An Admissible Heuristic for SAS$^+$ Planning Obtained from the State Equation

Blai Bonet

IJCAI. Beijing, China. August 2013.
Introduction

Domain-independent optimal planning $= A^* + \text{heuristic}$

Most important heuristics are based on (Helmert & Domshlak, 2009):
- delete relaxation: h_{max}, FF, etc.
- abstractions: PDBs, structural patterns, M&S, etc.
- critical-path heuristics: h^m
- landmark heuristics: LA, LM-cut, etc

We present a new admissible heuristic that
- doesn’t belong to such classes; in particular, isn’t bounded by h^+
- it is competitive with LM-cut on some domains
- it offers a new framework for further enhancements
Claim: we have reached the limit of delete-relaxation heuristics for optimal planning

Justifications:

- computing h^+ is NP-hard
- LM-cut approximates h^+ very well; on some domains, LM-cut = h^+
- LM-cut is the best known heuristic (since 2009)
- known strenghtenings on LM-cut show marginal improvements and aren’t cost effective

Need to go beyond the delete-relaxation!
Abstractions and Critical Paths

Abstraction and critical-path heuristics are not bounded by h^+

Have the potential to dominate others (Helmert & Domshlak, 2009)

This potential has not been met by methods such as

- structural patterns
- Merge-and-shrink (M&S)
- h^m for small $m = 1, 2$
- M&S based on bisimulations
-
- semi-relaxed heuristics don’t yet perform well for optimal planning (Keyder, Hoffmann & Haslum, 2012)
A \textit{SAS}^+ planning task is tuple $P = \langle V, A, s_{\text{init}}, s_G, c \rangle$ where

- V is a finite set of variables X with finite domains D_X
- A is a finite set of actions, each action a given by
 - precondition $\text{pre}(a)$ (partial valuation)
 - postcondition $\text{post}(a)$ (partial valuation)
- s_{init} is a initial state (complete valuation)
- s_G is a goal description (partial valuation)
- $c : A \rightarrow \mathbb{N}$ is action costs

Fluents or atoms for P are $X = x$ for $X \in V$, $x \in D_X$

A prevail condition for action a is an atom $X = x$ in $\text{pre}(a)$ such that $X = x'$ does not appear in $\text{post}(a)$
Contribution

New admissible heuristic h^{SEQ} for optimal planning:

- it is not bounded (a priori) by h^+
- it is computed by solving an LP problem for each state s
- show how the base heuristic can be improved in different ways
- empirical comparison of heuristic across large number of benchmarks

AFAIK, idea was first suggested by Patrik Haslum during a tutorial on Petri Nets in ICAPS-2009

van den Briel et al. (2007) proposed a similar LP-based heuristic
The heuristic tracks the flow (presence) of fluents across the application of actions in potential plans if \(p \) is a goal fluent that is not initially true, then

\[
\text{ times is "produced"} - # \text{ times is "consumed"} > 0
\]

in any plan that solves the task

- fluent \(p \) is produced by action \(a \) if it is added or is prevail
- fluent \(p \) is consumed by action \(a \) if it is deleted or is prevail
A P/T net is tuple $PN = \langle P, T, F, W, M_0 \rangle$ where

- $P = \{p_1, p_2, \ldots, p_m\}$ is set of places
- $T = \{t_1, t_2, \ldots, t_n\}$ is set of transitions
- $F \subseteq (P \times T) \cup (T \times P)$ is flow relation
- $W : F \to \mathbb{N}$ tells how many items flow in each arc of F
- $M_0 : P \to \mathbb{N}$ is initial marking
A P/T net is tuple $PN = \langle P, T, F, W, M_0 \rangle$ where

- $P = \{p_1, p_2, \ldots, p_m\}$ is set of places
- $T = \{t_1, t_2, \ldots, t_n\}$ is set of transitions
- $F \subseteq (P \times T) \cup (T \times P)$ is flow relation
- $W : F \rightarrow \mathbb{N}$ tells how many items flow in each arc of F
- $M_0 : P \rightarrow \mathbb{N}$ is initial marking
A P/T net is tuple $PN = \langle P, T, F, W, M_0 \rangle$ where

