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Outline

• Introduction to Planning and Problem Solving

• Classical Planning: Deterministic actions and complete information

• Beyond Classical Planning: Transformations

• Probabilistic Models: Markov Decision Processes (MDPs), and Partially Ob-
servable MDPs (POMDPs)

• Challenges. Summary

– Reference: A concise introduction to models and methods for automated planning, H. Geffner

and B. Bonet, Morgan & Claypool, 6/2013.

– Other references: Automated planning: theory and practice, M. Ghallab, D. Nau, P. Traverso.

Morgan Kaufmann, 2004, and Artificial intelligence: A modern approach. 3rd Edition, S. Russell

and P. Norvig, Prentice Hall, 2009.

– Relevant biblio: listed at the end
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What is planning?

• Thinking before acting

• Thinking what to do next

• Thinking how best to achieve given goal

• Use predictive model for action selection or control . . .

We’ll make this all precise and address:

• What is planning

• Why planning is hard

• How can (automated) planning be done effectively

• Different types of plans and settings
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Planning and Autonomous Behavior

The control problem: what to do next. Three approaches:

• Programming-based: Specify control by hand

• Learning-based: Learn control from experience

• Model-based (Planning): Derive control from model

Example: Naive Model for Wumpus (Causal Width = n + 1)
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– n + 2 state vars: W (wumpus), L (agent), P1 (pit@1), . . . , Pn (pit@n)

– 2 obs vars: S (stench) and B (breeze)

– 2 beams: B0 = {W, L} and B1 = {L, P1, P2, . . . , Pn}
– Causal width is n + 1 (bounded)

c� 2016 Bonet & Ge↵ner
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Planners, Models and Solvers

Problem =⇒ Solver =⇒ Solution

• It’s also useful to see planners in relation to other AI models and solvers:

. Constraint Satisfaction/SAT: find state that satisfies constraints

. Bayesian Networks: find probability over variable given observations

. Planning: find action sequence or policy that produces desired state

. Answer Set Programming: find answer set of logic program

. General Game Playing: find best strategy in presence of n-actors, ...

• Solvers for these models are general; not tailored to specific instances

• Models are all intractable, and some extremely powerful (POMDPs)

• Solvers all have a clear and crisp scope; they are not architectures

• Challenge is mainly computational: how to scale up

• Methodology is empirical: benchmarks and competitions

• Significant progress . . .
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Familiar Model and Solver: Linear Equations

Problem =⇒ Solver =⇒ Solution

• Problem: The age of John is 3 times the age of Peter. In 10 years, it will be
only 2 times. How old are John and Peter?

• Expressed as: J = 3P ; J + 10 = 2(P + 10)

• Solver: Gauss-Jordan (Variable Elimination)

• Solution: P = 10 ; J = 30

Solver is general as deals with any problem expressed as an instance of model

Linear Equations Model, however, is tractable; AI models are not

For AI solvers to scale up, structure of problems needs to be exploited

H. Geffner and B. Bonet, Planning Tutorial, IJCAI, July 2016, New York 6



SAT

• SAT is the problem of determining whether there is a truth assignment that
satisfies a set of clauses

x ∨ ¬y ∨ z ∨ ¬w ∨ · · ·

• Problem is NP-Complete, which in practice means worst-case behavior of SAT
algorithms is exponential in number of variables (2100 = 1030)

• Yet current SAT solvers manage to solve problems with thousands of variables
and clauses, and used widely (circuit design, verification, planning, etc)
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How SAT solvers manage to do it?

Two types of efficient (poly-time) inference in every node of the search tree:

• Unit Resolution:

. Derive clause C from C ∨ L and unit clause ∼L

• Conflict-based Learning and Backtracking:

. When empty clause � derived, find ’causes’ S of �, add ¬S to theory, and
backtrack til S disabled

Other ideas are logically possible but do not work (do not scale up):

• Generate and test each one of the possible assignments (pure search)

• Apply resolution without the unit restriction (pure inference)
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Basic (Classical) Planning Model and Task

• A system that can be in one of many states

• States assign values to a set of variables

• Actions change the values of certain variables

• Basic task: find action sequence to drive initial state into goal state

Model =⇒ Box =⇒ Action sequence

• Complexity: NP-hard; i.e., exponential in number of vars in worst case

• Box is generic; it should work on any domain no matter what variables are about
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Concrete Planning Example
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• Given the actions that move a ’clear’ block to the table or onto another ’clear’
block, find a plan to achieve the goal

