
Heuristics for Cost-Optimal Classical Planning
Based on Linear Programming

(from ICAPS-14)

Florian Pommerening1 Gabriele Röger1 Malte Helmert1

Blai Bonet2

1Universität Basel
2Universidad Simón Boĺıvar

IJCAI Sister Conf. Track. Buenos Aires, Argentina. 2015

Control Problem in Autonomous Behavior

Let’s consider an autonomous agent embedded in environment

Agent faces:

– full or partial information about state of the system

– deterministic or non-deterministic effects of actions

– hard or soft goals

– discrete or continuous time

– etc

Key problem for agent is how to select next action to execute

This is the control problem in autonomous behavior

Three Approaches

Programming-based: specify control by hand

� Advantage: simple domain knowledge is easy to express

� Disadvantage: programmer cannot anticipate all situations

Learning-based: learn control from experience

� Advantage: requires little knowledge in principle

� Disadvantage: right features needed, incomplete information is problematic,
and learning is slow

Model-based: specify problem by hand, derive control automatically

� Advantage: flexible, clear, and domain-independent

� Disadvantage: need a model; computationally intractable in general

Model-based approach to intelligent behavior called Planning

Classical Planning: Simplest Model

Deterministic actions, complete knowledge, discrete time, hard goals

Instance is tuple 〈S,A, sinit, SG, f, cost)〉:

– finite state space S

– known initial state sinit ∈ S

– actions A(s) ⊆ A executable at state s

– subset SG ⊆ S of goal states

– deterministic transition function f : S ×A→ S such that f(s, a)
is state after applying action a ∈ A(s) in state s

– non-negative costs cost(s, a) for applying action a in state s

Solution (plan) is sequence of actions that map initial state into goal

Cost is the sum of costs of the actions in the plan

Factored Languages

STRIPS and SAS+ are languages based on propositions and
multi-valued variables respectively

Atoms in STRIPS are propositions; in SAS+ are assignments X = x

Description of instance, either STRIPS or SAS+, specifies:

– initial state

– goal description as subset of atoms to achieve

– finite set O of operators; for each operator o ∈ O:

� precondition pre(o) ⊆ Atoms that must hold for o to be executable

� effects post(o) ⊆ Atoms+ ∪ Atoms− that define the transitions

– non-negative costs c(o) for applying operators o ∈ O

Example: Moving Packages

A B

Atoms: pkg-at-A, pkg-at-B, pkg-in-truck, truck-at-A, truck-at-B

Initial state: pkg-at-B, truck-at-A

Goal: pkg-at-A, truck-at-B

Operators: load-A, load-B, unload-A, unload-B, drive-A-B, drive-B-A

Costs: all operators have unit costs

Example: Moving Packages

A B

Operator load-B:

– precondition: truck-at-B, pkg-at-B

– positive effects: pkg-in-truck

– negative effects: pkg-at-B

Solvers for Classical Planning

State-of-the-art solvers do forward search in state space to find
path from initial state to a goal state (in exponential implicit graph)

Satisficing planning: suboptimal algorithms combining:

– weighted heuristics and re-starting

– multiple open lists ordered by different evaluation functions

– other techniques

Optimal planning: A* preferred over IDA* because:

– potentially huge number of duplicate nodes in search tree

– heuristics are relatively expensive to compute

Contribution

Novel framework for admissible heuristics that:

– it is based on integer/linear programming

– it captures most state-of-the-art heuristics for optimal planning

– it permits combination of existing heuristics into novel heuristics

– it permits analysis and deeper understanding of heuristics

New heuristics dominate existing heuristics and are cost effective

Heuristics calculated using LPs

Heuristic value h(s) for state s is value of LP of the form:

minimize f(x)

subject to

[set of linear inequalities]

where f(x) is linear function

Each time a value h(s) is required, such an LP is solved

When solving a hard planning problem, thousands/millions of
LPs are solved

Operator Counting Constraints (OCCs)

For each operator o in the problem we consider a non-negative
integer variable variable Yo. The set of all such variables is Y

For plan π, let Y π
o be the number of occurrences of o in π

A set C of linear inequalities over Y (and possibly other variables) is
called an operator counting constraint (OCC) for state s if:

– for each plan π for s, there is a solution of C with Yo = Y π
o

A constraint system for state s is a set of OCCs for s where the
common variables between OCCs are operator-counting variables Yo

Operator Counting Constraints (OCCs)

For each operator o in the problem we consider a non-negative
integer variable variable Yo. The set of all such variables is Y

For plan π, let Y π
o be the number of occurrences of o in π

A set C of linear inequalities over Y (and possibly other variables) is
called an operator counting constraint (OCC) for state s if:

– for each plan π for s, there is a solution of C with Yo = Y π
o

A constraint system for state s is a set of OCCs for s where the
common variables between OCCs are operator-counting variables Yo

Operator Counting Constraints (OCCs)

For each operator o in the problem we consider a non-negative
integer variable variable Yo. The set of all such variables is Y

For plan π, let Y π
o be the number of occurrences of o in π

A set C of linear inequalities over Y (and possibly other variables) is
called an operator counting constraint (OCC) for state s if:

– for each plan π for s, there is a solution of C with Yo = Y π
o

A constraint system for state s is a set of OCCs for s where the
common variables between OCCs are operator-counting variables Yo

Example: Moving Packages

A B

The constraints:

Ydrive-A-B ≥ 1

Yload-B ≥ 1

Yunload-A ≥ 1

is OCC for the initial state sinit

Integer Programs, LP Relaxations, and Heuristics

The integer program for constraint system C is IPC :

minimize
∑
o

cost(o)× Yo subject to C, Yo ∈ Z∗

The linear program LPC is the linear relaxation of IPC
(i.e. IPC without the constraints Yo ∈ Z∗)

Let C be function that maps states s into constraint systems C(s) for s

Heuristic hLP
C is the function that maps states s into value of LPC(s)

Theorem

The heuristic hLPC is admissible for any function C that maps states s
into constraint systems for s and it is polytime computable (in |C(s)|)

Integer Programs, LP Relaxations, and Heuristics

The integer program for constraint system C is IPC :

minimize
∑
o

cost(o)× Yo subject to C, Yo ∈ Z∗

The linear program LPC is the linear relaxation of IPC
(i.e. IPC without the constraints Yo ∈ Z∗)

Let C be function that maps states s into constraint systems C(s) for s

Heuristic hLP
C is the function that maps states s into value of LPC(s)

Theorem

The heuristic hLPC is admissible for any function C that maps states s
into constraint systems for s and it is polytime computable (in |C(s)|)

Integer Programs, LP Relaxations, and Heuristics

The integer program for constraint system C is IPC :

minimize
∑
o

cost(o)× Yo subject to C, Yo ∈ Z∗

The linear program LPC is the linear relaxation of IPC
(i.e. IPC without the constraints Yo ∈ Z∗)

Let C be function that maps states s into constraint systems C(s) for s

Heuristic hLP
C is the function that maps states s into value of LPC(s)

Theorem

The heuristic hLPC is admissible for any function C that maps states s
into constraint systems for s and it is polytime computable (in |C(s)|)

Compilation of Heuristics into OCCs

In paper we show how to compile into OCCs the following heuristics:

– Landmark heuristics with optimal cost partitioning
[Karpas & Domshlak, 2009; Helmert & Domshlak, 2009; B. & Helmert, 2010]

– Abstractions and optimal cost partitioning for abstractions
[Edelkamp, 2001; Katz & Domshlak, 2009; Pommerening et al., 2013; Helmert et al.,

2014]

– Post-hoc optimization heuristics [Pommerening et al., 2013]

– State equation heuristic [van den Briel et al., 2007; B., 2013; B. & van den

Briel, 2014]

– Delete relaxation constraints [Imai & Fukunaga, 2014]

Some compilations are straightforward, others are more complex

Helmert & Domshlak’s Classification (2009)

Delete-relaxation heuristics

– hmax, additive hmax, . . .

Critical-path heuristics

– h1, h2, . . . , hm, . . .

Landmark heuristics

– hL, hLA, hLM-cut, . . .

Abstraction heuristics

– PDBs, merge-and-shrink, structural patterns, . . .

Example of OCCs: Landmarks

A disjuntive action landmark for state s is a subset L of actions
such that every plan for s contains at least one action in L

For example, {drive-A-B} is a disjunctive action landmark for sinit in
the example as every plan must drive the truck from location A to B

If L is a set of disjunctive action landmarks for state s, then∑
o∈L Yo ≥ 1

for each landmark L ∈ L is an OCC for state s

Remark: LP for this OCC is the dual of the LP that computes the optimal

cost partitioning for the collection L of landmarks

Example of OCCs: Landmarks

A disjuntive action landmark for state s is a subset L of actions
such that every plan for s contains at least one action in L

For example, {drive-A-B} is a disjunctive action landmark for sinit in
the example as every plan must drive the truck from location A to B

If L is a set of disjunctive action landmarks for state s, then∑
o∈L Yo ≥ 1

for each landmark L ∈ L is an OCC for state s

Remark: LP for this OCC is the dual of the LP that computes the optimal

cost partitioning for the collection L of landmarks

Example of OCCs: Landmarks

A disjuntive action landmark for state s is a subset L of actions
such that every plan for s contains at least one action in L

For example, {drive-A-B} is a disjunctive action landmark for sinit in
the example as every plan must drive the truck from location A to B

If L is a set of disjunctive action landmarks for state s, then∑
o∈L Yo ≥ 1

for each landmark L ∈ L is an OCC for state s

Remark: LP for this OCC is the dual of the LP that computes the optimal

cost partitioning for the collection L of landmarks

Example of OCCs: Net Change Constraints

A B

Number of times atoms appear/disappear along a plan are subject
to constraints

For example, each time the truck moves right, the atom truck-at-B
appears and the atom truck-at-A disappears

