Policies that Generalize: Solving Many Planning Problems With the Same Policy

Blai Bonet
Universidad Simón Bolívar
Caracas, Venezuela

Hector Geffner
ICREA & U. Pompeu Fabra
Barcelona, Spain

IJCAI 2015, Buenos Aires
Example: Dust Cleaning

- **Problem**: clean all cells starting on the left
 - **Actions**: move left, move right, suck
 - **Sensors**: dirt, end of corridor

- **Solution** can be expressed as **memoryless policy**:
 - if dirt, suck; if no dirt and not end, move-right

- Policy is compact and **solves many variations**:
 - different grid sizes
 - different distribution of dirt
 - noisy actions that may fail

What’s the common structure that explains generality of the policy?
Example 2: Visual Blocks

- **Problem** \(P \): find **green block** using visual-marker (circle) that can move around one cell at a time

- **Observables:** Whether cell marked contains a green block (G), non-green block (B), or neither (C); and whether on table (T) or not (–)

![Diagram of the visual blocks problem]

- **Finite-state controller** obtained by running classical planner over transformed problem (Bonet et al., 2009)

- Controller solves this problem and **any configuration** with **any number** blocks

What is the common structure among these different problems?
Motivation

Why care about how policy for one problem generalizes to other problems?

- **Generalized planning**: solution that works for multiple problems sought

- **Transfer learning**: how solution to one problem used for solving another problem

- **Scalability**: why solve "large" problems if solutions to "smaller" problems ok?

- **Representation**: generalization imposes constraints on representation
Plan for the rest of the talk

- **Model**: Partially observable non-deterministic problems (PONDPs)

- **Solutions**: Memoryless policies that solve a problem

- **Reductions**: Mapping “large” problems into “smaller” ones

- **Theoretical Results**: When policy for P for Q on structural ones

- **Extensions**: Generalization to policies with finite memory (finite state controllers)
Model: PONDPs and POMDPs

Partially observable non-deterministic problems (PONDP) $P = \langle S, S_0, T, A, F, o \rangle$:

- S is a finite set of states s,
- S_0 is the set of possible initial states $S_0 \subseteq S$,
- T is the set of goal states $T \subseteq S$,
- $A(s) \subseteq A$ is set of applicable actions in $s \in S$,
- $F(a, s) \subseteq S$ denotes set of successor states $s \in S, a \in A(s)$
- o is the observation function $o(s) \in \Omega_o, \Omega_o$ set of observations

- PONDPs similar to POMDPs; noisy sensing easy to compile away
- Results for PONDPs apply to POMDPs where goal to be achieved with certainty
- Such Goal POMDPs more general than usual discounted version with rewards
Solutions: Memoryless Policies

- **Solution form** of PONDPs and POMDPs is **mapping** from **beliefs** into actions.
- Yet such mappings tied to **particular state space** and don’t **generalize** to others.
- **Memoryless** policies and **finite-state controllers** not as powerful but generalize.
- A **memoryless** policy is (partial) function μ mapping **observations** into actions.
- The **action** in the state s is $\mu(o(s))$ where o is **observation function**.
- Policy defines μ-trajectories $\langle s_0, s_1, \ldots \rangle$, $s_0 \in S_0$, $s_{i+1} \in F(\mu(o(s_i)), s_i)$, $i > 0$.
- Policy μ **solves** problem P iff every **fair** μ-trajectory reaches a **goal state**.
A transition \((s, a, s')\) is in \(P\) if \(s\) and \(s'\) are states in \(P\), and \(s' \in F(a, s)\).

A trajectory \(\tau\) is fair if infinite occurrences of transitions \((s, a, s')\) in \(\tau\), imply infinite occurrences of transitions \((s, a, s'')\) that are also in \(P\).

Solutions are thus strongly cyclic (memoryless) policies.

They correspond also to proper policies in (Goal) MDPs and POMDPs that ensure goal reached with certainty.

Our question: When solution \(\mu\) to \(P\) solves also \(Q\) on structural grounds?
Structure: Reductions

Definition: Function \(h : S \rightarrow S' \) reduces \(P = \langle S, S_0, T, A, F, o \rangle \) into \(P' = \langle S', S'_0, T', A', F', o' \rangle \) if for all states \(s, s' \) in \(S \):

R1. **Actions:** \(A'(h(s)) \subseteq A(s) \) (no new actions)

R2. **Sensing:** \(o(s) = o'(h(s)) \) (observations preserved)

R3. **Dynamics:** if \(s' \in F(a, s) \) then \(h(s') \in F'(a, h(s)) \) (transitions preserved)

R4. **Init:** if \(s \in S_0 \) then \(h(s) \in S'_0 \) (initial states preserved)

R5. **Goal:** if \(s \notin T \) then \(h(s) \notin T' \) (non-goal states preserved)

- Reductions \(h \) can map **multiple** states \(s \) and \(s' \) in \(P \) into **single** states \(h(s) = h(s') \)
- Reductions **embed** one problem into another preserving some **structure**
- Reductions are **not symmetric** like **bisimulations** though. This is key
Example: Reducing Counter 0 . . . 100 to Counter 0,1

- $P_n = \langle S, S_0, T, A, F, o \rangle$ is problem where state s is counter in $[0, n]$, $n \geq 1$

- Actions **increase** and **decrease** counter by 1 within interval $[0, n]$

- **Initial state** is uncertain, i.e., $S_0 = S$, and **goal** $s = 0$ is observable

- **Function** $h(0) = 0$ and $h(s) = 1$ for $s > 0$, does **not** reduce P_{100} into P_1

- **Transitions** like $(50, Dec, 49)$ in P_{100}, map into transitions $(h(50), Dec, h(40)) = (1, Dec, 1)$ that are **not** in P_1 in violation of **R3**

- Yet h **reduces** any P_n to problem P_1 **extended** with transition $(1, Dec, 1)$.