- $P = \{p_1, p_2, \ldots, p_m\}$ is set of places
- $T = \{t_1, t_2, \ldots, t_n\}$ is set of transitions
- $F \subseteq (P \times T) \cup (T \times P)$ is flow relation
- $W : F \rightarrow \mathbb{N}$ tells how many items flow in each arc of F
- $M_0 : P \rightarrow \mathbb{N}$ is initial marking
A P/T net is tuple $PN = \langle P, T, F, W, M_0 \rangle$ where

- $P = \{p_1, p_2, \ldots, p_m\}$ is set of places
- $T = \{t_1, t_2, \ldots, t_n\}$ is set of transitions
- $F \subseteq (P \times T) \cup (T \times P)$ is flow relation
- $W : F \rightarrow \mathbb{N}$ tells how many items flow in each arc of F
- $M_0 : P \rightarrow \mathbb{N}$ is initial marking
State Equation

Incidence matrix A is $n \times m$ (transitions as rows, places as cols) with entries $a_{ij} = W(t_i, p_j) - W(p_j, t_i)$

$a_{i,j} = \text{“net change in number of tokens at } p_j \text{ caused by firing } t_i\text{”}$

If when at marking M transition t_i fires, the result is marking M' where $M'(p_j) = M(p_j) + a_{i,j}$ for every j

If when at marking M sequence $\sigma = u_1 \cdots u_\ell$ fires, the result is

$$M' = M + A^T \sum_{k=1}^{\ell} u_k = M + A^T u$$

where u_k is an indicator vector whose i-th entry is 1 iff $u_k = t_i$

The vector $u = \sum_{k=1}^{\ell} u_k$ is called a **firing-count** vector
From SAS$^+$ to Petri Nets

SAS$^+$ problem $P = \langle V, A, s_{init}, s_G, c \rangle$

SAS$^+$ atoms are of the form ‘$X = x$’ for variable X and $x \in D_X$

P/T net associated with problem P is $PN = \langle P, T, F, W, M_0 \rangle$ where
- places are atoms and transitions are actions
- F contains:
 - $(X = x, a)$ if $pre(a)[X] = x$ (include prevails $X = x$)
 - $(a, X = x)$ if $post(a)[X] = x$ or $X = x$ is prevail
- W assigns 1 to each arc in F
- M_0 is marking $M_{s_{init}}$ associated with state s_{init}

Def: for state s, marking M_s is s.t. $M_s(X = x) = 1$ iff $s[X] = x$
Necessary Conditions for Plan Existence

Reachable markings are not in 1-1 correspondence to reachable states

Theorem

Plan π is applicable at s_{init} only if π is a firing sequence at M_0. If π reaches state s, then π reaches a marking M that covers M_s (i.e., $M_s \leq M$).

Let π be a plan for P; i.e., it reaches a goal state from s_{init}. Then,

$$A^T u_\pi = M_\pi - M_0 \geq M_s - M_0 \geq M_{sG} - M_0$$

where u_π is firing-count vector for π and M_π is marking reached by π
SEQ Heuristic

h^{SEQ} assigns to state s the value $\lceil c^T x^* \rceil$ where x^* is solution of

\[
\begin{align*}
\text{Minimize} & \quad c^T x \\
\text{subject to} & \quad A^T x \geq M_{sG} - M_s \\
& \quad x \geq 0,
\end{align*}
\]

if LP is feasible, and ∞ if not. The case of unbounded solutions is not possible.

Theorem

h^{SEQ} is an admissible heuristic for SAS$^+$ planning.
Features of Heuristic

Strengths:

• It can account for multiple applications of same action
• It is easy to improve by adding additional constraints

Weaknesses:

• Need to solve an LP for each state encountered during search
• Prevail conditions don’t play an active role as they have zero net change
Improvements

Paper proposes three ways to improve the heuristic h^{SEQ}

• **Reformulations:** extend goal with fluents p that must hold concurrently with G. E.g., it happens in airport where coverage increases by 72.7% from 22 to 38 problems.

• **Safeness information:** promote inequalities \geq to equalities in LP. It can be done for atoms in a safe set S: $p \in S$ implies $M(p) \leq 1$ for each reachable marking M. Safe sets S can computed directly at the planning problem.

