
Planning under Partial Observability by Classical Replanning:
Theory and Experiments
Blai Boneta and Héctor Geffnerb,c

aUniversidad Simón Bolívar, Caracas (Venezuela), bUniversitat Pompeu Fabra, Barcelona (Spain), cInstitució Catalana de Recerca i Estudis Avançats, Barcelona (Spain)

Problem
Solve: planning problems with partial observability

Difficulties
� tracking belief states instead of states
� search for policy trees instead of linear plans

Options
� better belief representations and heuristics
� restrictions that permit more efficient solution methods

Contribution:
� framework for planning for partial observability that spells these re-

strictions and exploits efficient classical planning methods

Related Work and Ideas
� Freespace assumption [Koenig, 2005]
� Preferred values of variables [Likhachev & Stentz, 2009]
� Safe assumptions in LTL checking [Albore & Bertoli, 2006]
� Model knowledge at propositional level [Petrick & Bacchus, 2002]
� Compilation [Palacios & Geffner, 2009; Albore et al., 2009]
� Planning under optimism and optimism in the face of uncertainty

Language and Restrictions
Extension of STRIPS with conditional effects, negation, uncertain initial
situation, and sensing. A problem is tuple P = 〈F,O, I,G,M〉 where

� F is set of fluent symbols
� O is set of actions; each action a has precondition and conditional ef-

fects of the form a : C → L

� I is set of F -clauses defining initial situation
� G is set of F -literals defining the goal
� M is set of sensors (C,L): if C becomes true, value of L is observed

Restrictions: Simple Partially Observable Problems
� non-unary clauses in I are invariant
� no hidden fluent appears in the body of a conditional effect

Theorem: reachable beliefs b for simple problems represented by just the
literals true in b + invariants

Translation into Classical Planning
For simple problem P = 〈F,O, I,G,M〉, the translation K(P ) is classical
problem K(P ) = 〈F ′, O′, I ′, G′〉 where

� F ′ = {KL,K¬L : L ∈ F} (knowledge literals)
� I ′ = {KL : I |= L}
� G′ = {KL : L ∈ G}
� O′ = Osup ∪Ocan ∪Oinv ∪Osen where

– Osup = {a : KC → KL : a : C → L ∈ O} (supports)
– Ocan = {a : ¬K¬C → ¬KL : a : C → L ∈ O} (cancellations)
– Oinv = {KC → KL : ¬C ∨ L ∈ I} (invariants)
– Osen = {A(C,L), A(C,¬L) : sensor (C,L) ∈M} (assumptions)

where A(C,L) is action w/ precondition KC,¬KL,¬K¬L and effect KL
(Note: for C = L1 ∧ L2 · · · , KC = KL1 ∧KL2 · · · and ¬K¬C = ¬K¬L1 ∧ ¬K¬L2 · · · )

Translation K(P )[s]

For knowledge state s, K(P )[s] is equal to K(P ) with I ′ = s

� A sensor (C,L) gets activated in a plan for K(P )[s] when it makes
KC true when KL and K¬L are false

� A plan for K(P )[s] always activates a sensor or achieves goal

K-Replanner
1. Let s be the initial state in K(P )
2. While s is not a goal in K(P ) do
3. Compute classical plan π for classical problem K(P )[s]
4. Set π′ := executable prefix of π
5. Set s′ := result of applying π′ to K(P )[s]
6. Add observations to s′ and close s′ with invariants
7. Set s := s′

� The executable prefix of π is shortest prefix of π that achieves goal or
activates a sensor

� Optimized to shortest prefix that achieves goal or yields observation
¬L that refutes an action-assumption A(C,L) in the rest of the plan

Theorem (Soundness): for simple problems P , if the K-Replanner
terminates, it terminates in a goal state of P

Theorem (Completeness): if P is a simple problem with a connected
space and the non-unary clauses in I are in prime implicate form, then
the K-Replanner is guaranteed to terminate in a goal state of P

Examples and Results

R

B

G

W

colored-balls kill-wumpus trail

Benchmark
� freespace: the agent needs to reach a final position by moving through un-

known terrain. Each cell of the grid is either blocked or clear. As the agent
moves, it senses the status of adjacent cells.

� doors: the agent moves in a grid to reach a final position, yet it has to cross
doors whose positions are only partially known.

� wumpus: the agent moves in a grid, with deadly wumpuses. to reach a goal
position. As the agent moves, it smells the stench of nearby wumpuses.

� kill-wumpus: a variation of the above in which the agent must locate and kill
the single wumpus in the grid.

� colored-balls: the agent navigates a grid to pick up and deliver balls of differ-
ent colors. The positions and colors of the balls are unknown, but when the
agent is at a position, he observes if there are balls, and if so, their colors.

� trail: the agent must follow a trail of stones til the end. The shape and length
of the trail are not known. The agent cannot get off trail but can observe the
presence of stones in adjancent cells.

K-Replanner using FF

domain #inst. #solved avg. length avg. #calls avg. srch. time

freespace 140 134 26.49 8.31 8.02
doors 90 69 132.96 85.17 11.98
wumpus 70 70 34.60 2.39 1.11
kill-wumpus 30 30 49.20 31.10 1.92
colored-balls 75 26 115.81 27.54 26.51
trail 140 133 22.77 8.18 7.54

K-Replanner using Mp on colored-balls

instance #states length #calls srch. time total time

9×9-15balls-#2 3.68e39 298 65 190.4 428.9
9×9-15balls-#4 3.68e39 369 73 816.1 1,164.8
9×9-16balls-#1 1.19e42 283 64 454.9 743.6
9×9-16balls-#2 1.19e42 293 71 554.7 998.8
9×9-17balls-#2 3.87e44 339 69 721.7 1,082.2
9×9-18balls-#4 1.25e47 406 69 533.6 857.0

1


