoms from F

• the initial state s0 is I

• the goal states sG are such that G ⊆ sG
• the actions a in A(s) are ops in O s.t. Prec(a) ⊆ s
• the next state is s′ = [s \Del(a)] ∪Add(a)

• action costs c(a, s) are all 1

Common approach for solving P is using path-finding/heuristic search algorithms
over graph defined by S(P ) where nodes are the states s, and edges (s, s′) are state
transitions caused by an action a; i.e., s′ = f(a, s) and a ∈ A(s)

The source node is the initial state s0, and the targets are the goal states sG
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Background: Width and Width-based Algorithms

• IW(1) is a breadth-first search that prunes states s that don’t make a feature
true for first time in the search, given set of Boolean features F

. In classical planning, F is the set of (ground) atoms in problem

• IW(k) is IW(1) but over set F k made up of conjunctions of k features from F

• Alternatively, IW(k) is a breadth-first search that prunes s if novelty(s) > k

• IW runs IW(1), IW(2), . . . , IW(k) sequentially until problem solved or k = N

• IW is blind like DFS and BFS but diff enumeration; uses state structure

• IW(k) expands up to Nk nodes and runs in polytime exp(2k − 1)
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Planning for *Atomic Goals* with IW(1) and IW(2)

# Domain I IW(1) IW(2) Neither

1. 8puzzle 400 55% 45% 0%

2. Barman 232 9% 0% 91%

3. Blocks World 598 26% 74% 0%

4. Cybersecure 86 65% 0% 35%

. . . . . . . . . . . . . . . . . .

22. Pegsol 964 92% 8% 0%

23. Pipes-NonTan 259 44% 56% 0%

24. Pipes-Tan 369 59% 37% 3%

25. PSRsmall 316 92% 0% 8%

26. Rovers 488 47% 53% 0%

27. Satellite 308 11% 89% 0%

28. Scanalyzer 624 100% 0% 0%

. . . . . . . . . . . . . . . . . .

33. Transport 330 0% 100% 0%

34. Trucks 345 0% 100% 0%

35. Visitall 21,859 100% 0% 0%

36. Woodworking 1659 100% 0% 0%

37. Zeno 219 21% 79% 0%

Total/Avgs 37,921 37.0% 51.3% 11.7%

88.3% of the 37,921 instances solved by IW(1) or IW(2) [Lipovetzky and G., 2012]
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Performance of IW is No Accident: Theory

• Width of P , w(P ), is min k for which there is a sequence of subgoals (atom
tuples) t0, t1, . . . , tn, |ti| ≤ k such that:

. t0 is true in the initial situation

. the optimal plans for tn are optimal plans for P

. all optimal plans for ti can be extended into optimal plans for ti+1 by
adding a single action

• Also w(P ) = 0 if goal reachable in 0 or 1 step; w(P ) = N + 1 if no solution,
where N is number of atoms in P .

• Theorem: If w(P ) = k, then IW(k) solves P optimally in exp(2k − 1) time

• Theorem: Domains like Blocks, Logistics, Gripper, . . . have all width 2
independent of problem size provided that goals are single atoms
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Practical Variations of IW

SIW: Serialized iterated width [Lipovetzky and G., 2012]

• Use IW greedily to decrease number of unachieved goals #g; assumes con-
junctive top goal (simple goal serialization)

BFWS: Best-first guided by novelty measure w〈#g,#c〉 and #g

• BFWS(f5): back-end of state-of-the-art Dual-BFWS, #c from relaxed plans

• k-BFWS(f5): poltytime variant of BFWS(f5) used as front-end of Dual-BFWS

• BFWS(R): version that does not use action structure; just PDDL simulator

[Lipovetzky and G., 2017; Francès et al., 2017]
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Understanding Width: Test Your Knowledge!

How to prove in standard encodings that:

• Blocks world instances with goal clear(x) or hold(x) have width 1

• Delivery instances with goal hold(x) or AgentAt(y) have width 1

• Blocks world instances with goal on(x, y) have width 2

• Delivery instances with goal PkgAt(x, y) have width 2

• Blocks and Delivery with arbitrary conjunctive goals have no bounded width

Delivery is simplified Logistics: agent in grid, picking up and dropping pkgs

For proving w(G) ≤ k:

• Necessary 1: If a1, . . . , an is optimal plan for goal G, each prefix a1, . . . , ai
must be optimal plan for some ti, |ti| ≤ k
• Necessary 2: For these ti’s, all optimal plans for ti extend into optimal plans

for ti+1.

