Heuristics for Cost-Optimal Classical Planning Based on Linear Programming (from ICAPS-14)

 ${\sf Florian} \ {\sf Pommerening}^1 \quad {\sf Gabriele} \ {\sf R\"oger}^1 \quad {\sf Malte} \ {\sf Helmert}^1$

 $\mathsf{Blai}\ \mathsf{Bonet}^2$

¹Universität Basel ²Universidad Simón Bolívar

IJCAI Sister Conf. Track. Buenos Aires, Argentina. 2015

Control Problem in Autonomous Behavior

Let's consider an **autonomous agent** embedded in environment

Agent faces:

- full or partial information about state of the system
- deterministic or non-deterministic effects of actions
- hard or soft goals
- discrete or continuous time
- etc

Key problem for agent is how to select next action to execute

This is the control problem in autonomous behavior

Three Approaches

Programming-based: specify control by hand

- Advantage: simple domain knowledge is easy to express
- ► Disadvantage: programmer cannot anticipate all situations

Learning-based: learn control from experience

- ► Advantage: requires little knowledge in principle
- Disadvantage: right features needed, incomplete information is problematic, and learning is slow

Model-based: specify problem by hand, derive control automatically

- ► Advantage: flexible, clear, and domain-independent
- ► Disadvantage: need a model; computationally intractable in general

Model-based approach to intelligent behavior called Planning

Classical Planning: Simplest Model

Deterministic actions, complete knowledge, discrete time, hard goals

Instance is tuple $\langle S, A, s_{init}, S_G, f, cost \rangle$:

- finite state space S
- **known** initial state $s_{init} \in S$
- actions $A(s) \subseteq A$ executable at state s
- subset $S_G \subseteq S$ of goal states
- deterministic transition function $f: S \times A \rightarrow S$ such that f(s, a) is state after applying action $a \in A(s)$ in state s
- non-negative costs cost(s, a) for applying action a in state s

Solution (plan) is sequence of actions that map initial state into goal

Cost is the sum of costs of the actions in the plan

Factored Languages

STRIPS and SAS⁺ are languages based on propositions and multi-valued variables respectively

Atoms in STRIPS are propositions; in SAS⁺ are assignments X = x

Description of instance, either STRIPS or SAS⁺, specifies:

- initial state
- goal description as subset of atoms to achieve
- finite set O of operators; for each operator $o \in O$:
 - ▶ precondition $pre(o) \subseteq Atoms$ that must hold for o to be executable
 - effects $post(o) \subseteq Atoms^+ \cup Atoms^-$ that define the transitions
- non-negative costs c(o) for applying operators $o \in O$

Example: Moving Packages

Atoms: pkg-at-A, pkg-at-B, pkg-in-truck, truck-at-A, truck-at-B Initial state: pkg-at-B, truck-at-A

Goal: pkg-at-A, truck-at-B

Operators: load-A, load-B, unload-A, unload-B, drive-A-B, drive-B-A

Costs: all operators have unit costs

Example: Moving Packages

Operator load-B:

- precondition: truck-at-B, pkg-at-B
- positive effects: pkg-in-truck
- negative effects: pkg-at-B

Solvers for Classical Planning

State-of-the-art solvers do **forward search in state space** to find path from initial state to a goal state (in exponential implicit graph)

Satisficing planning: suboptimal algorithms combining:

- weighted heuristics and re-starting
- multiple open lists ordered by different evaluation functions
- other techniques

Optimal planning: A* preferred over IDA* because:

- potentially huge number of duplicate nodes in search tree
- heuristics are relatively expensive to compute

Contribution

Novel framework for admissible heuristics that:

- it is based on integer/linear programming
- it captures most state-of-the-art heuristics for optimal planning
- it permits combination of existing heuristics into novel heuristics
- it permits analysis and deeper understanding of heuristics

New heuristics dominate existing heuristics and are cost effective

Heuristics calculated using LPs

Heuristic value h(s) for state s is value of LP of the form:

minimize f(x)subject to [set of linear inequalities]

where f(x) is linear function

Each time a value h(s) is required, such an LP is solved

When solving a hard planning problem, thousands/millions of LPs are solved

Operator Counting Constraints (OCCs)

For each operator o in the problem we consider a **non-negative** integer variable variable Y_o . The set of all such variables is \mathcal{Y}

For plan π , let Y_o^{π} be the **number of occurrences** of o in π

Operator Counting Constraints (OCCs)

For each operator o in the problem we consider a **non-negative** integer variable variable Y_o . The set of all such variables is \mathcal{Y}

For plan π , let Y_o^{π} be the **number of occurrences** of o in π

A set C of linear inequalities over \mathcal{Y} (and possibly other variables) is called an operator counting constraint (OCC) for state s if:

- for each plan π for s, there is a solution of C with $Y_o = Y_o^{\pi}$

Operator Counting Constraints (OCCs)