• **Landmarks:** if $L = \{a_1, a_2, \ldots, a_k\}$ is an action landmark, then can add the constraint

$$x(a_1) + x(a_2) + \cdots + x(a_k) \geq 1$$
Experimental Results – Coverage I

<table>
<thead>
<tr>
<th>Domain</th>
<th>h_{LM-cut}</th>
<th>h_{ours}</th>
<th>h_{LA}</th>
<th>$h_{M&S}$</th>
<th>HSP^*_F</th>
<th>h_{SEQ}</th>
<th>$h_{SEQsafe}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airport (50)</td>
<td>38</td>
<td>35</td>
<td>24</td>
<td>16</td>
<td>15</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>Blocks (35)</td>
<td>28</td>
<td>28</td>
<td>20</td>
<td>18</td>
<td>30</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>Depot (22)</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Driverlog (20)</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>12</td>
<td>9</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Freecell (80)</td>
<td>15</td>
<td>15</td>
<td>28</td>
<td>15</td>
<td>20</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Grid (5)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Gripper (20)</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Logistics-2000 (28)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Logistics-1998 (35)</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Miconic-STRIPS (150)</td>
<td>140</td>
<td>140</td>
<td>140</td>
<td>54</td>
<td>45</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>MPrime (35)</td>
<td>25</td>
<td>24</td>
<td>21</td>
<td>21</td>
<td>8</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>Mystery (19)</td>
<td>17</td>
<td>17</td>
<td>15</td>
<td>14</td>
<td>9</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Openstacks-STRIPS (30)</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Pathways (30)</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Pipesworld-no-tankage (50)</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>20</td>
<td>13</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Pipesworld-tankage (50)</td>
<td>11</td>
<td>11</td>
<td>9</td>
<td>13</td>
<td>7</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>PSR-small (50)</td>
<td>49</td>
<td>49</td>
<td>48</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Rovers (40)</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Satellite (36)</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>TPP (30)</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Trucks (30)</td>
<td>10</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Zenotravel (20)</td>
<td>12</td>
<td>12</td>
<td>9</td>
<td>11</td>
<td>8</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Airport-modified (50)</td>
<td>na</td>
<td>36</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>Total (w/o Airport-modified)</td>
<td>450</td>
<td>446</td>
<td>422</td>
<td>314</td>
<td>279</td>
<td>335</td>
<td>336</td>
</tr>
</tbody>
</table>
Experimental Results – Coverage II

<table>
<thead>
<tr>
<th>Domain</th>
<th>(h_{ours}^{LM-cut})</th>
<th>(h_{SEQ})</th>
<th>(h_{safe}^{SEQ})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevators-08-STRIPS (30)</td>
<td>19</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Openstacks-08-STRIPS (30)</td>
<td>19</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Parcprinter-08-STRIPS (30)</td>
<td>22</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>Pegsol-08-STRIPS (30)</td>
<td>27</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>Scanalyzer-08-STRIPS (30)</td>
<td>15</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Sokoban-08-STRIPS (30)</td>
<td>28</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Transport-08-STRIPS (30)</td>
<td>11</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Woodworking-08-STRIPS (30)</td>
<td>15</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>156</td>
<td>129</td>
<td>130</td>
</tr>
</tbody>
</table>

Domains from IPC-08 that involve actions with different costs
Experimental Results – Time on All Domains

Time / All domains

SEQ heuristic

LM–cut heuristic
Domains with at least 20 instances solved by the two heuristics
Experimental Results – Expansions on All Domains

![Graph showing Expanded / All domains comparison between SEQ heuristic and LM-cut heuristic](image)

- **SEQ heuristic**
- **LM-cut heuristic**

The graph compares the expansions achieved by different heuristics across all domains, highlighting the relationship between the two measures.
Conclusions & Future Work

- Defined a new heuristic that is not bounded by h^+
- Vanilla flavor of heuristic is competitive with state-of-the-art heuristics on some domains
- Heuristic can be further improved; some proposals put on the table but need to be tested
- Interestingly, solving an LP for each node is not as bad as it sounds

Future work:
- Add constraints from landmarks
- Try dealing with prevail conditions by using duplication: if p is prevail for some action a, introduce two ‘copies’ of p, p and p', such that a consumes p and produces p'
Thanks. Questions?