B. Bonet, H. Geffner. Language-based Representation Learning for Acting and Planning. IJCAI 2022 Tutorial 16



Part II: Languages

• Language for expressing dynamics

• Language for expressing general policies

• Language for expressing general subgoal structures
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Language for Expressing Dynamics: First-Order STRIPS

Problems specified as instances P = 〈D, I〉 of general planning domain:

• Domain D specified in terms of action schemas and predicates

• Instance is P = 〈D, I〉 where I details objects, init, goal

Distinction between general domain D and specific instance P = 〈D, I〉 important
for reusing action models, and also for learning them:

• Learning Pi = 〈D, Ii〉 implies learning D that generalizes to other instances

In RL and DRL, there is no notion of domain: generalization to other “instances”
analyzed experimentally; closest things are “procedurally generated instances,” and
“probability distribution over tasks”
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Example: 2-Gripper Problem P = 〈D, I〉 in PDDL

(define (domain gripper)

(:requirements :typing)

(:types room ball gripper)

(:constants left right - gripper)

(:predicates (at-robot ?r - room)(at ?b - ball ?r - room)(free ?g - gripper)

(carry ?o - ball ?g - gripper))

(:action move

:parameters (?from ?to - room)

:precondition (at-robot ?from)

:effect (and (at-robot ?to) (not (at-robot ?from))))

(:action pick

:parameters (?obj - ball ?room - room ?gripper - gripper)

:precondition (and (at ?obj ?room) (at-robot ?room) (free ?gripper))

:effect (and (carry ?obj ?gripper) (not (at ?obj ?room)) (not (free ?gripper))))

(:action drop

:parameters (?obj - ball ?room - room ?gripper - gripper)

:precondition (and (carry ?obj ?gripper) (at-robot ?room))

:effect (and (at ?obj ?room) (free ?gripper) (not (carry ?obj ?gripper)))))

(define (problem gripper2)

(:domain gripper)

(:objects roomA roomB - room Ball1 Ball2 - ball)

(:init (at-robot roomA) (free left) (free right) (at Ball1 roomA)(at Ball2 roomA))

(:goal (and (at Ball1 roomB) (at Ball2 roomB))))
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Preview: Learning Dynamics in Lifted STRIPS

• Planning problem Pi = 〈D, Ii〉 defines unique state graph G(Pi)

• Learning as inverse problem: from graphs G1, . . . , Gk, learn D, Ii:

Given graphs G1, . . . , Gk, find simplest instances Pi = 〈D, Ii〉 such that
graphs Gi and G(Pi) are isomorphic, i = 1, . . . , k.

• Problem cast and solved as combinatorial optimization task [B. and G., 2020]

• Complexity of D determined by # and arities of action schemas and predicates

• Variations: missing edges, noisy observations [Rodriguez et al., 2021a]

• Related

. Learning schemas from ground traces [Cresswell et al., 2013]

. Deep learning of action schemas from images via autoencoders [Asai, 2019]

. Learning prop. action models from options [Konidaris et al., 2018]

. Most work on learning action models assumes domain predicates known
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Second Task: General Policies

• General policy represents strategy for solving multiple domain instances reac-
tively; i.e., without having to search or plan

. E.g., policy for achieving on(x, y); any # of blocks, any configuration

• What are good languages for expressing such policies?

• Number of works have addressed the problem [Khardon 1999; Martin and G., 2004;

Fern et al., 2006; Srivastava et al., 2011; Hu and De Giacomo, 2011]

• Subtlety: set of (ground) actions change from instance to instance with objects

Learning general policies also a key goal in (Deep) RL
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General Policies: A Language [B. and G., 2018]

• General policies are given by rules C 7→ E over set Φ of features

• Features f are state functions that have a well-defined value f(s) on every
reachable state of any instance of the domain

. Boolean features p: p(s) is true or false

. Numerical features n: n(s) is non-negative integer

Computation of feature values assumed to be “cheap”: features assumed to have
linear number of values at most, computable in linear time (in |P |).
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Example: General Policy for clear(x)