• How to find path in the graph whose size is exponential in number of blocks?
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How Problem Solved? Heuristics Derived Automatically
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• Heuristic evaluations h(s) provide ‘sense-of-direction’

• Derived efficiently in a domain-independent fashion from relaxations where
effects made monotonic (delete relaxation).
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Models, Solvers, and Inference: A bit of Cognitive Science

• We have learned a lot about effective inference mechanisms in last 20–30
years from work on scalable domain-independent solvers

• The problem of AI in the 80s with knowledge-based approach was not just lack
of (commonsense) knowledge, but lack of effective inference mechanisms

• Commonsense based not only on massive amounts of knowledge, but also massive
amounts of fast and effective but unconscious inference

• This is evident in Vision and NLP but no less true in Everyday Reasoning

• The unconscious, not necessarily Freudian, getting renewed attention:

. Strangers to Ourselves: the Adaptive Unconscious by T.Wilson (2004)

. The New Unconscious, by Ran R. Hassin et al. (Editors) (2004)

. Blink: The Power Of Thinking Without Thinking by M. Gladwell (2005)

. Gut Feelings: The Intelligence of the Unconscious by Gerd Gigerenzer (2007)

. . . .

. Thinking, Fast and Slow. D. Kahneman (2011)
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Planning Models: Classical AI Planning

• finite and discrete state space S

• a known initial state s0 ∈ S
• a set SG ⊆ S of goal states

• actions A(s) ⊆ A applicable in each s ∈ S
• a deterministic transition function s′ = f(a, s) for a ∈ A(s)

• positive action costs c(a, s)

A solution or plan is a sequence of applicable actions π = a0, . . . , an that maps s0

into SG; i.e., there are states s0, . . . , sn+1 s.t. si+1 = f(ai, si) and ai ∈ A(si) for
i = 0, . . . , n, and sn+1 ∈ SG.

The plan is optimal if it minimizes the sum of action costs
∑
i=0,n c(ai, si). If

costs are all 1, plan cost is plan length

Different models obtained by relaxing assumptions in bold . . .

H. Geffner and B. Bonet, Planning Tutorial, IJCAI, July 2016, New York 13



Uncertainty but No Feedback: Conformant Planning

• finite and discrete state space S

• a set of possible initial state S0 ∈ S
• a set SG ⊆ S of goal states

• actions A(s) ⊆ A applicable in each s ∈ S
• a non-deterministic transition function F (a, s) ⊆ S for a ∈ A(s)

• uniform action costs c(a, s)

A solution is still an action sequence but must achieve the goal for any possible
initial state and transition

More complex than classical planning, verifying that a plan is conformant in-
tractable in the worst case; but special case of planning with partial observability
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Planning with Markov Decision Processes

MDPs are fully observable, probabilistic state models:

• a state space S

• initial state s0 ∈ S
• a set G ⊆ S of goal states

• actions A(s) ⊆ A applicable in each state s ∈ S
• transition probabilities Pa(s′|s) for s ∈ S and a ∈ A(s)

• action costs c(a, s) > 0

– Solutions are functions (policies) mapping states into actions

– Optimal solutions minimize expected cost to goal
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Partially Observable MDPs (POMDPs)

POMDPs are partially observable, probabilistic state models:

• states s ∈ S
• actions A(s) ⊆ A
• transition probabilities Pa(s

′|s) for s ∈ S and a ∈ A(s)

• observable goal states SG

• initial belief state b0

• sensor model given by probabilities Pa(o|s), o ∈ Obs

– Belief states are probability distributions over S

– Solutions are policies that map belief states into actions

– Optimal policies minimize expected cost to go from b0 to goal
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Example

Agent A must reach G, moving one cell at a time in known map

A

G

• If actions deterministic and initial location known, planning problem is Classical

• If actions non-deterministic and location observable, it’s an MDP or FOND

• If actions non-deterministic and location partially obs, POMDP or Contingent

Different combinations of uncertainty and feedback: diff problems, diff models

Planner is generic solver for instances of a particular model

Classical planners, MDP Planners, POMDP planners, . . .

H. Geffner and B. Bonet, Planning Tutorial, IJCAI, July 2016, New York 17



Models, Languages, and Solvers

• A planner is a solver over a class of models; it takes a model description, and
computes the corresponding controller

Model Instance =⇒ Planner =⇒ Controller

• Many models, many solution forms: uncertainty, feedback, costs, . . .

