# Causal Belief Decomposition for Planning with Sensing: Completeness Results and Practical Approximation

 $\mathsf{Blai}\ \mathsf{Bonet}^1$  and  $\mathsf{Hector}\ \mathsf{Geffner}^2$ 

<sup>1</sup>Universidad Simón Bolívar <sup>2</sup>ICREA & Universitat Pompeu Fabra

IJCAI. Beijing, China. August 2013.







# **Motivation**

Planning in the non-deterministic and partially observable setting

Setting is similar to qualitative POMDPs, where uncertainty is encoded by **sets of states** rather than probability distributions

Two **fundamental tasks** to be solved, both intractable for problems in **compact** form:

- 1. Tracking of belief states
- 2. Action selection for achieving goal

We focus on belief tracking

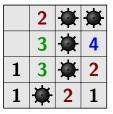
# **Main Contributions**

- We build on a earlier **sound and complete** algorithm for belief tracking for **non-deterministic** partially observable planning that is time and space exponential in a **width** parameter (B&G, 2012)
- Many domains have bounded and small width, but others don't
- We present a more **practical** algorithm, **Beam Tracking**, that is time and space exponential in the much smaller **causal width**
- Beam tracking is powerful but not complete; however, completeness studied over class of causally decomposable problems

# **Example: Wumpus and Minesweeper**



Wumpus



Minesweeper

**Factored belief tracking** (B&G, 2012): exponential in width which grows  $O(n^2)$  for dimension n

Beam tracking: exponential in causal width which is

- Wumpus: constant 4 for any dimension n
- Minesweeper: constant 9 for any dimension n

#### Outline for the Rest of the Talk

- Model and Language for Planning with Sensing
- Belief Tracking in Planning
- Basic Algorithm: Flat Belief Tracking
- Key Idea in B&G (2012)
- New Idea: Explicit Decompositions
- Causal Belief Tracking and Beam Tracking
- Experiments
- Conclusions

### Model for Non-Deterministic Contingent Planning

Contingent model  $\mathcal{S} = \langle S, S_0, S_G, A, F, O \rangle$  given by

- finite state space S
- non-empty subset of initial states  $S_0 \subseteq S$
- non-empty subset of **goal states**  $S_G \subseteq S$
- actions A where  $A(s) \subseteq A$  are the actions applicable at state s
- non-deterministic transitions  $F(s, a) \subseteq S$  for  $s \in S, a \in A(s)$
- non-determinisitc sensor model  $O(s', a) \subseteq O$  for  $s' \in S, a \in A$

#### Language

Model expressed in compact form as tuple  $P = \langle V, A, I, G, V', W \rangle$ :

- V is set of multi-valued variables, each X has finite domain  $D_X$
- A is set of actions; each action  $a \in A$  has precondition Pre(a)and conditional **non-deterministic** effects  $C \to E^1 | \cdots | E^n$
- Sets of V-literals I and G defining the initial and goal states
- V' is set of observable variables (not necessarily disjoint from V). Observations o are valuations over V'
- Sensing model is formula  $W_a(\ell)$  for each  $a \in A$  and observable literal  $\ell$  that is true in states that follow a where  $\ell$  may be observed

**Note:** a literal is an atom of the form X = x' or  $X \neq x'$ 

#### **Example: Wumpus**

 $\begin{array}{ll} rotate-right: & heading = N \rightarrow heading := E \\ & heading = E \rightarrow heading := S \\ & \cdots \\ rotate-left: & \cdots \\ move-forward: & heading = N \land pos = (x,y) \rightarrow pos := (x,y+1) \\ & \cdots \\ & \end{array}$ 

 $grab-gold : \quad gold-pos = (x,y) \ \land \ pos = (x,y) \rightarrow gold-pos := \mathsf{hand}$ 

$$\begin{split} W_a(stench_{x,y} = true) &= wump_{x-1,y} \lor wump_{x,y+1} \lor wump_{x,y-1} \lor wump_{x+1,y} \\ W_a(breeze_{x,y} = true) &= pit_{x-1,y} \lor pit_{x,y+1} \lor pit_{x,y-1} \lor pit_{x+1,y} \\ W_a(glitter_{x,y} = true) &= \left[gold\text{-}pos = (x, y) \land pos = (x, y)\right] \\ W_a(dead_{x,y} = true) &= \left[pos = (x, y) \land (pit_{x,y} \lor wump_{x,y})\right] \end{split}$$

# Belief Tracking in Planning (BTP)

#### Definition (BTP)

Given execution  $\tau = \langle a_0, o_0, a_1, o_1, \dots, a_n, o_n \rangle$  determine whether

- execution au is possible, and
- whether  $b_{\tau}$ , the belief that results of executing  $\tau$ , achieves the goal

In planning only need beliefs about preconditions and goals

#### Theorem

```
BTP is NP-hard and coNP-hard.
```

## **Basic Algorithm: Flat Belief Tracking**

#### **Definition (Flat Tracking)**

Given belief b at time t, and action a (applied) and observation o (obtained), the belief at time t + 1 is the belief  $b_a^o$  given by

$$b_a = \{s' : s' \in F(s, a) \text{ and } s \in b\}$$
  
$$b_a^o = \{s' : s' \in b_a \text{ and } s' \models W_a(\ell) \text{ for each } \ell \text{ s.t. } o \models \ell\}$$

- Flat belief tracking is sound and complete for every formula
- Time complexity is exponential in |V ∩ V<sub>U</sub>| where V<sub>U</sub> = V \ V<sub>K</sub> and V<sub>K</sub> are the variables that are determined (aka always known)
- However, in planning, we only need to be complete for literals 'X = x' involving goal or precondition variables X