• Features Φ = {H,n}: ’holding’ and ’number of blocks above x’

• Policy π for class Q of Block problems with goal clear(x) given by two rules:

{¬H,n> 0} 7→ {H,n↓} ; {H,n> 0} 7→ {¬H}

Meaning:

– if ¬H & n > 0, move to successor state where H holds and n decreases

– if H & n > 0, move to successor state where ¬H holds, n doesn’t change
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Language and Semantics of General Policies: Definitions

• Policy rules C 7→ E over set Φ of Boolean and numerical features p, n:

. Boolean conditions in C: p, ¬p, n = 0, n > 0

. qualitative effects in E: p, ¬p, p?, n↓, n↑, n?

• State transition (s, s′) satisfies rule C 7→ E if

. f(s) makes body C true

. change from f(s) to f(s′) satisfies E

• A policy π for class Q of problems P is given by policy rules C 7→ E

. Transition (s, s′) in P compatible with π if (s, s′) satisfies a policy rule

. Trajectory s0, s1, . . . compatible if s0 of P and transitions compatible with π

• π solves P if all max trajectories compatible with π reach goal of P

• π solves collection of problems Q if it solves each P ∈ Q
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Example: Delivery

• Pick packages spread in n×m grid, one by one, to target location

• Features Φ = {H, p, t, n}: hold, dist. to nearest pkg & target, # undelivered

• Policy π that solves class QD: any # of pkgs and distribution, any grid size

{¬H, p> 0} 7→ {p↓, t?} go to nearest package

{¬H, p= 0} 7→ {H, p?} pick it up

{H, t> 0} 7→ {t↓, p?} go to target cell

{H, t= 0} 7→ {¬H,n↓, p?} drop package
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General Policies: Three Questions

1. How to prove that general policy solves potentially infinite class of instances Q?

2. How to learn policies (and the features involved) to solve Q?

3. How to learn policies that are guaranteed to solve infinite Q?

We consider idea of learning first and move then to 1. Not much to say about 3.
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Preview: Learning General Policies

Given a known domain D, training instances P1, . . . , Pk, over D, and a
finite pool of domain features F , each with a cost, find the cheapest
policy π over F such that π solves all Pi, i = 1, . . . , k

• Problem cast and solved as combinatorial opt. task [Francès et al., 2021]

• Pool of features F generated from domain predicates using 2-variable (descrip-
tion) logic grammar; feature cost given by syntax tree size

• Deep learning approaches [Toyer et al., 2018; Garg et al., 2020] do not need F but
not 100% correct in general

• Recent DL approach also avoids F and nearly 100% correct when 2-variable logic
features suffice; exploits relation between GNNs and 2-variable logic [St̊ahlberg et

al., 2022a and 2022b]
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Proving that a General Policy Solves Class of Instances Q

How to prove that this policy π achieves clear(x) in all Block problems?

{¬H,n> 0} 7→ {H,n↓} ; {H,n> 0} 7→ {¬H}

• Soundness: policy π applies in every non-goal state s

. for any such s, there is (s, s′) compatible with π

• Acyclicity: no sequence of transitions (si, si+1) compatible with π cycle

Theorem: If π is sound and acyclic in Q, and no dead-ends, π solves Q

Exercise: Show that policy for clear(x) is sound and acyclic in Blocks
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Acyclicity, Termination, and QNPs

• Termination: criterion that ensures that policy is acyclic over any domain

• A policy π is terminating if for all infinite trajectories s0, . . . , si, . . . compatible
with π, there is a numerical feature n such that:

. n is decremented in some recurrent transition (s, s′); i.e., n(s′) < n(s)

. n is not incremented in any recurrent transition (s, s′); i.e., n(s′) 6> n(s)

• Every such trajectory deemed impossible or unfair (n can’t decrement below 0),
thus if π terminates, π-trajectories terminate

• Termination notion is from QNPs; verifiable in time O(2|Φ|) by sieve algorithm
[Srivastava et al., 2011], where Φ is set of features involved in the policy

More about QNPs later on . . .
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Third Task: Subgoal Structure

Subgoal structure important in planning and RL (“intrinsic rewards”, hierarchies)

Sketches powerful language for expressing subgoal structure [B. and G., 2021]