• Models described in compact form by means of planning languages (Strips,
PDDL, PPDDL, . . . ) where states represent interpretations over the language.
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Language for Classical Planning: Strips

• A problem in Strips is a tuple P = 〈F,O, I,G〉:
. F stands for set of all atoms (boolean vars)
. O stands for set of all operators (actions)
. I ⊆ F stands for initial situation
. G ⊆ F stands for goal situation

• Operators o ∈ O represented by

. the Add list Add(o) ⊆ F

. the Delete list Del(o) ⊆ F

. the Precondition list Pre(o) ⊆ F
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From Language to Models

A Strips problem P = 〈F,O, I,G〉 determines state model S(P ) where

• the states s ∈ S are collections of atoms from F (valuations over F )

• the initial state s0 is I (initially an atom in F is true iff it’s in I)

• the goal states s are such that G ⊆ s (. . . )

• the actions a in A(s) are ops in O s.t. Prec(a) ⊆ s
• the next state is s′ = s \Del(a) ∪Add(a)

• action costs c(a, s) are all 1

– (Optimal) Solution of P is (optimal) solution of S(P )

– Slight language extensions often convenient (e.g., negation and conditional
effects); some required for describing richer models (costs, probabilities, ...).
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Example: Simple Problem in Strips

Problem P = 〈F, I,O,G〉 where:

• F = {p, q, r}
• I = {p}
• G = {q, r}
• O has two actions a and b such that:

. Prec(a) = {p} , Add(a) = {q}, Del(a) = {}

. Prec(b) = {q} , Add(b) = {r}, Del(b) = {q}
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More meaningful example: Carrying packages

Carrying packages between rooms; P = 〈F, I, O,G〉 where p2ATrA is pkg A at room A, etc.

• F = {p1ATrA, p1ATrB, p2ATrA, p2ATrB, robotATrA, robotATrB, p1held, p2held}
• I = {p1ATrA, p2ATrA, robotATrB}
• G = {p1ATrB, p2ATrB}
• O contains 10 actions:

. Pick-p1rA: Prec = {p1ATrA, robotATA}, Add = {p1held}, Del = {p1ATrA}

. Pick-p1rB: Prec = {p1ATrB, robotATB}, Add = {p1held}, Del = {p1ATrB}

. Drop-p1rA: Prec = {p1held, robotATA}, Add = {p1ATrA}, Del = {p1held}

. Drop-p1rB: Prec = {p1held, robotATB}, Add = {p1ATrB}, Del = {p1held}

. Move-A-to-B: Prec = {robotATA}, Add = {robotATB}, Del = {robotATA}

. Move-B-to-A: Prec = {robotATB}, Add = {robotATA}, Del = {robotATB}

. Pick-p2rA: Prec = {p2ATrA, robotATA}, Add = {p2held}, Del = {p2ATrA}

. Pick-p2rB: Prec = {p2ATrB, robotATB}, Add = {p2held}, Del = {p2ATrB}

. Drop-p2rA: Prec = {p2held, robotATA}, Add = {p2ATrA}, Del = {p2held}

. Drop-p2rB: Prec = {p2held, robotATB}, Add = {p2ATrB}, Del = {p2held}

Too much repetition above; better to use action schemas . . .
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Previous Example Encoded Using Schemas

New encoding uses variables to avoid repetition: variables replaced by constants of given types.

Types are K, for set of packages, and R, for rooms: K = {p1, p2}, R = {rA, rB}

Problem P = 〈F, I, O,G〉 can be expressed as:

• F = {atp(?p, ?r), atr(?r), holding(?p) | ?p ∈ K, ?r ∈ R}
• I = {atp(p1, rA), atp(p2, rA), atr(rA)}
• G = {atp(p1, rB), atp(p2, rB)},

• O contains 3 action schemas; use abbrev. P = Prec, A = Add, D = Del
. Pick(?p ∈ K, ?r ∈ R): P : {atp(?p, ?r), atr(?r)}, A : {holding(?p)}, D : {atp(?p, ?r)}
. Drop(?p ∈ K, ?r ∈ R): P : {holding(?p), atr(?r}, A : {atp(?p, ?r)}, D : {holding(?p)}
. Move(?r1 ∈ R, ?r2 ∈ R): P : {atr(?r1)}, A : {atr(?r2)}, D : {atr(?r1)}

• Grounded actions obtained by replacing variables by constants of same type

• Symbols like atp, atr and holding called predicates

• Atoms like atp(p1, rA) obtained by replacing variables in atp(?p, ?r) by p1 and rA
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PDDL: A Standard Syntax for Classical Planning Problems

• PDDL stands for Planning Domain Description Language

• Developed for International Planning Competition (IPC); evolving since 1998.