- Problem $P' = P_1 + \{(1, Dec, 1)\}$ **non-deterministic** as it contains also the transition $(1, Dec, 0)$.
Basic Theoretical Result

Reduction h of P into P' **not** sufficient for solutions μ of P' to **generalize** to P. Yet, every μ-trajectory τ in P **induces** a μ-trajectory $h(\tau)$:

Lemma: For a **reduction** h of P into P', if $\tau = \langle s_0, a_0, s_1, a_1, \ldots \rangle$ is a μ-trajectory in P, then $h(\tau) = \langle h(s_0), a_0, h(s_1), a_1, \ldots \rangle$ is a μ-trajectory in P'.

E.g., μ-trajectory $\tau = (4, 3, 2, 1, 0)$ in P_{100} for μ : “decrement until goal” maps into $h(\tau) = (h(4), h(3), h(2), h(1), h(0)) = (1, 1, 1, 1, 0)$ that is a μ-trajectory in P'.

Reduction $h : P \to P'$ ensures **generalization** when it preserves **fairness**:

Theorem: If μ **solves** P' and h reduces P into P' so that **fair** μ-trajectories τ in P are mapped into trajectories $h(\tau)$ that are **fair** in P', μ **solves** P
Example: Counters Revisited

- \(h \) reduces \(P_n \) into \(P' = P_1 + \{(1, \text{Dec}, 1)\} \)

- \(\mu \) solves 2-state problem \(P' \)

- **Theorem** implies that \(\mu \) solves \(P_n \) if \(h(\tau) \) is fair in \(P' \) given that \(\tau \) is a (fair) \(\mu \)-path in \(P_n \)

 E.g., if \(\mu \)-path \(\tau \) is \((i, i - 1, i - 2, \ldots, 1, 0)\), \(h(\tau) \) is \((1, 1, 1, \ldots, 1, 0)\) that is fair

- Theorem explains **why** \(\mu \) works for any \(P_n \) given that it works for \(P' \)

- It also explains how generalization fails. E.g., if transition \((40, \text{Dec}, 39)\) changed to \((40, \text{Dec}, 50)\) in \(P_n \), \(h \) reduces \(P_{100} \) to \(P' \) **but** does not preserve fairness
Non-Determinism and the Structure of Abstract Problems

- Write $P + E$ to denote problem P extended with set of transitions E
- Extension admissible given μ if reachable states in P and $P + E$ the same
- Clearly, if μ solves P and E admissible, μ solves $P + E$. Also:

Theorem: Policy μ generalizes from a deterministic problem P into Q if Q reduces into an admissible extension $P + E$ through h such that $h(\tau)$ contains a finite number of transitions from E for any μ-trajectory τ in Q.

- **Intuition:** Extra transitions E can be used to reduce Q into $P + E$, but they must be transient in the induced executions $h(\tau)$
- Results generalized if conditions on P and Q applied to P_μ and Q_μ instead where P_μ is $P\mu(o(s))$ as only applicable action in each state s
- We will say that h reduces Q into P given μ when h reduces Q_μ into P_μ.

B. Bonet, H. Geffner, Policies that Generalize, IJCAI 2015
Example: Dust Cleaning Revisited

- P_n is **cleaning problem** over $1 \times n$ grid, robot on left, dirt distribution unknown
- **States** are tuples $\langle i, d_1, \ldots, d_n \rangle$: i is robot location, d_i status of cell i
- Policy μ: “if dirt, suck; else if not end, right” **generalizes** from P_2 to P_n
- **Reduction** h maps state $\langle i, d_1, \ldots, d_n \rangle$ into $\langle 1, d_i, d_n \rangle$ if $i < n$ else to $\langle 2, 0, d_n \rangle$
- **Extension** E contains **two extra transitions** by which:
 - Action *Right* can “fail” in leftmost cell leaving robot in same cell, and making cell clean or dirty.
- Extra transitions account for **generalization** to any grid size, any dirt distribution using theorem
• **Problems** P, Q: navigating around **observable** walls for **observable** goal

• **States** are (c, d) where c is cell and d is direction

• **Policy** μ: Forward when $\nabla \triangleright$, Left when $\nabla \downarrow$, and Right-Forward when $\nabla \triangleright\downarrow$

• **Reduction** h maps pairs (c, d) in Q into $(\ell(c), d)$ in $P + E$ with $\ell(c)$ shown

• E contains **extra transitions** (s, a, s') where a is Forward, and (s, s') is

$\nabla \langle (\ell_8, e), (\ell_2, e) \rangle$ or $\langle (\ell_i, d), (\ell_i, d) \rangle$ for $i = 3, 5, 7, 8$ and any heading d

• They enable **self-loops** and **re-start** to (ℓ_8, e) when past column at (ℓ_8, e)

• They account for **generalization** of μ to problems with any number of columns of any height and width using theorem
Example: Wall Following

- **Problems** P, Q: navigating around observable walls for observable goal
- **States** are (c, d) where c is cell and d is direction
- **Policy** μ: Forward when $\nabla\nabla$, Left when $\nabla\nabla$, and Right-Forward when $\nabla\nabla$
- **Reduction** h maps pairs (c, d) in Q into $(\ell(c), d)$ in $P + E$ with $\ell(c)$ shown
- **E** contains extra transitions (s, a, s') where a is Forward, and $\langle s, s' \rangle$ is
 $\nabla \langle (\ell_8, e), (\ell_2, e) \rangle$ or $\langle (\ell_i, d), (\ell_i, d) \rangle$ for $i = 3, 5, 7, 8$ and any heading d
- They enable self-loops and re-start to (ℓ_8, e) when past column at (ℓ_8, e)
- They account for generalization of μ to problems with any number of columns of any height and width using theorem
Example: Wall Following