• Goal serialization and full policies expressible as sketches

• Semantics in terms of subgoals to be achieved; not so with HTNs, LTL

• Sketches split problems into subproblems

If subproblems have a bounded width, problems solved in polytime
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Example: Sketches for Delivery

• Width=0 Sketch (full policy)

{H,n> 0, t= 0} 7→ {¬H, p?} go and deliver package{¬H, p> 0} 7→ {p↓, t?} go to nearest package

{¬H, p= 0} 7→ {H, p?} pick it up

{H, t> 0} 7→ {t↓, p?} go to target cell

{H, t= 0} 7→ {¬H,n↓, p?} drop package

• Width=2 Sketch:

{H,n> 0, t= 0} 7→ {¬H, p?} go and deliver package{n> 0} 7→ {n↓} deliver package

• Width=1 Sketch:

{H,n> 0, t= 0} 7→ {¬H, p?} go and deliver package{¬H} 7→ {H} go and pick package

{H} 7→ {¬H,n↓} go and deliver package

Features: Holding (H); Dist. to nearest Pkg (p), Target (t); # Undeliv Pkgs (n)
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Syntax and Semantics of Sketch Rules

• Syntax: For Boolean and numerical features p and n:

. p, ¬p, n> 0, n= 0 can appear in C

. p, ¬p, n↑, n↓, n? can appear in E

• Semantics: State pair (s, s′) satisfies sketch rule C 7→ E if

. f(s) satisfies C

. (f(s), f(s′)) satisfies E

Syntax of sketches and policies the same, and so with semantics, except that (s, s′)
is not a 1-step state transition necessarily

Interpretation: When in state s, the set of subgoal states GR(s) to aim at is:

GR(s) = { s′ | (s, s′) satisfies sketch rule or s′ is goal }
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Sketch Width

• Sketch R splits problems P in Q into collection of subproblems P [s,GR(s)]:

. Initial state s: reachable state s in P

. (Sub) goal states GR(s) = { s′ | (s, s′) satisfies sketch rule or s′ is goal }

• Width of sketch R over Q = maxs,P∈Q width(P [s,GR(s)])

. for definition in presence of dead-ends, see refs

Theorem: Any P in Q is solvable in O(b ·N |Φ|+2k−1) time by SIWR algorithm if
sketch R is terminating and has width over Q bounded by k [B. and G., 2021]

. N : Number of atoms in problem P ; Φ: Set of features in sketch

SIWR is like SIW but subgoal to achieve next given by sketch

. SIW is SIWR with sketch R with single rule: {#g > 0} 7→ {#g↓}
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Another Example: IPC Grid [Drexler et al., 2021]

This sketch is terminating and has width 1 for IPC domain Grid (pick and deliver
keys spread in grid where cells can be locked and opened with other keys):

• Sketch:

. r1 : {l > 0} 7→ {l↓, k?, o?, t?} (if locked cells, unlock them)

. r2 : {l = 0, k > 0} 7→ {k↓, o?, t?} (else, place keys in targets)

. r3 : {l > 0,¬o} 7→ {o, t?} (if locked cells, pick key to open locked cell)

. r4 : {l = 0,¬t} 7→ {o?, t} (if all locks open and misplaced keys, pick up such key)

• Features:

. l is the number of unlocked grid cells

. k is the number of misplaced keys

. o is true iff robot holds key for which there is a closed lock

. t is true iff robot holds key that must be placed at some target grid cell
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Preview: Learning Sketches [Drexler et al., 2022]

Given a known domain D, training instances P1, . . . , Pn, and non-negative
integer k, find simplest sketch R over a pool of features F such that

• Subproblems induced by R on each Pi have all width bounded by k,

• Sketch R is terminating

Possibly first approach for learning subgoal structure based on crisp principles

Many threads that come together:

• Planning width

• Language of general policies

• Termination notion from QNPs

• Semantics of sketches
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Exercise: Test Your Knowledge! (Not trivial)

In the 1985 AIJ paper, Macro-Operators: A Weak Method for Learning, Rich Korf
provides macro-tables for puzzles like Rubik Cube, 8-puzzle, and other hard puzzles
that encode policies π(s) for solving them from any initial state

• Can these compact policies be replaced by even more compact sketches of
bounded width?

• Can these sketches be general? That is, applicable to Rubik cubes and n-sliding
puzzles of different sizes?