# Key Idea in B&G (2012)

Beliefs  $b_X$  about precondition and goal variables X suffice

Beliefs  $b_X$  obtained by applying **flat belief tracking** to smaller subproblems  $P_X$ 

Subproblem  $P_X$  only involves state variables that are **relevant** to X

Resulting algorithm, Factored Belief Tracking, is sound and complete for planning, and exponential in width of P:

maximum number of state variables that are all relevant to a given precondition or goal variable X

### New Idea: Explicit Decompositions

A decomposition of problem P is pair  $D=\langle T,B\rangle$  where

- T is subset of **target** variables, and
- B(X) for X in T is a subset of state variables

Decomposition  $D = \langle T, B \rangle$  decomposes P into subproblems:

- one subproblem  $P_X$  for each variable X in T
- subproblem  $P_X$  involves only the state variables in B(X)

Belief tracking over a decomposition refers to belief tracking over the subproblems defined by the decomposition

### **Factored and Causal Decompositions**

#### **Definition (Factored Decomposition)**

 $F = \langle T_F, B_F \rangle$  where  $T_F$  are state variables appearing in preconditions or goals, and  $B_F(X)$  are all variables that are **relevant** to X

Belief tracking over the factored decomposition is sound and complete, and exponential in the **width** 

#### **Definition (Causal Decomposition)**

 $C = \langle T_C, B_C \rangle$  where  $T_C$  are variables in preconditions or goals, or observables, and  $B_C(X)$  are all variables causally relevant to X

Belief tracking over the causal decomposition is sound but not complete, and exponential in the **causal width** 

# **Complete Tracking over Causal Decomposition**

Belief tracking over causal decomposition is incomplete because

- two beliefs  $b_X$  and  $b_Y$  associated with target variables X and Y may interact and are not independent

Algorithm can be made complete by enforcing **consistency** of beliefs:

$$b_X := \prod_{B_C(X)} \Join \{ (b_Y)_a^o : Y \in T_C \text{ and relevant to } X \}$$

Resulting algorithm is:

- complete for causally decomposable problems (see paper)
- space exponential in causal width
- time exponential in width

Wumpus, Minesweeper and Battleship are causally decomposable

# Effective Tracking over Causal Decomposition: Beam Tracking

Replaces the costly join (exponential in problem width) with **local consistency** (aka relational arc consistency) until **fix point**:

$$b_X := \Pi_{B_C(X)}(b_X^{i+1} \bowtie b_Y^{i+1})$$

Beam tracking is time and space exponential in causal width

Beam tracking is sound and powerful but not complete

Beam tracking is **practical algorithm**: general and effective

Incompleteness on causally decomposable problems is the result of replacing the global consistency by local consistency

## Experiments

Beam tracking tested on Wumpus, Minesweeper and Battleship using simple heuristics for action selection

Belief tracking on these is intractable (Kaye, 2000; Scott et al., 2011)

Size of tested instances is well beyond scope of contingent planners

Compared with hand-tuned UCT solvers for two of the domains:

- Battleship (Silver and Veness, 2010)
- Minesweeper (Lin et al., 2012)

#### Obtained similar or superior quality in orders-of-magnitude less time

#### **Experiments: Battleship**

|                |        |         |                   | avg. time per |         |
|----------------|--------|---------|-------------------|---------------|---------|
| dim            | policy | # ships | #torpedos         | decision      | game    |
| $10 \times 10$ | greedy | 4       | $40.0\pm6.9$      | 2.4E-4        | 9.6E-3  |
| $20 \times 20$ | greedy | 8       | $163.1\pm32.1$    | 6.6E-4        | 1.0 E-1 |
| $30 \times 30$ | greedy | 12      | $389.4 \pm 73.4$  | 1.2e-3        | 4.9e-1  |
| $40 \times 40$ | greedy | 16      | $723.8 \pm 129.2$ | 2.1E-3        | 1.5     |

Data for 10,000 runs

On  $10 \times 10$ , achieved same quality as Silver and Veness (2010) but their UCT takes 3 orders of magnitude more time per move

### **Experiments: Minesweeper**

|                |         |         |      |        | avg. time per |      |
|----------------|---------|---------|------|--------|---------------|------|
| dim            | # mines | density | %win | #guess | decision      | game |
| $8 \times 8$   | 10      | 15.6%   | 83.4 | 606    | 8.3E-3        | 0.21 |
| $16 \times 16$ | 40      | 15.6%   | 79.8 | 670    | 1.2e-2        | 1.42 |
| $16 \times 30$ | 99      | 20.6%   | 35.9 | 2,476  | 1.1E-2        | 2.86 |
| $32 \times 64$ | 320     | 15.6%   | 80.3 | 672    | 1.3e-2        | 2.89 |

Data for 1,000 runs

Success rates of Lin et al. (2012):

- $8 \times 8: 80.2 \pm 0.4\%$  vs. 83.4%
- $16 \times 16$ :  $74.4 \pm 0.5\%$  vs. 79.8%
- $16 \times 30$ :  $38.7 \pm 1.8\%$  vs. 35.9

No times reported in Lin et al. (2012)

## Conclusions

- Planning with sensing is belief tracking and action selection
- Developed a new effective and practical algorithm for belief tracking, called beam tracking
- Beam tracking is time and space exponential in the **causal width** which is often much smaller than the **width** of the problem
- Beam tracking is sound but not complete, yet over the large class of **causally decomposable problems** the incompleteness is the result of replacing the global consistency operation by local approximation
- Challenge: probabilistic belief tracking

#### **Thanks. Questions?**