- **Problems** P, Q: navigating around **observable** walls for **observable** goal
- **States** are (c, d) where c is cell and d is direction
- **Policy** μ: Forward when $\uparrow\downarrow$, Left when $\uparrow\downarrow$, and Right-Forward when $\uparrow\downarrow$
- **Reduction** h maps pairs (c, d) in Q into $(\ell(c), d)$ in $P + E$ with $\ell(c)$ shown
- E contains **extra transitions** (s, a, s') where a is Forward, and $\langle s, s' \rangle$ is
 $\uparrow \langle (\ell_8, e), (\ell_2, e) \rangle$ or $\langle (\ell_i, d), (\ell_i, d) \rangle$ for $i = 3, 5, 7, 8$ and any heading d
- They enable **self-loops** and **re-start** to (ℓ_8, e) when past column at (ℓ_8, e)
- They account for **generalization** of μ to problems with **any number of columns** of **any height** and **width** using **theorem**
Example: Wall Following

- **Problems** P, Q: navigating around **observable** walls for **observable** goal
- **States** are (c, d) where c is cell and d is direction
- **Policy** μ: Forward when $\triangleright\!\!\!\downarrow$, Left when $\triangleright\downarrow$, and Right-Forward when $\triangleright\!\!\downarrow$
- **Reduction** h maps pairs (c, d) in Q into $(\ell(c), d)$ in $P + E$ with $\ell(c)$ shown
- E contains **extra transitions** (s, a, s') where a is Forward, and $\langle s, s' \rangle$ is $\triangleright (\ell_8, e), (\ell_2, e))$ or $\langle (\ell_i, d), (\ell_i, d) \rangle$ for $i = 3, 5, 7, 8$ and any heading d
- They enable **self-loops** and **re-start** to (ℓ_8, e) when past column at (ℓ_8, e)
- They account for **generalization** of μ to problems with **any number of columns** of **any height** and **width** using **theorem**
Example: Wall Following

• Problems P, Q: navigating around observable walls for observable goal

• States are (c, d) where c is cell and d is direction

• Policy μ: Forward when $\blacktriangleright\blacktriangledown$, Left when $\blacktriangledown\blacktriangle$, and Right-Forward when $\blacktriangledown\blacktriangleright$

• Reduction h maps pairs (c, d) in Q into $(\ell(c), d)$ in $P + E$ with $\ell(c)$ shown

• E contains extra transitions (s, a, s') where a is Forward, and $\langle s, s' \rangle$ is $\blacktriangleright \langle (\ell_8, e), (\ell_2, e) \rangle$ or $\langle (\ell_i, d), (\ell_i, d) \rangle$ for $i = 3, 5, 7, 8$ and any heading d

• They enable self-loops and re-start to (ℓ_8, e) when past column at (ℓ_8, e)

• They account for generalization of μ to problems with any number of columns of any height and width using theorem
Example: Wall Following

- **Problems** P, Q: navigating around observable walls for observable goal
- **States** are (c, d) where c is cell and d is direction
- **Policy** μ: Forward when \Rightarrow, Left when \Leftarrow, and Right-Forward when $\Rightarrow\Leftarrow$
- **Reduction** h maps pairs (c, d) in Q into $(\ell(c), d)$ in $P + E$ with $\ell(c)$ shown
- E contains **extra transitions** (s, a, s') where a is Forward, and $\langle s, s' \rangle$ is
 - $\Rightarrow \langle (\ell_8, e), (\ell_2, e) \rangle$ or $\langle (\ell_i, d), (\ell_i, d) \rangle$ for $i = 3, 5, 7, 8$ and any heading d
- They enable **self-loops** and **re-start** to (ℓ_8, e) when past column at (ℓ_8, e)
- They account for **generalization** of μ to problems with **any number of columns** of **any height** and **width** using **theorem**
Example: Wall Following

- **Problems** P, Q: navigating around **observable** walls for **observable** goal
- **States** are (c, d) where c is cell and d is direction
- **Policy** μ: Forward when $\rightarrow\uparrow$, Left when $\rightarrow\downarrow$, and Right-Forward when $\rightarrow\leftarrow\uparrow$
- **Reduction** h maps pairs (c, d) in Q into $(\ell(c), d)$ in $P + E$ with $\ell(c)$ shown
- E contains **extra transitions** (s, a, s') where a is Forward, and $\langle s, s' \rangle$ is
 - $\rightarrow \langle (\ell_8, e), (\ell_2, e) \rangle$ or $\langle (\ell_i, d), (\ell_i, d) \rangle$ for $i = 3, 5, 7, 8$ and any heading d
- They enable **self-loops** and **re-start** to (ℓ_8, e) when past column at (ℓ_8, e)
- They account for **generalization** of μ to problems with **any number of columns** of **any height** and **width** using **theorem**
Example: Wall Following