• Can such sketches be learned with current method? Expressivity? Scalability?
Other methods?
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Background 2:

Qualitative Numerical Planning Problems (QNPs)
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Language for QNPs

• Language for planning involving propositional and numerical variables

• QNPs [Srivastava et al. 2011] different than numerical planning:

. Numerical vars in QNPs are non-negative, real-valued

. Effects on numerical variables: just qualitative increments/decrements

. Numerical literals: whether variable is zero or positive only

• These differences make plan-existence for QNPs decidable

• QNPs provide language for general policies and sketches:

. QNP actions similar to policy/sketch rules but features replaced by variables

• We follow [B. and G., 2020b]
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Syntax for QNPs

A qualitative numerical problem (QNP) is tuple Q = 〈F, V, I, O,G〉:
• F and V are sets of propositional and numerical variables (not features!)

• I and G denote initial and goal states

• O: actions a with precs, and prop. and numeric effects Pre(a), Eff (a), N(a):

. F -literals may appear in I, G, Pre(a) and Eff (a)

. V -literals may appear in I, G and Pre(a)

. N(a) can only have expressions of the form X↑ and X↓ for var X in V

• V -literal is either X = 0 or X > 0 for variable X in V

• Example: QNP Qclear = 〈{H}, {n}, I, O,G〉
. I = {n> 0,¬H}
. G = {n= 0}
. O = {a, b} where a = {¬H,n> 0} 7→ {H,n↓} and b = {H} 7→ {¬H}

• QNP actions like policy rules above but H and n not features but variables
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Semantics and Solutions of QNPs

• Policy π for a QNP is partial map from state s into actions such that:

. π(s) = π(s′) if s and s′ qualitatively similar: same F and V true literals

• π solves QNP if all maximal QNP-fair π-trajectories reach the goal

. QNP fairness: trajectory unfair if numerical variable decremented infinite
number of times and incremented finite number of times.

Theorem [Srivastava et al., 2011]: π solves QNP Q iff π is strong cyclic solution of
the FOND problem TD(Q) obtained from Q that terminates

– TD(Q) replaces numerical X by Boolean variable “X>0” (“X=0” is negative literal)

– Qualitative effects X↑ replaced by effect X>0

– Qualitative effects X↓ replaced by non-deterministic effect “X>0 |X=0”

– Strong-cyclic: every reachable state is connected to goal state by π

Polytime reduction from QNPs to FOND, but more complex than TD [B. and G.,2020b]
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Termination, Sieve Algorithm [Srivastava et al., 2011]

Policy for QNP Q terminates if no infinite QNP-fair π-trajectories

Sieve provides sound and complete polynomial termination test

• State s terminates if either

. there is no cycle on state s, or

. every cycle on s contains a state s′ that terminates, or

. π(s) decrements a variable X, and every cycle on s that contains a state s′

such that π(s′) increments X, contains another state s′′ that terminates

• Policy π terminates iff every state reached by π terminates

Recent FOND+ planner handles strong FOND, strong cyclic FOND, QNPs, and
hybrids by stating fairness assumptions explicitly [Rodriguez et al. 2021b]
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Part III: Learning Dynamics, Policies, Sketches

• Learning action models:

Given graphs G1, . . . , Gk, find simplest instances Pi = 〈D, Ii〉 such that graphs Gi

and G(Pi) are isomorphic, i = 1, . . . , k.

• Learning general policies:

Given known domain D, training instances P1, . . . , Pk, over D, and finite pool of
domain features F , each with a cost, find the cheapest policy π over F such that π

solves all Pi, i = 1, . . . , k

• Learning sketches:

Given known domain D, training instances P1, . . . , Pn, and non-negative integer k,

find simplest sketch R over a pool of features F such that

. Subproblems induced by R on each Pi have all width bounded by k,

. Sketch R is terminating
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Learning Action Models: Encoding [Rodriguez et al., 2021a]

• Construct answer set program, bounding number of objects, preds, and action/pred. arities:

. Given G1, . . . , Gn as input graphs over black-box states, with edge labels,

. Check whether there is STRIPS model D and instances I1, . . . , In such that graphs G(Pi)

and Gi are isomorphic, i = 1, . . . , n, where Pi = 〈D, Ii〉
. Optimize: sum of action and predicate arities, etc