For each operator o in the problem we consider a **non-negative** integer variable variable Y_o . The set of all such variables is \mathcal{Y}

For plan π , let Y_o^{π} be the **number of occurrences** of o in π

A set C of linear inequalities over \mathcal{Y} (and possibly other variables) is called an operator counting constraint (OCC) for state s if:

– for each plan π for s, there is a solution of C with $\mathbf{Y}_o = Y_o^{\pi}$

A **constraint system** for state s is a set of OCCs for s where the common variables between OCCs are operator-counting variables Y_o

Example: Moving Packages

The constraints:

is OCC for the initial state s_{init}

Integer Programs, LP Relaxations, and Heuristics

The **integer program** for constraint system C is IP_C:

minimize
$$\sum_{o} cost(o) \times Y_o$$
 subject to $C, Y_o \in \mathbb{Z}^*$

The linear program LP_C is the linear relaxation of IP_C (i.e. IP_C without the constraints $Y_o \in \mathbb{Z}^*$)

Integer Programs, LP Relaxations, and Heuristics

The **integer program** for constraint system C is IP_C:

minimize
$$\sum_{o} cost(o) \times Y_o$$
 subject to $C, Y_o \in \mathbb{Z}^*$

The linear program LP_C is the linear relaxation of IP_C (i.e. IP_C without the constraints $Y_o \in \mathbb{Z}^*$)

Let ${\mathcal C}$ be function that maps states s into constraint systems ${\mathcal C}(s)$ for s

Heuristic $h_{\mathcal{C}}^{\mathsf{LP}}$ is the function that maps states s into value of $\mathsf{LP}_{\mathcal{C}(s)}$

Integer Programs, LP Relaxations, and Heuristics

The **integer program** for constraint system C is IP_C:

minimize
$$\sum_{o} cost(o) \times Y_{o}$$
 subject to $C, Y_{o} \in \mathbb{Z}^{*}$

The linear program LP_C is the linear relaxation of IP_C (i.e. IP_C without the constraints $Y_o \in \mathbb{Z}^*$)

Let ${\mathcal C}$ be function that maps states s into constraint systems ${\mathcal C}(s)$ for s

Heuristic $h_{\mathcal{C}}^{\mathsf{LP}}$ is the function that maps states s into value of $\mathsf{LP}_{\mathcal{C}(s)}$

Theorem

The heuristic $h_{\mathcal{C}}^{LP}$ is admissible for any function \mathcal{C} that maps states s into constraint systems for s and it is polytime computable (in $|\mathcal{C}(s)|$)

Compilation of Heuristics into OCCs

In paper we show how to compile into OCCs the following heuristics:

- Landmark heuristics with optimal cost partitioning
 [Karpas & Domshlak, 2009; Helmert & Domshlak, 2009; B. & Helmert, 2010]
- Abstractions and optimal cost partitioning for abstractions
 [Edelkamp, 2001; Katz & Domshlak, 2009; Pommerening et al., 2013; Helmert et al., 2014]
- Post-hoc optimization heuristics [Pommerening et al., 2013]
- State equation heuristic [van den Briel et al., 2007; B., 2013; B. & van den Briel, 2014]
- Delete relaxation constraints [Imai & Fukunaga, 2014]

Some compilations are straightforward, others are more complex

Helmert & Domshlak's Classification (2009)

Delete-relaxation heuristics

- h_{\max} , additive h_{\max} , ...

Critical-path heuristics

- $h^1, h^2, \ldots, h^m, \ldots$

Landmark heuristics

– h^L , h^{LA} , $h^{\mathsf{LM-cut}}$, \ldots

Abstraction heuristics

- PDBs, merge-and-shrink, structural patterns, ...

Example of OCCs: Landmarks

A **disjuntive action landmark** for state s is a subset L of actions such that every plan for s contains at least one action in L

For example, {drive-A-B} is a disjunctive action landmark for s_{init} in the example as **every plan** must drive the truck from location A to B

Example of OCCs: Landmarks

A **disjuntive action landmark** for state s is a subset L of actions such that every plan for s contains at least one action in L

For example, {drive-A-B} is a disjunctive action landmark for s_{init} in the example as **every plan** must drive the truck from location A to B

If ${\cal L}$ is a set of disjunctive action landmarks for state ${\it s},$ then

$$\sum_{o \in L} \mathsf{Y}_o \geq 1$$

for each landmark $L \in \mathcal{L}$ is an OCC for state s

Example of OCCs: Landmarks

A **disjuntive action landmark** for state s is a subset L of actions such that every plan for s contains at least one action in L

For example, {drive-A-B} is a disjunctive action landmark for s_{init} in the example as **every plan** must drive the truck from location A to B

If ${\cal L}$ is a set of disjunctive action landmarks for state ${\it s},$ then

 $\sum_{o \in L} \mathsf{Y}_o \geq 1$

for each landmark $L \in \mathcal{L}$ is an OCC for state s

<u>Remark:</u> LP for this OCC is the **dual** of the LP that computes the **optimal cost partitioning** for the collection \mathcal{L} of landmarks