- **Problems** P, Q: navigating around **observable** walls for **observable** goal
- **States** are (c, d) where c is cell and d is direction
- **Policy** μ: Forward when $\triangleright\downarrow$, Left when $\triangleright\leftarrow$, and Right-Forward when $\triangleright\rightarrow$
- **Reduction** h maps pairs (c, d) in Q into $(\ell(c), d)$ in $P + E$ with $\ell(c)$ shown
- E contains **extra transitions** (s, a, s') where a is Forward, and $\langle s, s' \rangle$ is
 - $\triangleright \langle (\ell_8, e), (\ell_2, e) \rangle$ or $\langle (\ell_i, d), (\ell_i, d) \rangle$ for $i = 3, 5, 7, 8$ and any heading d
- They enable **self-loops** and **re-start** to (ℓ_8, e) when past column at (ℓ_8, e)
- They account for **generalization** of μ to problems with **any number of columns** of **any height** and **width** using **theorem**
Example: Wall Following

- **Problems** \(P, Q \): navigating around **observable** walls for **observable** goal
- **States** are \((c, d)\) where \(c \) is cell and \(d \) is direction
- **Policy** \(\mu \): Forward when \(\nLeft\), Left when \(\nRight\), and Right-Forward when \(\nRight\)
- **Reduction** \(h \) maps pairs \((c, d)\) in \(Q \) into \((\ell(c), d)\) in \(P + E \) with \(\ell(c) \) shown
- \(E \) contains **extra transitions** \((s, a, s')\) where \(a \) is Forward, and \(\langle s, s' \rangle \) is
 - \(\nLeft\langle (\ell_8, e), (\ell_2, e) \rangle \) or \(\langle (\ell_i, d), (\ell_i, d) \rangle \) for \(i = 3, 5, 7, 8 \) and any heading \(d \)
- They enable **self-loops** and **re-start** to \((\ell_8, e)\) when past column at \((\ell_8, e)\)
- They account for **generalization** of \(\mu \) to problems with **any number of columns** of **any height** and **width** using **theorem**
• **Problems** P, Q: navigating around **observable** walls for **observable** goal
• **States** are (c, d) where c is cell and d is direction
• **Policy** μ: Forward when $\updownarrow\leftarrow$, Left when $\Rightarrow\downarrow$, and Right-Forward when $\Rightarrow\uparrow$
• **Reduction** h maps pairs (c, d) in Q into $(\ell(c), d)$ in $P + E$ with $\ell(c)$ shown
• E contains **extra transitions** (s, a, s') where a is Forward, and $\langle s, s' \rangle$ is
 $\updownarrow \langle (\ell_8, e), (\ell_2, e) \rangle$ or $\langle (\ell_i, d), (\ell_i, d) \rangle$ for $i = 3, 5, 7, 8$ and any heading d
• They enable **self-loops** and **re-start** to (ℓ_8, e) when past column at (ℓ_8, e)
• They account for **generalization** of μ to problems with **any number of columns** of **any height** and **width** using **theorem**
• **Problems** P, Q: navigating around observable walls for observable goal

• **States** are (c, d) where c is cell and d is direction

• **Policy** μ: Forward when $\nabla\triangleright$, Left when $\nabla\blacktriangle$, and Right-Forward when $\nabla\triangleright\blacktriangle$

• **Reduction** h maps pairs (c, d) in Q into $(\ell(c), d)$ in $P + E$ with $\ell(c)$ shown

• E contains extra transitions (s, a, s') where a is Forward, and $\langle s, s' \rangle$ is

 $\nabla \langle (\ell_8, e), (\ell_2, e) \rangle$ or $\langle (\ell_i, d), (\ell_i, d) \rangle$ for $i = 3, 5, 7, 8$ and any heading d

• They enable self-loops and re-start to (ℓ_8, e) when past column at (ℓ_8, e)

• They account for generalization of μ to problems with any number of columns of any height and width using theorem
• **Problems** \(P, Q \): navigating around **observable** walls for **observable** goal

• **States** are \((c, d)\) where \(c\) is cell and \(d\) is direction

• **Policy** \(\mu \): Forward when \(\triangleright \triangleright \), Left when \(\triangleright \triangledown \), and Right-Forward when \(\triangleright \triangleright \triangleright \)

• **Reduction** \(h \) maps pairs \((c, d)\) in \(Q \) into \((\ell(c), d)\) in \(P + E \) with \(\ell(c) \) shown

• \(E \) contains **extra transitions** \((s, a, s')\) where \(a\) is Forward, and \(\langle s, s' \rangle \) is
 \[
 \triangleright \langle (\ell_8, e), (\ell_2, e) \rangle \text{ or } \langle (\ell_i, d), (\ell_i, d) \rangle \text{ for } i = 3, 5, 7, 8 \text{ and any heading } d
 \]

• They enable **self-loops** and **re-start** to \((\ell_8, e)\) when past column at \((\ell_8, e)\)

• They account for **generalization** of \(\mu \) to problems with **any number of columns** of **any height** and **width** using **theorem**
Example: Wall Following

- **Problems** P, Q: navigating around *observable* walls for *observable* goal
- **States** are (c, d) where c is cell and d is direction
- **Policy** μ: Forward when $\blacktriangleright\blacktriangleright$, Left when $\blacktriangledown\blacktriangledown$, and Right-Forward when $\blacktriangledown\blacktriangleright$
- **Reduction** h maps pairs (c, d) in Q into $(\ell(c), d)$ in $P + E$ with $\ell(c)$ shown
- **E** contains *extra transitions* (s, a, s') where a is Forward, and $\langle s, s' \rangle$ is
 $\blacktriangleright \langle (\ell_8, e), (\ell_2, e) \rangle$ or $\langle (\ell_i, d), (\ell_i, d) \rangle$ for $i = 3, 5, 7, 8$ and any heading d
- They enable *self-loops* and *re-start* to (ℓ_8, e) when past column at (ℓ_8, e)
- They account for *generalization* of μ to problems with *any number of columns* of *any height* and *width* using theorem
Example: Wall Following