• In IPC, planners are evaluated over unseen problems encoded in PDDL

Problem in PDDL =⇒ Planner =⇒ Plan

• PDDL specifies syntax for problems P = 〈F, I,O,G〉 supporting STRIPS,
variables, types, and much more

• Problems in PDDL specified in two parts:

. Domain: contains action and atom schemas along with argument types.

. Instance: contains initial situation, goal, and constants (objects) of each
type
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Example: 2-Gripper Problem in PDDL Syntax

(define (domain gripper)

(:requirements :typing)

(:types room ball gripper)

(:constants left right - gripper)

(:predicates (at-robot ?r - room)(at ?b - ball ?r - room)(free ?g - gripper)

(carry ?o - ball ?g - gripper))

(:action move

:parameters (?from ?to - room)

:precondition (at-robot ?from)

:effect (and (at-robot ?to) (not (at-robot ?from))))

(:action pick

:parameters (?obj - ball ?room - room ?gripper - gripper)

:precondition (and (at ?obj ?room) (at-robot ?room) (free ?gripper))

:effect (and (carry ?obj ?gripper) (not (at ?obj ?room)) (not (free ?gripper))))

(:action drop

:parameters (?obj - ball ?room - room ?gripper - gripper)

:precondition (and (carry ?obj ?gripper) (at-robot ?room))

:effect (and (at ?obj ?room) (free ?gripper) (not (carry ?obj ?gripper)))))

(define (problem gripper2)

(:domain gripper)

(:objects roomA roomB - room Ball1 Ball2 - ball)

(:init (at-robot roomA) (free left) (free right) (at Ball1 roomA)(at Ball2 roomA))

(:goal (and (at Ball1 roomB) (at Ball2 roomB))))
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Computation: How to Solve Classical Planning Problems?

Problem in PDDL =⇒ Planner =⇒ Plan

• Planning is one of the oldest areas in AI; many ideas have been tried

• We focus on the two ideas that appear to work best computationally

. Planning as Heuristic Search

. Planning as SAT

• These methods able to solve problems over huge state spaces

• Of course, some problems are inherently hard, and for them, general, domain-
independent planners unlikely to approach the performance of specialized
methods
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Solving P by solving S(P ): Path-finding in graphs

Search algorithms for planning exploit the correspondence between (classical)
states model and directed graphs:

• The nodes of the graph represent the states s in the model

• The edges (s, s′) capture corresponding transition in the model with same cost

In the planning as heuristic search formulation, the problem P is solved by
path-finding algorithms over the graph associated with model S(P )
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Example: Simple Problem P and Reachable Graph S(P )

Problem P = 〈F, I,O,G〉 above where:

• F = {p, q, r}, I = {p}, G = {q, r}
• O with two actions a and b such that:

. Prec(a) = {p} , Add(a) = {q}, Del(a) = {}

. Prec(b) = {q} , Add(b) = {r}, Del(b) = {q}

Graph associated with reachable fragment of model S(P ); plan in red

p

p,q p,r

a

ba

p,q,r
a

b a

Init

Goal
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Search Algorithms for Path Finding in Directed Graphs

• Blind search/Brute force algorithms

. Goal plays passive role in the search
e.g., Depth First Search (DFS), Breadth-first search (BrFS), Uniform Cost

(Dijkstra), Iterative Deepening (ID)

• Informed/Heuristic Search Algorithms

. Goals plays active role in the search through heuristic function h(s) that
estimates cost from s to the goal

e.g., A*, IDA*, Hill Climbing, Best First (BFS), LRTA*, . . .

Heuristic search algorithms can find paths in very large graphs; with more than
1020 states as in Rubik’s cube
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Search Algorithms: General Scheme

Idea: pick node from search boundary Nodes containing initially root node. If node
is goal, return solution. Else add children to boundary and repeat. Fail if boundary
is empty.