• (Basic) choice variables:

. Lifted atom is pair (P,T) where P is int and T is tuple of ints

. prec(A,(P,T),V) and eff(A,(P,T),V) (lifted atoms in precs/effects)

. p arity(P,N) and a arity(A,N) (arities for predicate and action)

. val(S,(P,O),V) where O is tuple of objs and V is 0/1 (value of ground atoms at states)

. appl(A,O,S) and next(A,O,S,T) (ground action A(O) appl/assigned to (S,T))

• (Basic) constraints:

. :- state(S), state(T), S < T, val(T,(P,O),V) : val(S,(P,O),V). (diff. states)

. { next(A,O,S,T) : label((S,T),A)} = 1 :- appl(A,O,S). (assign edges to actions)

. :- state(S), action(A), N ={ label((S,T),A)}, { appl(A,O,S)} != N. (matching)

. Compliance of precs/effects of assigned grounded actions to edges

• Clingo program ∼ 400 lines [Rodriguez et al. 2021a]; more complex in SAT [B. and G., 2020a]
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Learning General Policies: Encoding [Francès et al., 2021]

• Input is set of transitions S from small instances, pool of features F , parameter (int) δ

• Output is policy: rules obtained from selected features and (“good”) transitions

• Combinatorial opt. task T (S,F, δ): Solve constraints minimizing feature complexity

• Choice variables:

. select(F) (features that define rules)

. good(S,T) (transition (S,T) is “compatible” with policy)

. V(S,N) (distance from S to goal is N)

• Constraints:

. 1 { good(S,T)} :- state(S), not terminal(S). (good transitions at non-terminals)

. :- good(S,T), deadend(T). (no good tr. reaches dead-end T)

. 1 { select(F) : diff(F,S,T)} :- goal(S), not goal(T). (distinguish goals)

. { V(S,D) :V ∗(S) ≤ D ≤ δV ∗(S)} = 1 :- state(S). (set distances)

. :- good(S,T), V(S,D1), V(T,D2), D1 <= D2. (distances avoid cycles)

. 1 { select(F) : diff(F,S1,T1,S2,T2)} :- good(S1,T1), not good(S2,T2).

asdasa (distinguish good/bad transitions)

where diff/3 and diff/5 computed from pool at pre-processing
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Learning General Sketches: Encoding [Drexler et al., 2022]

• Input: transitions S in small instances, pool F , width bound k, max # sketch rules m

• Output: sketch of width ≤ k, acyclic in given instances, with up to m rules

• Combinatorial opt. task T (S,F, k,m): solve constraints min complexity of selected features

• (Basic) variables:

. rule(I) (sketch rule I)

. select(F) (features that define sketch rules)

. cond(I,F,V) and eff(I,F,E) (conditions and effects for rule I)

. subgoal(S,T) (tuple T of width k is subgoal for S)

. (Implied) subgoal(S1,T,S2) (subgoal T for S1 may lead to S2)

. (Implied) satis(S1,S2,I) (pair (S1,S2) satisfies rule I)

• (Basic) constraints:

. Well formed rules: atoms cond/3 and eff/3 are consistent and imply select(F)

. 1 { subgoal(S,T) : tuple(T)} :- state(S), not goal(S). (width k subgoal for S)

. subgoal(S1,T,S2) :- subgoal(S1,T), found(S1,T,S2). (subgoal T may lead to S2)

. :- subgoal(S1,T,S2), not satis(S1,S2,I) : rule(I). ((S1,S2) satisfies some rule)

. :- satis(S1,S2,I), not subgoal(S1,T) :d(S1, T)<d(S1, S2). (dead-end S2 is farther)

. :- satis(S1,S2,I), not subgoal(S1,T) :d(S1, T)≤d(S1, S2). (subgoals optimal)

. Collection of rules is terminating (approx’ed by testing acyclicity)
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About the Pool of Features F [B. et al., 2019]

• Description logic grammar allows generation of concepts and roles from domain predicates

• Complexity of concept/role given by size of its syntax tree

• Pool F obtained from concepts of complexity bounded by parameter

• Denotation of concept C in state s is subset of objects

• Each concept C defines num and Bool features nC(s) = |C(s)|; pC(s)=> iff |C(s)| > 0

• Grammar:

. Primitive: Cp given by unary predicates p and unary “goal predicates” pG

. Universal: Cu contains all objects

. Nominals: Ca = {a} for constants/parameter a

. Negation: ¬C contains Cu \ C

. Intersection: C u C ′

. Quantified: ∃R.C={x : ∃y[R(x, y) ∧ C(y)]} and ∀R.C={x : ∀y[R(x, y) ∧ C(y)]}

. Roles (for binary predicate p): Rp, R−1
p , R+

p , and [R−1
p ]+

• Additional distance features dist(C1, R, C2) for conceptsC1 andC2 and roleR that evaluates

to d in state s iff minimum R-distance between object in C1 to object in C2 is d
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General Policies By Deep Learning [St̊ahlberg et al., 2022a,b]

• Exploits correspondence between graph neural networks (GNNs) and two-
variable logic C2 to learn policy without requiring pool of C2 features F

• Value function V learned that yields general policy πV greedy in V

• For generalization, based on GNN arch. for MaxCSP(Γ) [Toenshoff et al., 2021]

. Input given by the states s extended with “goal predicates” pG

. Output V (s) is non-linear aggregation of object embeddings

. Loss: |V ∗(s)− V (s)| for supervised learning of optimal policies

. Loss: max{0, [1 + mins′∈N(s) V (s′)]− V (s)} unsupervised/non-optimal

• Nearly as good as policies based on explicit pool F of C2 features

• Complexity of “latent features” not explicitly bounded
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GNN Architecture [St̊ahlberg et al., 2022a,b]

generalized planning can be understood by comparing (4)
with the linear value functions (3) used by Francès, Corrêa,
Geissmann, and Pommerening (2019) in combination with
description logic features. These Boolean and numerical
features bq(s) and nq(s) are defined in terms of derived
unary predicates q, where bq(s) = 1 (true) if there is an ob-
ject o such that q(o) is true in s, otherwise 0; and nq(s) = m
is the number of objects o for which q(o) is true in s. Clearly,
if the feature vectors �(oi) in (4) contain a bit encoding
whether q(o) is true in s, then the readout function F would
just need to take the max and the sum of the bits q(o) as

bq(s) = max
o

q(o) , (5)

nq(s) =
X

o

q(o) , (6)

in order to capture such features, where the objects o range
over all the objects o in the instance. In other words, the
object-embedding form (4) is no less expressive than the lin-
ear form that uses description logic features, provided that
the feature vectors �(o) are expressive enough to represent
the bits qi(o) for unary predicates qi derived from the do-
main predicates using the description logic grammar. This in
turn is known to be within the capabilities of standard, mes-
sage passing GNNs, that can capture the properties that can
be expressed in the guarded fragment of the variable logic
with counting C2, which includes the standard description
logics (Barceló et al., 2020).

Below we follow the terminology of graph neural net-
works and refer to graphs and not states, and to vertex em-
beddings f(v) and not object embeddings �(o). After con-
sidering standard GNNs for undirected graphs, we intro-
duce the generalization needed for dealing with the rela-
tional structures represented by planning states.

6.2 GNNs on Graphs
GNNs represent trainable, parametric, and generalizable
functions over graphs (Scarselli et al., 2008; Hamilton,
2020) specified by means of aggregate and combination
functions aggi and combi, and a readout function F . For
each vertex v of the input graph G, the GNN maintains
a state (vector) fi(v) 2 Rk, the vertex embedding, i =
0, . . . , L, where L is the number of iterations or layers. The
vertex embeddings f0(v) are fixed and the embeddings fi+1

for all v are computed from the fi embeddings as:

fi+1(v) := combi

�
fi(v), aggi

�
{{fi(w)|w2NG(v)}}

��
(7)

where NG(v) is the set of neighbors for vertex v in G, and
{{. . .}} denotes a multiset. In words, the embeddings fi+1(v)
at iteration i + 1 are obtained by combining the aggrega-
tion of neighbors’ embeddings fi(w) at iteration i with v’s
own embeddings fi(v). This process is usually seen as an
exchange of messages among neighbor nodes in the graph.
The aggregation functions aggi map arbitrary collections of
real vectors of dimension k into a single Rk vector. Com-
mon aggregation functions are sum, max, and smooth-max
(a smooth approximation of the max function). The combi-
nation functions combi map pairs of Rk vectors into a single