- **Problems** P, Q: navigating around *observable* walls for *observable* goal
- **States** are (c, d) where c is cell and d is direction
- **Policy** μ: Forward when \triangleright, Left when $\triangleright\downarrow$, and Right-Forward when $\triangleright\uparrow$
- **Reduction** h maps pairs (c, d) in Q into $(\ell(c), d)$ in $P + E$ with $\ell(c)$ shown
- **E** contains extra transitions (s, a, s') where a is Forward, and $\langle s, s' \rangle$ is
 \[\triangleright \langle (\ell_8, e), (\ell_2, e) \rangle \text{ or } \langle (\ell_i, d), (\ell_i, d) \rangle \text{ for } i = 3, 5, 7, 8 \text{ and any heading } d \]
- They enable **self-loops** and **re-start** to (ℓ_8, e) when past column at (ℓ_8, e)
- They account for **generalization** of μ to problems with any number of columns of any height and width using theorem
Example: Wall Following

- **Problems** P, Q: navigating around observable walls for observable goal
- **States** are (c, d) where c is cell and d is direction
- **Policy** μ: Forward when $\uparrow\uparrow$, Left when $\uparrow\downarrow$, and Right-Forward when $\downarrow\downarrow$
- **Reduction** h maps pairs (c, d) in Q into $(\ell(c), d)$ in $P + E$ with $\ell(c)$ shown
- E contains extra transitions (s, a, s') where a is Forward, and $\langle s, s' \rangle$ is
 $\uparrow \langle (\ell_8, e), (\ell_2, e) \rangle$ or $\langle (\ell_i, d), (\ell_i, d) \rangle$ for $i = 3, 5, 7, 8$ and any heading d
- They enable self-loops and re-start to (ℓ_8, e) when past column at (ℓ_8, e)
- They account for generalization of μ to problems with any number of columns of any height and width using theorem
Example: Wall Following

- **Problems** \(P, Q \): navigating around observable walls for observable goal
- **States** are \((c, d)\) where \(c\) is cell and \(d\) is direction
- **Policy** \(\mu \): Forward when \(\nabla \), Left when \(\triangledown \), and Right-Forward when \(\triangledown \)
- **Reduction** \(h \) maps pairs \((c, d)\) in \(Q \) into \((\ell(c), d)\) in \(P + E \) with \(\ell(c) \) shown
- **\(E \)** contains extra transitions \((s, a, s')\) where \(a\) is Forward, and \(\langle s, s' \rangle\) is
 \(\nabla \langle (\ell_8, e), (\ell_2, e) \rangle \) or \(\langle (\ell_i, d), (\ell_i, d) \rangle \) for \(i = 3, 5, 7, 8\) and any heading \(d\)
- They enable self-loops and re-start to \((\ell_8, e)\) when past column at \((\ell_8, e)\)
- They account for generalization of \(\mu \) to problems with any number of columns of any height and width using theorem
Example: Wall Following

- **Problems** P, Q: navigating around observable walls for observable goal
- **States** are (c, d) where c is cell and d is direction
- **Policy** μ: Forward when $\nabla\updownarrow$, Left when $\nabla\downarrow$, and Right-Forward when $\nabla\uparrow$
- **Reduction** h maps pairs (c, d) in Q into $(\ell(c), d)$ in $P + E$ with $\ell(c)$ shown
- **E contains extra transitions** (s, a, s') where a is Forward, and $\langle s, s' \rangle$ is
 - $\langle (\ell_8, e), (\ell_2, e) \rangle$ or $\langle (\ell_i, d), (\ell_i, d) \rangle$ for $i = 3, 5, 7, 8$ and any heading d
- They enable **self-loops** and **re-start** to (ℓ_8, e) when past column at (ℓ_8, e)
- They account for **generalization** of μ to problems with any number of columns of any height and width using theorem
Example: Wall Following

- **Problems** P, Q: navigating around *observable* walls for *observable* goal
- **States** are (c, d) where c is cell and d is direction
- **Policy** μ: Forward when \triangleright, Left when $\triangleright\triangleright$, and Right-Forward when $\triangleright\triangleright\triangleright$
- **Reduction** h maps pairs (c, d) in Q into $(\ell(c), d)$ in $P + E$ with $\ell(c)$ shown
- E contains *extra transitions* (s, a, s') where a is Forward, and $\langle s, s' \rangle$ is
 - $\triangleright (\ell_8, e), (\ell_2, e))$ or $(\ell_i, d), (\ell_i, d))$ for $i = 3, 5, 7, 8$ and any heading d
- They enable *self-loops* and *re-start* to (ℓ_8, e) when past column at (ℓ_8, e)
- They account for *generalization* of μ to problems with any *number of columns* of any *height* and *width* using theorem
Example: Wall Following

- **Problems** P, Q: navigating around **observable** walls for **observable** goal
- **States** are (c, d) where c is cell and d is direction
- **Policy** μ: Forward when $\downarrow\cdot\cdot\cdot\downarrow$, Left when $\leftarrow\cdot\cdot\cdot\leftarrow$, and Right-Forward when $\Rightarrow\cdot\cdot\cdot\Rightarrow$
- **Reduction** h maps pairs (c, d) in Q into $(\ell(c), d)$ in $P + E$ with $\ell(c)$ shown
- E contains **extra transitions** (s, a, s') where a is Forward, and (s, s') is
 - $\downarrow \langle (\ell_8, e), (\ell_2, e) \rangle$ or $\langle (\ell_i, d), (\ell_i, d) \rangle$ for $i = 3, 5, 7, 8$ and any heading d
- They enable **self-loops** and **re-start** to (ℓ_8, e) when past column at (ℓ_8, e)
- They account for **generalization** of μ to problems with **any number of columns** of **any height** and **width** using theorem
Example: Wall Following