Since truck is initially at A and goal is to have it at B, for valid plan π

Y π
drive-A-B + Y π

drive-B-A ≥ 1

Example of OCCs: Net Change Constraints

A B

Number of times atoms appear/disappear along a plan are subject
to constraints

For example, each time the truck moves right, the atom truck-at-B
appears and the atom truck-at-A disappears

Since truck is initially at A and goal is to have it at B, for valid plan π

Y π
drive-A-B + Y π

drive-B-A ≥ 1

Example of OCCs: Net Change Constraints

A B

Number of times atoms appear/disappear along a plan are subject
to constraints

Likewise, a plan π cannot unload the package more times than it is
loaded into the truck:

Y π
load-A + Y π

load-B − Y π
unload-A − Y π

unload-B ≥ 0

Example of OCCs: State Equation Heuristic

For each atom p, there is a net change constraint Cp:

∑
o adds p

Yo +
∑

o may add p

Yo −
∑

o consumes p

Yo ≥ ∆(p)

where ∆(p) is net change for p between goal and initial config., and

– o adds p iff pre(o) � ¬p and p ∈ post(o)

– o consumes p iff pre(o) � p and ¬p ∈ post(o)

– o may add p iff pre(o) 2 ¬p and p ∈ post(o)

The OCC for the state equation heuristic (SEQ) is the collection of
all constraints Cp for atoms p

Example of OCCs: State Equation Heuristic

For each atom p, there is a net change constraint Cp:

∑
o adds p

Yo +
∑

o may add p

Yo −
∑

o consumes p

Yo ≥ ∆(p)

where ∆(p) is net change for p between goal and initial config., and

– o adds p iff pre(o) � ¬p and p ∈ post(o)

– o consumes p iff pre(o) � p and ¬p ∈ post(o)

– o may add p iff pre(o) 2 ¬p and p ∈ post(o)

The OCC for the state equation heuristic (SEQ) is the collection of
all constraints Cp for atoms p

Experimental Results

• Experiments performed on Intel Xeon E5-2660 processors (2.2 GHz)

• Time limit of 30 minutes and memory limit of 2Gb

• Single OCCs:

SEQ Constraints for state-equation heuristic

PhO-Sys1 Post-hoc optimization constraints for projections on
goal variables

PhO-Sys2 Post-hoc optimization constraints for projections up
to 2 variables

LMC Landmark constraints for LM-cut landmarks

OPT-Sys1 Optimal cost partitioning for projections of goal
variables

Experimental Results: Coverage

single OCCs combined OCCs

S
E

Q

P
h

O
-S

ys
1

P
h

O
-S

ys
2

L
M

C

O
P

T
-S

ys
1

L
M

C
+

P
h

O
-S

ys
2

L
M

C
+

S
E

Q

P
h

O
-S

ys
2

+
S

E
Q

L
M

C
+

P
h

O
-S

ys
2

+
S

E
Q

h
L

M
-c

u
t

barman (20) 4 4 4 4 4 4 4 4 4 4
elevators (20) 7 9 16 16 4 17 16 15 16 18
floortile (20) 4 2 2 6 2 6 6 4 6 7
nomystery (20) 10 11 16 14 8 16 12 14 14 14
openstacks (20) 11 14 14 14 5 14 11 11 11 14
parcprinter (20) 20 11 13 13 7 14 20 20 20 13
parking (20) 3 5 1 2 1 1 2 1 1 3
pegsol (20) 18 17 17 17 10 17 18 17 16 17
scanalyzer (20) 11 9 4 11 7 10 10 10 8 12
sokoban (20) 16 19 20 20 13 20 20 20 19 20
tidybot (20) 7 13 14 14 4 14 10 8 10 14
transport (20) 6 6 6 6 4 6 6 5 6 6
visitall (20) 17 16 16 10 15 17 19 17 18 11
woodworking (20) 9 5 10 11 2 13 16 10 16 12
Sum IPC 2011 (280) 143 141 153 158 86 169 170 156 165 165
IPC 1998–2008 (1116) 487 446 478 586 357 589 618 516 598 598
Sum (1396) 630 587 631 744 443 758 788 672 763 763

Experimental Results: Synergy

100 101 102 103 104 105 106 107

100

101

102

103

104

105

106

107

u
n
s.

unsolved

LMC+ PhO-Sys2 (96/758)

m
ax

(L
M
C
,P

h
O
-S
y
s2
)
(8
4/
75
7)

100 101 102 103 104 105 106 107

100

101

102

103

104

105

106

107

u
n
s.

unsolved

LMC+ SEQ (123/788)

m
ax

(L
M
C
,S
E
Q
)
(1
09
/7
88
)

Number of expansions (excluding nodes on the final f -layer)

Numbers (x/y) say that among the y solved tasks, x were solved with

perfect heuristic estimates

Discussion

• Framework based on IP/LP that subsumes most state-of-the-art
heuristics for optimal planning

• Heuristics can be synergistically combined inside the framework

• New combined heuristics dominate component heuristics and are
cost effective

• Framework permits analysis of heuristics

• Critical-path heuristics had not been captured in framework

• Future work: adding more constraints to improve lower bounds
(heuristics) and compile critical-path heuristics into OCCs

Thanks. Questions?