Algorithm 1: GNN maps state s into scalar V (s)

Input: State s: set of atoms true in s, set of objects
Output: V(s)

1 f0(o) ⇠ 0k/2N (0, 1)k/2 for each object o 2 s;
2 for i 2 {0, . . . , L � 1} do
3 for each atom q := p(o1, . . . , om) true in s do

// Msgs q ! o for each o = oj in q
4 mq,o := [MLPp(fi(o1), . . . , fi(om))]j ;
5 for each o in s do

// Aggregate, update embeddings
6 fi+1(o) :=MLPU

�
fi(o), agg({{mq,o|o 2 q}})

�
;

// Final Readout
7 V := MLP2

�P
o2s MLP1(fL(o))

�

Rk vector. The embeddings fL(v) in the last layer are aggre-
gated and mapped into the output of the GNN by means of a
readout function F . In our setting, the output will be a scalar
V , and the aggregation and combination functions aggi and
combi will be homogeneous and not depend on the layer in-
dex i. All the functions are parametrized with weights that
are adjusted by minimizing a suitable loss function. By de-
sign, the function computed by a GNN is invariant with re-
spect to graph isomorphisms, and once a GNN is trained, its
output is well defined for any graph G regardless size.

6.3 GNNs for Planning States
States s in planning do not represent graphs but more gen-
eral relational structures that are defined by the set objects,
the set of domain predicates, and the atoms p(o1, . . . , om)
that are true in the state: the objects define the universe,
the domain predicates, the relations, and the atoms, their
denotations. The set of predicate symbols p and their ari-
ties are fixed by the domain, but the sets of objects oi may
change from instance to instance. The adaptation of the ba-
sic GNN architecture for dealing with planning states s fol-
lows (Ståhlberg et al., 2022), which is an elaboration of the
architecture for learning to solve Max-CSP problems over
a fixed class of binary relations introduced by Toenshoff,
Ritzert, Wolf, and Grohe (2021). The new GNN still main-
tains just the object embeddings fi(o) for each of the objects
o in the input state s, i = 0, . . . , L, but now rather than mes-
sages flowing from “neighbor” objects to objects as in (7),
the messages flow from objects oi to the true atoms q in s
that include oi, q = p(o1, . . . , om), 1  i  m, and from
such atoms q to all the objects oj involved in q as:

fi+1(o) := combU

�
fi(o), agg

�
{{mq,o|o 2 q, q 2 s}}

��
(8)

where mq,o for q = p(o1, . . . , om) and o = oj is:

mq,o := [combp(fi(o1), . . . , fi(om))]j . (9)

In these updates, the combination function combU takes the
concatenation of two real vectors of size k and outputs a
vector of size k, while the combination function combp, that
depends on the predicate symbol p, takes the concatenation
of m vectors of size k, where m is the arity of p, and outputs
m vectors of size k as well, one for each object involved in
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Wrap Up: Representation Learning for Acting and Planning

• Background 1: Classical planning, planning width

• Languages for

. representing general dynamics

. representing general policies

. representing general subgoal structures (sketches; ‘intrinsic rewards”)

• Background 2: Qualitative numerical planning problems (QNPs)

• Learning representations over these languages:

. learning general dynamics

. learning general policies

. learning general subgoal structures

• Wrap up; Challenges
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Wrap Up

• To learn representations that generalize due to structure, don’t play with low-level
neural architecture; choose suitable (domain-independent) target language and
learn representations over it:

. generalization

. transparency

. powerful, meaningful bias

. distinction between what and how

• Examples of learning language-based representations to act and plan:

. general action dynamics

. general policies

. general subgoal structures (sketches)
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Challenges: Language-based Representation Learning

• Scalability of combinatorial optimization approaches

• Use of deep learning (learning lifted dynamics, policies, sketches).

• Alternative target languages for learning (e.g., vs. lifted STRIPS)

• Continuous domains, space, time

• Stochastic and non-deterministic domains

• States in the input: black-box, parsed images, images, videos

• Grounded vs. ungrounded representations

• Learning and reusing “skills”, hierarchies

• . . .

https://www.dtic.upf.edu/∼hgeffner/tutorial-2022.pdf

Plenty to do; if seriously interested, reach us
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