- **Problems** P, Q: navigating around **observable** walls for **observable** goal
- **States** are (c, d) where c is cell and d is direction
- **Policy** μ: Forward when \rhd, Left when \sqcap, and Right-Forward when $\rhd\sqcup$
- **Reduction** h maps pairs (c, d) in Q into $(\ell(c), d)$ in $P + E$ with $\ell(c)$ shown
- E contains **extra transitions** (s, a, s') where a is Forward, and (s, s') is
 - $\rhd \langle (\ell_8, e), (\ell_2, e) \rangle$ or $\langle (\ell_i, d), (\ell_i, d) \rangle$ for $i = 3, 5, 7, 8$ and any heading d
- They enable **self-loops** and **re-start** to (ℓ_8, e) when past column at (ℓ_8, e)
- They account for **generalization** of μ to problems with **any number of columns** of **any height** and **width** using theorem
• Problems P, Q: navigating around \textbf{observable} walls for \textbf{observable} goal

• States are (c,d) where c is cell and d is direction

• Policy μ: Forward when $\rhd\rhd$, Left when $\rhd\uhr$, and Right-Forward when $\rhd\lhd$

• Reduction h maps pairs (c,d) in Q into $(\ell(c), d)$ in $P + E$ with $\ell(c)$ shown

• E contains \textbf{extra transitions} (s, a, s') where a is Forward, and $\langle s, s' \rangle$ is

 $\rhd \langle (\ell_8, e), (\ell_2, e) \rangle$ or $\langle (\ell_i, d), (\ell_i, d) \rangle$ for $i = 3, 5, 7, 8$ and any heading d

• They enable \textbf{self-loops} and \textbf{re-start} to (ℓ_8, e) when past column at (ℓ_8, e)

• They account for \textbf{generalization} of μ to problems with \textbf{any number of columns}
 of \textbf{any height} and \textbf{width} using \textbf{theorem}
Example: Wall Following

- **Problems** P, Q: navigating around **observable** walls for **observable** goal
- **States** are (c, d) where c is cell and d is direction
- **Policy** μ: Forward when $\updownarrow\updiagonalarrow$, Left when $\updownarrow\uparrow\uprightarrow$, and Right-Forward when $\updownarrow\updownarrow\uprightarrow$
- **Reduction** h maps pairs (c, d) in Q into $(\ell(c), d)$ in $P + E$ with $\ell(c)$ shown
- E contains **extra transitions** (s, a, s') where a is Forward, and (s, s') is
 - $\updownarrow \langle (\ell_8, e), (\ell_2, e) \rangle$ or $\langle (\ell_i, d), (\ell_i, d) \rangle$ for $i = 3, 5, 7, 8$ and any heading d
- They enable **self-loops** and **re-start** to (ℓ_8, e) when past column at (ℓ_8, e)
- They account for **generalization** of μ to problems with **any number of columns** of **any height** and **width** using **theorem**

B. Bonet, H. Geffner, Policies that Generalize, IJCAI 2015
Example: Wall Following

- **Problems** \(P, Q \): navigating around *observable* walls for *observable* goal
- **States** are \((c, d)\) where \(c\) is cell and \(d\) is direction
- **Policy** \(\mu \): Forward when \(\triangleright \), Left when \(\triangleright \), and Right-Forward when \(\triangleright \)
- **Reduction** \(h \) maps pairs \((c, d)\) in \(Q \) into \((\ell(c), d)\) in \(P + E \) with \(\ell(c)\) shown
- **\(E \)** contains extra transitions \((s, a, s')\) where \(a\) is Forward, and \(\langle s, s' \rangle\) is
 \[\triangleright \langle (\ell_8, e), (\ell_2, e) \rangle \text{ or } \langle (\ell_i, d), (\ell_i, d) \rangle \] for \(i = 3, 5, 7, 8\) and any heading \(d\)
- They enable self-loops and re-start to \((\ell_8, e)\) when past column at \((\ell_8, e)\)
- They account for generalization of \(\mu \) to problems with any number of columns of any height and width using theorem
• **Problems** \(P, Q \): navigating around observable walls for observable goal

• **States** are \((c, d)\) where \(c\) is cell and \(d\) is direction

• **Policy** \(\mu \): Forward when \(\uparrow \), Left when \(\downarrow \), and Right-Forward when \(\uparrow \)

• **Reduction** \(h \) maps pairs \((c, d)\) in \(Q \) into \((\ell(c), d)\) in \(P + E \) with \(\ell(c) \) shown

• \(E \) contains extra transitions \((s, a, s')\) where \(a\) is Forward, and \(\langle s, s' \rangle \) is

 \(\uparrow \langle (\ell_8, e), (\ell_2, e) \rangle \) or \(\langle (\ell_i, d), (\ell_i, d) \rangle \) for \(i = 3, 5, 7, 8 \) and any heading \(d \)

• They enable self-loops and re-start to \((\ell_8, e)\) when past column at \((\ell_8, e)\)

• They account for generalization of \(\mu \) to problems with any number of columns of any height and width using theorem
Example: Wall Following