Algorithms like DFS, BrFS, and BFS instances of this general schema

• DFS: boundary is a stack, pick top, add on top

• BrFS: boundary is a queue, pick first, add last

• BFS: boundary is priority queue, pick node that min evaluation function f

. A*: f(s) = g(s) + h(s); g(s) is cost paid up to s, h(s) is estimated cost to goal

. WA*: f(s) = g(s) +Wh(s); W > 1

. Greedy BFS: f(s) = h(s)

Key dimensions: completeness, optimality, and complexity in time and space
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On-Line Search: Learning Real Time A* (LRTA*):

• LRTA* is a very interesting real-time search algorithm

• It’s like hill-climbing where best child selected and others discarded, except
that heuristic V , initially V = h, updated dynamically

1. Evaluate each action a in s as: Q(a, s) = c(a, s) + V (s′)

2. Apply action a that minimizes Q(a, s)

3. Update V (s) to Q(a, s)

4. Exit if s′ is goal, else go to 1 with s := s′

• Two remarkable properties

. Each trial of LRTA gets eventually to the goal if space connected

. Repeated trials eventually get to the goal optimally, if h admissible!

• Also, it generalizes well to stochastic actions (MDPs)
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Heuristics: where they come from?

• General idea: heuristic functions obtained as optimal cost functions of relaxed
(simplified) problems

• Examples:

– Sum of Manhattan distances in N-puzzle
– Number of misplaced blocks in Blocks-World
– Euclidean Distance in Routing Finding
– Spanning Tree in Traveling Salesman Problem

• Yet

– how to get and solve suitable relaxations?
– how to get heuristics automatically for planning?
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Heuristics for Classical Planning

• Key development in planning in the 90s: automatic extraction of heuristic
functions to guide search for plans in S(P )

• Heuristics derived from relaxation where delete-lists of actions dropped

• This is called the delete-relaxation

• P (s) is P but with s as the initial state, P+ is delete-relaxation of P , and
h∗P (s) is optimal cost to solve P from s. Then heuristic h(s) could be set to:

h(s)
def
= h∗P+(s)

• Yet, this doesn’t work computationally: solving P+(s) optimally as difficult as
solving P (s) optimally (NP-hard)

• On the other hand, while solving relaxation P+(s) optimally is hard, just finding
one solution not necessarily optimal, is easy
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Basic Heuristics and Decomposition of Delete-Free Problems

If plan π1 achieves G1 and plan π2 achieves G2, π1, π2 achieves G1 and G2 in P+

Iterative procedure to compute plans for all atoms in P+(s) based on this
observation:

• Atom p reachable in 0 steps with empty plan π(p) if p ∈ s
• Atom p reachable i+ 1 steps with plan π(p1), . . . , π(pn), ap if

. p not reachable in i steps or less, and

. ∃ action ap that adds p with preconds p1, . . . , pn reachable in ≤ i steps

Properties: relaxed plans

• Procedure terminates in number of steps bounded by number of atoms

• If atom p reachable, π(p) is a relaxed plan for p; i.e. plan in P+(s)

• If atom p not reachable, there is no plan for p in P (s)

Basic Heuristics: hmax, hFF

• h(s) = i iff goal g reachable in i steps: is admissible heuristic called hmax
• h(s) = number of different actions in π(g): is FF heuristic: hFF
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Example

Problem P = 〈F, I,O,G〉 where

• F = {pi, qi | i = 0, . . . , n}
• I = {p0, q0}
• G = {pn, qn}
• O contains actions ai and bi, i = 0, . . . , n− 1:

. Prec(ai) = {pi} , Add(ai) = {pi+1}, Del(ai) = {pi}

. Prec(bi) = {qi} , Add(bi) = {qi+1}, Del(bi) = {qi}
Heuristics for state s = I where p0 and q0 are true:

. hmax(s) = n; hFF(s) = 2n; h∗(s) = 2n (optimal)

Yet if any atom pi or qi with i 6= n added to G,

. hmax(s) = n; hFF(s) = 2n; h∗(s) =∞
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Max Heuristic and Layered Graphs

• Iterative reachability procedure above builds layers Pi of atoms from s:

P0 A0 P1 A1

...

...

...

