An Admissible Heuristic for SAS⁺ Planning Obtained from the State Equation

Blai Bonet

IJCAI. Beijing, China. August 2013.

Introduction

Domain-independent optimal planning $= A^* + heuristic$

Most important heuristics are based on (Helmert & Domshlak, 2009):

- delete relaxation: hmax, FF, etc.
- abstractions: PDBs, structural patterns, M&S, etc.
- critical-path heuristics: h^m
- landmark heuristics: LA, LM-cut, etc

We present a new admissible heuristic that

- doesn't belong to such classes; in particular, isn't bounded by h^+
- it is competitive with LM-cut on some domains
- it offers a new framework for further enhancements

Reached Limit of Delete-Relaxation

Claim: we have reached the limit of delete-relaxation heuristics for optimal planning

Justifications:

- computing h^+ is NP-hard
- LM-cut approximates h^+ very well; on some domains, LM-cut = h^+
- LM-cut is the best known heuristic (since 2009)
- known strenghtenings on LM-cut show marginal improvements and aren't cost effective

Need to go beyond the delete-relaxation!

Abstractions and Critical Paths

Abstraction and critical-path heuristics are not bounded by h^+

Have the potential to dominate others (Helmert & Domshlak, 2009)

This potential has not been met by methods such as

- structural patterns
- Merge-and-shrink (M&S)
- h^m for small m = 1, 2
- M&S based on bisimulations

•

 semi-relaxed heuristics don't yet perform well for optimal planning (Keyder, Hoffmann & Haslum, 2012)

SAS⁺

A SAS⁺ planning task is tuple $P = \langle V, A, s_{init}, s_G, c \rangle$ where

- V is a finite set of variables X with finite domains D_X
- A is a finite set of actions, each action a given by
 - precondition pre(a) (partial valuation)
 - postcondition post(a) (partial valuation)
- *s*_{init} is a initial state (complete valuation)
- s_G is a goal description (partial valuation)
- $c: A \to \mathbb{N}$ is action costs

Fluents or atoms for P are 'X = x' for $X \in V$, $x \in D_X$

A prevail condition for action a is an atom X=x in pre(a) such that $X=x^\prime$ does not appear in post(a)

Contribution

New admissible heuristic h^{SEQ} for optimal planning:

- it is not bounded (a priori) by h^+
- it is computed by solving an LP problem for each state \boldsymbol{s}
- show how the base heuristic can be improved in different ways
- empirical comparison of heuristic across large number of benchmarks

AFAIK, idea was first suggested by Patrik Haslum during a tutorial on Petri Nets in ICAPS-2009

van den Briel et al. (2007) proposed a similar LP-based heuristic

Flows

The heuristic tracks the **flow** (presence) of fluents across the application of actions in potential plans

If p is a **goal** fluent that is **not** initially true, then

times is "produced" - # times is "consumed" > 0

in any plan that solves the task

- fluent p is **produced by action** a if it is added or is prevail
- fluent p is consumed by action a if it is deleted or is prevail

- $P = \{p_1, p_2, \dots, p_m\}$ is set of places
- $T = \{t_1, t_2, \dots, t_n\}$ is set of transitions
- $F \subseteq (P \times T) \cup (T \times P)$ is flow relation
- $W: F \to \mathbb{N}$ tells how many items flow in each arc of F
- $M_0: P \to \mathbb{N}$ is initial marking

- $P = \{p_1, p_2, \dots, p_m\}$ is set of places
- $T = \{t_1, t_2, \dots, t_n\}$ is set of transitions
- $F \subseteq (P \times T) \cup (T \times P)$ is flow relation
- $W:F\to \mathbb{N}$ tells how many items flow in each arc of F
- $M_0: P \to \mathbb{N}$ is initial marking

- $P = \{p_1, p_2, \dots, p_m\}$ is set of places
- $T = \{t_1, t_2, \dots, t_n\}$ is set of transitions
- $F \subseteq (P \times T) \cup (T \times P)$ is flow relation
- $W:F\to \mathbb{N}$ tells how many items flow in each arc of F
- $M_0: P \to \mathbb{N}$ is initial marking

- $P = \{p_1, p_2, \dots, p_m\}$ is set of places
- $T = \{t_1, t_2, \dots, t_n\}$ is set of transitions
- $F \subseteq (P \times T) \cup (T \times P)$ is flow relation
- $W: F \to \mathbb{N}$ tells how many items flow in each arc of F
- $M_0: P \to \mathbb{N}$ is initial marking

State Equation

Incidence matrix A is $n \times m$ (transitions as rows, places as cols) with entries $a_{ij} = W(t_i, p_j) - W(p_j, t_i)$

 $a_{i,j}$ = "net change in number of tokens at p_j caused by firing t_i "

If when at marking M transition t_i fires, the result is marking M' where $M'(p_j)=M(p_j)+a_{i,j}$ for every j

If when at marking M sequence $\sigma = u_1 \cdots u_\ell$ fires, the result is

$$M' = M + A^T \sum_{k=1}^{\ell} u_k = M + A^T u$$

where u_k is an indicator vector whose *i*-th entry is 1 iff $u_k = t_i$

The vector $u = \sum_{k=1}^{\ell} u_k$ is called a **firing-count** vector

From SAS⁺ to Petri Nets

 SAS^+ problem $P = \langle V, A, s_{init}, s_G, c \rangle$

 SAS^+ atoms are of the form 'X = x' for variable X and $x \in D_X$

 P/T net associated with problem P is $PN = \langle P, T, F, W, M_0 \rangle$ where