Example of OCCs: Net Change Constraints

Number of times atoms **appear/disappear** along a plan are subject to constraints

For example, each time the truck moves right, the atom truck-at-B appears and the atom truck-at-A disappears

Example of OCCs: Net Change Constraints

Number of times atoms **appear/disappear** along a plan are subject to constraints

For example, each time the truck moves right, the atom truck-at-B appears and the atom truck-at-A disappears

Since truck is initially at A and goal is to have it at B, for valid plan π

$$Y^{\pi}_{\mathrm{drive-A-B}} + Y^{\pi}_{\mathrm{drive-B-A}} \geq 1$$

Example of OCCs: Net Change Constraints

Number of times atoms **appear/disappear** along a plan are subject to constraints

Likewise, a plan π cannot unload the package more times than it is loaded into the truck:

$$Y_{\mathsf{load-A}}^{\pi} + Y_{\mathsf{load-B}}^{\pi} - Y_{\mathsf{unload-A}}^{\pi} - Y_{\mathsf{unload-B}}^{\pi} \geq 0$$

Example of OCCs: State Equation Heuristic

For each atom p, there is a net change constraint C_p :

where $\Delta(p)$ is **net change** for p between goal and initial config., and

- o adds p iff $pre(o) \vDash \neg p$ and $p \in post(o)$
- o consumes p iff $pre(o) \vDash p$ and $\neg p \in post(o)$
- $o \text{ may add } p \text{ iff } pre(o) \nvDash \neg p \text{ and } p \in post(o)$

Example of OCCs: State Equation Heuristic

For each atom p, there is a net change constraint C_p :

where $\Delta(p)$ is **net change** for p between goal and initial config., and

- $o \text{ adds } p \text{ iff } pre(o) \vDash \neg p \text{ and } p \in post(o)$
- o consumes p iff $pre(o) \vDash p$ and $\neg p \in post(o)$
- $o \text{ may add } p \text{ iff } pre(o) \nvDash \neg p \text{ and } p \in post(o)$

The OCC for the state equation heuristic (SEQ) is the collection of all constraints C_p for atoms p

Experimental Results

- Experiments performed on Intel Xeon E5-2660 processors (2.2 GHz)
- Time limit of 30 minutes and memory limit of 2Gb
- Single OCCs:

SEQ Constraints for state-equation heuristic

- **PhO-Sys**¹ Post-hoc optimization constraints for projections on goal variables
- **PhO-Sys**² Post-hoc optimization constraints for projections up to 2 variables
 - LMC Landmark constraints for LM-cut landmarks
- **OPT-Sys**¹ Optimal cost partitioning for projections of goal variables

Experimental Results: Coverage

	single OCCs					combined OCCs				
	SEQ	PhO-Sys ¹	PhO-Sys ²	LMC	OPT-Sys ¹	LMC+ PhO-Sys ²	LMC+ SEQ	PhO-Sys ² + SEQ	LMC+ PhO-Sys ² + SEQ	r
barman (20)	4	4	4	4	4	4	4	4	4	4
elevators (20)	7	9	16	16	4	17	16	15	16	18
floortile (20)	4	2	2	6	2	6	6	4	6	7
nomystery (20)	10	11	16	14	8	16	12	14	14	14
openstacks (20)	11	14	14	14	5	14	11	11	11	14
parcprinter (20)	20	11	13	13	7	14	20	20	20	13
parking (20)	3	5	1	2	1	1	2	1	1	3
pegsol (20)	18	17	17	17	10	17	18	17	16	17
scanalyzer (20)	11	9	4	11	7	10	10	10	8	12
sokoban (20)	16	19	20	20	13	20	20	20	19	20
tidybot (20)	7	13	14	14	4	14	10	8	10	14
transport (20)	6	6	6	6	4	6	6	5	6	6
visitall (20)	17	16	16	10	15	17	19	17	18	11
woodworking (20)	9	5	10	11	2	13	16	10	16	12
Sum IPC 2011 (280)	143	141	153	158	86	169	170	156	165	165
IPC 1998-2008 (1116)	487	446	478	586	357	589	618	516	598	598
Sum (1396)	630	587	631	744	443	758	788	672	763	763

Experimental Results: Synergy

Number of expansions (excluding nodes on the final f-layer)

Numbers (x/y) say that among the y solved tasks, x were solved with **perfect heuristic estimates**

Discussion

- Framework based on IP/LP that subsumes most state-of-the-art heuristics for optimal planning
- Heuristics can be synergistically combined inside the framework
- New combined heuristics dominate component heuristics and are cost effective
- Framework permits analysis of heuristics
- Critical-path heuristics had not been captured in framework
- Future work: adding more constraints to improve lower bounds (heuristics) and compile critical-path heuristics into OCCs

Thanks. Questions?