- **Problems** P, Q: navigating around **observable** walls for **observable** goal
- **States** are (c, d) where c is cell and d is direction
- **Policy** μ: Forward when \triangleright, Left when \blacktriangleleft, and Right-Forward when $\triangleright\blacktriangleleft$
- **Reduction** h maps pairs (c, d) in Q into $(\ell(c), d)$ in $P + E$ with $\ell(c)$ shown
- E contains **extra transitions** (s, a, s') where a is Forward, and $\langle s, s' \rangle$ is
 $\triangleright \langle (\ell_8, e), (\ell_2, e) \rangle$ or $\langle (\ell_i, d), (\ell_i, d) \rangle$ for $i = 3, 5, 7, 8$ and any heading d
- They enable **self-loops** and re-start to (ℓ_8, e) when past column at (ℓ_8, e)
- They account for **generalization** of μ to problems with **any number of columns** of **any height** and **width** using **theorem**
Example: Visual Blocks

- **Problems** P, Q: place **visual marker** on bottom-left on **hidden** green block
- **Sense** if marker at table level, and on top of green/non-green block or air
- **States** are pairs (c, g) where c is **marker** cell and g is **hidden** (green block) cell
- **Initial states** in P are (c, g_i) where $c = (1, 1)$ and g_i is goal cell in second tower
- For given controller, Q **reduced** to $P + E$ by h that preserves observations and if marker is in goal/non-goal/empty tower
- **Extra transitions** E required for allowing such correspondence (27 in total)
- **Generalization** to any number of towers of any height using theorem
Example: Visual Blocks

- **Problems** P, Q: place **visual marker** on bottom-left on **hidden** green block
- **Sense** if marker at table level, and on top of green/non-green block or air
- **States** are pairs (c, g) where c is **marker** cell and g is **hidden** (green block) cell
- **Initial states** in P are (c, g_i) where $c = (1, 1)$ and g_i is goal cell in second tower
- For given controller, Q **reduced** to $P + E$ by h that preserves observations and if marker is in goal/non-goal/empty tower
- **Extra transitions** E required for allowing such correspondence (27 in total)
- **Generalization** to any number of towers of any height using theorem
Example: Visual Blocks

- **Problems** P, Q: place **visual marker** on bottom-left on **hidden** green block
- **Sense** if marker at table level, and on top of green/non-green block or air
- **States** are pairs (c, g) where c is **marker** cell and g is **hidden** (green block) cell
- **Initial states** in P are (c, g_i) where $c = (1, 1)$ and g_i is goal cell in second tower
- For given controller, Q **reduced** to $P + E$ by h that preserves observations and if marker is in goal/non-goal/empty tower
- **Extra transitions** E required for allowing such correspondence (27 in total)
- **Generalization** to any number of towers of any height using theorem
Example: Visual Blocks

- **Problems** P, Q: place **visual marker** on bottom-left on **hidden** green block
- **Sense** if marker at table level, and on top of green/non-green block or air
- **States** are pairs (c, g) where c is **marker** cell and g is **hidden** (green block) cell
- **Initial states** in P are (c, g_i) where $c = (1, 1)$ and g_i is goal cell in second tower
- For given controller, Q **reduced** to $P + E$ by h that preserves observations and if marker is in goal/non-goal/empty tower
- **Extra transitions** E required for allowing such correspondence (27 in total)
- **Generalization** to **any number of towers** of **any height** using **theorem**
Example: Visual Blocks

- **Problems** P, Q: place **visual marker** on bottom-left on **hidden** green block
- **Sense** if marker at table level, and on top of green/non-green block or air
- **States** are pairs (c, g) where c is **marker** cell and g is **hidden** (green block) cell
- **Initial states** in P are (c, g_i) where $c = (1, 1)$ and g_i is goal cell in second tower
- For given controller, Q **reduced** to $P + E$ by h that preserves observations and if marker is in goal/non-goal/empty tower
- **Extra transitions** E required for allowing such correspondence (27 in total)
- **Generalization** to any number of towers of any height using **theorem**
Example: Visual Blocks

- **Problems** P, Q: place **visual marker** on bottom-left on **hidden** green block
- **Sense** if marker at table level, and on top of green/non-green block or air
- **States** are pairs (c, g) where c is **marker** cell and g is **hidden** (green block) cell
- **Initial states** in P are (c, g_i) where $c = (1, 1)$ and g_i is goal cell in second tower
- For given controller, Q **reduced** to $P + E$ by h that preserves observations and if marker is in goal/non-goal/empty tower
- **Extra transitions** E required for allowing such correspondence (27 in total)
- **Generalization** to **any number of towers** of **any height** using **theorem**
Example: Visual Blocks

- **Problems** P, Q: place visual marker on bottom-left on hidden green block
- **Sense** if marker at table level, and on top of green/non-green block or air
- **States** are pairs (c, g) where c is marker cell and g is hidden (green block) cell
- **Initial states** in P are (c, g_i) where $c = (1, 1)$ and g_i is goal cell in second tower
- For given controller, Q reduced to $P + E$ by h that preserves observations and if marker is in goal/non-goal/empty tower
- **Extra transitions** E required for allowing such correspondence (27 in total)
- **Generalization** to any number of towers of any height using theorem
Example: Visual Blocks

- **Problems** P, Q: place visual marker on bottom-left on hidden green block
- **Sense** if marker at table level, and on top of green/non-green block or air
- **States** are pairs (c, g) where c is marker cell and g is hidden (green block) cell
- **Initial states** in P are (c, g_i) where $c = (1, 1)$ and g_i is goal cell in second tower
- For given controller, Q reduced to $P + E$ by h that preserves observations and if marker is in goal/non-goal/empty tower
- **Extra transitions** E required for allowing such correspondence (27 in total)
- **Generalization** to any number of towers of any height using theorem
Example: Visual Blocks