- places are atoms and transitions are actions
- F contains:

-
$$(X = x, a)$$
 if $pre(a)[X] = x$ (include prevails $X = x$)
- $(a, X = x)$ if $post(a)[X] = x$ or $X = x$ is prevail

- W assigns 1 to each arc in F
- M_0 is marking $M_{s_{init}}$ associated with state s_{init}

Def: for state s, marking M_s is s.t. $M_s(X = x) = 1$ iff s[X] = x

Necessary Conditions for Plan Existence

Reachable markings are not in 1-1 correspondence to reachable states

Theorem

Plan π is applicable at s_{init} only if π is a firing sequence at M_0 . If π reaches state s, then π reaches a marking M that covers M_s (i.e., $M_s \leq M$).

Let π be a plan for P; i.e., it reaches a goal state from s_{init} . Then,

$$A^T u_{\pi} = M_{\pi} - M_0 \geq M_s - M_0 \geq M_{s_G} - M_0$$

where u_{π} is firing-count vector for π and M_{π} is marking reached by π

SEQ Heuristic

 h^{SEQ} assigns to state s the value $\lceil c^T x^* \rceil$ where x^* is solution of

if LP is feasible, and ∞ if not. The case of unbounded solutions is not possible.

Theorem

 h^{SEQ} is an admissible heuristic for SAS⁺ planning.

Features of Heuristic

Strenghts:

- It can account for multiple applications of same action
- It is easy to improve by adding additional constraints

Weaknesses:

- Need to solve an LP for each state encountered during search
- Prevail conditions don't play an active role as they have zero net change

Improvements

Paper proposes three ways to improve the heuristic h^{SEQ}

- **Reformulations:** extend goal with fluents *p* that must hold concurrently with *G*. E.g., it happens in airport where coverage increases by 72.7% from 22 to 38 problems.
- Safeness information: promote inequalities ≥ to equalities in LP. It can be done for atoms in a safe set S: p ∈ S implies M(p) ≤ 1 for each reachable marking M. Safe sets S can computed directly at the planning problem.
- Landmarks: if $L = \{a_1, a_2, \dots, a_k\}$ is an action landmark, then can add the constraint

$$x(a_1) + x(a_2) + \dots + x(a_k) \ge 1$$

Experimental Results – Coverage I

Domain	h^{LM-cut}	$h_{\rm ours}^{\rm LM-cut}$	h^{LA}	$h^{M\&S}$	HSP_F^*	h^{SEQ}	h_{safe}^{SEQ}
Airport (50)	38	35	24	16	15	22	23
Blocks (35)	28	28	20	18	30	28	28
Depot (22)	7	7	7	7	4	6	6
Driverlog (20)	14	14	14	12	9	11	11
Freecell (80)	15	15	28	15	20	30	30
Grid (5)	2	2	2	2	0	2	2
Gripper (20)	6	6	6	7	6	7	7
Logistics-2000 (28)	20	20	20	16	16	16	16
Logistics-1998 (35)	6	6	5	4	3	3	3
Miconic-STRIPS (150)	140	140	140	54	45	50	50
MPrime (35)	25	24	21	21	8	21	21
Mystery (19)	17	17	15	14	9	15	15
Openstacks-STRIPS (30)	7	7	7	7	7	7	7
Pathways (30)	5	5	4	3	4	4	4
Pipesworld-no-tankage (50)	17	17	17	20	13	15	15
Pipesworld-tankage (50)	11	11	9	13	7	9	9
PSR-small (50)	49	49	48	50	50	50	50
Rovers (40)	7	7	6	6	6	6	6
Satellite (36)	8	9	7	6	5	6	6
TPP (30)	6	6	6	6	5	8	8
Trucks (30)	10	9	7	6	9	10	10
Zenotravel (20)	12	12	9	11	8	9	9
Airport-modified (50)	na	36	na	na	na	38	38
Total (w/o Airport-modified)	450	446	422	314	279	335	336

Experimental Results – Coverage II

Domain	$h_{\rm ours}^{\rm LM-cut}$	h^{SEQ}	h_{safe}^{SEQ}
Elevators-08-STRIPS (30)	19	9	9
Openstacks-08-STRIPS (30)	19	16	16
Parcprinter-08-STRIPS (30)	22	28	28
Pegsol-08-STRIPS (30)	27	26	27
Scanalyzer-08-STRIPS (30)	15	12	12
Sokoban-08-STRIPS (30)	28	17	17
Transport-08-STRIPS (30)	11	9	9
Woodworking-08-STRIPS (30)	15	12	12
Total	156	129	130

Domains from IPC-08 that involve actions with different costs

Experimental Results – Time on All Domains

Experimental Results – Time on Selected Domains

Domains with at least 20 instances solved by the two heuristics

Experimental Results – Expansions on All Domains

Conclusions & Future Work

- Defined a new heuristic that is not bounded by $h^{\!+}$
- Vanilla flavor of heuristic is competitive with state-of-the-art heuristics on some domains
- Heuristic can be further improved; some proposals put on the table but need to be tested
- Interestingly, solving an LP for each node is not as bad as it sounds

Future work:

- Add constraints from landmarks
- Try dealing with prevail conditions by using **duplication**: if p is prevail for some action a, introduce two 'copies' of p, p and p', such that a consumes p and produces p'

Thanks. Questions?