- **Problems** P, Q: place **visual marker** on bottom-left on **hidden** green block
- **Sense** if marker at table level, and on top of green/non-green block or air
- **States** are pairs (c, g) where c is **marker** cell and g is **hidden** (green block) cell
- **Initial states** in P are (c, g_i) where $c = (1, 1)$ and g_i is goal cell in second tower
- For given controller, Q **reduced** to $P + E$ by h that preserves observations and if marker is in goal/non-goal/empty tower
- **Extra transitions** E required for allowing such correspondence (27 in total)
- **Generalization** to **any number of towers** of **any height** using **theorem**
Example: Visual Blocks

- **Problems** P, Q: place visual marker on bottom-left on hidden green block
- **Sense** if marker at table level, and on top of green/non-green block or air
- **States** are pairs (c, g) where c is marker cell and g is hidden (green block) cell
- **Initial states** in P are (c, g_i) where $c = (1, 1)$ and g_i is goal cell in second tower
- For given controller, Q reduced to $P + E$ by h that preserves observations and if marker is in goal/non-goal/empty tower
- **Extra transitions** E required for allowing such correspondence (27 in total)
- **Generalization** to any number of towers of any height using theorem
Example: Visual Blocks

- **Problems** P, Q: place **visual marker** on bottom-left on **hidden** green block
- **Sense** if marker at table level, and on top of green/non-green block or air
- **States** are pairs (c, g) where c is **marker** cell and g is **hidden** (green block) cell
- **Initial states** in P are (c, g_i) where $c = (1, 1)$ and g_i is goal cell in second tower
- For given controller, Q **reduced** to $P + E$ by h that preserves observations and if marker is in goal/non-goal/empty tower
- **Extra transitions** E required for allowing such correspondence (27 in total)
- **Generalization** to any number of towers of any height using **theorem**
Example: Visual Blocks

- **Problems** P, Q: place **visual marker** on bottom-left on **hidden** green block
- **Sense** if marker at table level, and on top of green/non-green block or air
- **States** are pairs (c, g) where c is **marker** cell and g is **hidden** (green block) cell
- **Initial states** in P are (c, g_i) where $c = (1, 1)$ and g_i is goal cell in second tower
- For given controller, Q **reduced** to $P + E$ by h that preserves observations and if marker is in goal/non-goal/empty tower
- **Extra transitions** E required for allowing such correspondence (27 in total)
- **Generalization** to any number of towers of any height using theorem
Example: Visual Blocks

- **Problems** P, Q: place *visual marker* on bottom-left on *hidden* green block
- **Sense** if marker at table level, and on top of green/non-green block or air
- **States** are pairs (c, g) where c is *marker* cell and g is *hidden* (green block) cell
- **Initial states** in P are (c, g_i) where $c = (1, 1)$ and g_i is goal cell in second tower
- For given controller, Q **reduced** to $P + E$ by h that preserves observations and if marker is in goal/non-goal/empty tower
- **Extra transitions** E required for allowing such correspondence (27 in total)
- **Generalization** to any number of towers of any height using theorem
Example: Visual Blocks

- **Problems** P, Q: place **visual marker** on bottom-left on **hidden** green block
- **Sense** if marker at table level, and on top of green/non-green block or air
- **States** are pairs (c, g) where c is **marker** cell and g is **hidden** (green block) cell
- **Initial states** in P are (c, g_i) where $c = (1, 1)$ and g_i is goal cell in second tower
- For given controller, Q **reduced** to $P + E$ by h that preserves observations and if marker is in goal/non-goal/empty tower
- **Extra transitions** E required for allowing such correspondence (27 in total)
- **Generalization** to any number of towers of any height using **theorem**
Example: Visual Blocks

- **Problems** P, Q: place **visual marker** on bottom-left on **hidden** green block
- **Sense** if marker at table level, and on top of green/non-green block or air
- **States** are pairs (c, g) where c is **marker** cell and g is **hidden** (green block) cell
- **Initial states** in P are (c, g_i) where $c = (1, 1)$ and g_i is goal cell in second tower
- For given controller, Q **reduced** to $P + E$ by h that preserves observations and if marker is in goal/non-goal/empty tower
- **Extra transitions** E required for allowing such correspondence (27 in total)
- **Generalization** to any number of towers of any height using theorem
Example: Visual Blocks

- **Problems** P, Q: place visual marker on bottom-left on hidden green block
- **Sense** if marker at table level, and on top of green/non-green block or air
- **States** are pairs (c, g) where c is marker cell and g is hidden (green block) cell
- **Initial states** in P are (c, g_i) where $c = (1, 1)$ and g_i is goal cell in second tower
- For given controller, Q **reduced** to $P + E$ by h that preserves observations and if marker is in goal/non-goal/empty tower
- **Extra transitions** E required for allowing such correspondence (27 in total)
- **Generalization** to any number of towers of any height using theorem
Related Work

Generalized planning: solution that works for multiple problems sought

- Problem is **hard** as the set of problems for which a **common solution** is sought must be **explicitly represented** and **solved**
- Our approach is slightly different: solution to **one problem** is shown to solve **many other structurally similar problems**

Transfer learning: how solution to one problem used for solving another problem

- Usually cast in **discounted reward setting** (MDPs) where there is **no crisp, qualitative notion of solution**
- Our approach focuses instead on **reaching goal with certainty** in partially observable setting
- **Probability values** are not relevant, and **cost/reward** considerations ignored
- Approaches applies directly to probabilistic **Goal POMDPs**
Conclusions

• We study conditions under which controller that solves a POND problem P solves structurally similar problems Q.

• Three key concepts: reductions h, fairness, abstraction through non-determinism

• Interesting lessons about scalability and representation (actions and observations must be shared)

• Account applies directly to POMDPs where goals to be achieved with certainty

• Work is useful for understanding general scope of controllers; further work required to gain computational benefits of it