P0 = {p ∈ s}
Ai = {a ∈ O | Pre(a) ⊆ Pk, k ≤ i}

Pi+1 = {p ∈ Add(a) | a ∈ Ai, p 6∈ Pk, k < i+ 1}

The max heuristic is implicitly represented in layered graph:

hmax(s) = min i such each p ∈ G is in layer Pk, k ≤ i
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Alternative, Mathematical Definition of Max Heuristic

• For all atoms p:

h(p; s)
def
=

{
0 if p ∈ s, else
mina∈O(p)[cost(a) + h(Pre(a); s)]

• For sets of atoms C, set:

h(C; s)
def
= maxr∈Ch(r; s)

• Resulting heuristic function hmax(s):

hmax(s)
def
= h(Goals; s)

H. Geffner and B. Bonet, Planning Tutorial, IJCAI, July 2016, New York 37



From Max to Sum: The Additive Heuristic

• For all atoms p:

h(p; s)
def
=

{
0 if p ∈ s, else
mina∈O(p)[cost(a) + h(Pre(a); s)]

• For sets of atoms C, replace Max by Sum:

h(C; s)
def
=
∑
r∈C

h(r; s)

• Resulting heuristic function hadd(s):

hadd(s)
def
= h(Goals; s)

Heuristic hadd is not admissible like hmax but informative like hFF

H. Geffner and B. Bonet, Planning Tutorial, IJCAI, July 2016, New York 38



State-of-the-art Planners: EHC, Helpful Actions, Landmarks

First generation of heuristic search planners, searched the graph defined by state
model S(P ) using standard search algorithms like Greedy Best-First or WA*, and
heuristics like hadd

More recent planners like FF, FD, and LAMA go beyond this in two ways:

• They exploit the structure of the heuristic and/or problem further:

. Helpful Actions: actions most relevant in relaxation

. Landmarks: implicit problem subgoals

• They use novel search algorithms

. Enforced Hill Climbing (EHC)

. Multi-Queue Best First Search

The result is that they can often solve huge problems, very fast
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Enforced Hill Climbing Search in the FF Planner

FF planner works in two phases

• The second phase is a Greedy Best-First search guided by hFF. This is
complete but slow

• First phase, called EHC (Enforced Hill Climbing) is incomplete but fast

. Starting with s = s0, EHC does a breadth-first search from s using only
the helpful actions until a state s′ is found such that hFF(s′) < hFF(s).

. If such a state s′ is found, the process is repeated starting with s = s′. Else,
the EHC fails, and the second phase is triggered.

• An action is helpful in s if it is applicable in s and adds an atom p not in s such
that p is a goal or the precondition of an action in the relaxed plan from s
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Landmarks and Helpful Actions in LAMA’s Multi-queue BFS

• Standard best-first algorithms work with a single queue that is ordered according
to the evaluation function f (f = h in GBFS, f = g + h in A*, f = g +W ∗ h
in WA*, etc).

• If there are two or more evaluation functions f , it is also possible to have
several queues each one ordered by a different evaluation function

• Multi-queue Best-First search picks best node in one queue, then best node
in another queue, and so on, alternating

• LAMA uses four queues and two heuristics:

. two queues are ordered by hFF, and two by number of unachieved landmarks

. one queue in each pair is restricted to the nodes obtained by “helpful”actions
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Landmarks and Multi-queue Best-First Search in LAMA (cont)

• Landmarks are implicit subgoals of the problem; formally atoms p that must be
true in all plans

• For example, clear(A) is a landmark in any Blocks problem where block A is
above a misplaced block.

• While finding all landmarks is computationally hard, some landmarks are easy
to identify with methods similar to those used for computing heuristics

• Indeed, atom p is a landmark in P+(s), and hence of P (s), iff heuristics like
hmax(s) becomes infinite once the actions that add p are excluded from the
problem.

• Thus, delete-relaxation landmarks can be computed in polynomial time; more
efficient methods than this, however, available (and used in LAMA).
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Something Different: SAT Approach to Planning

• SAT is the problem of determining whether a set of clauses is satisfiable

• A clause is a disjunction of literals where a literal is an atom p or its negation ¬p

x ∨ ¬y ∨ z ∨ ¬w

• Many problems can be mapped into SAT

• SAT is intractable (exponential in the worst case unless P=NP) yet very large
SAT problems can be solved in practice
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Planning as SAT

Maps problem P = 〈F,O, I,G〉 and horizon n into “clauses” C(P, n):

• Init: p0 for p ∈ I, ¬q0 for q ∈ F and q 6∈ I
• Goal: pn for p ∈ G
• Actions: For i = 0, 1, . . . , n− 1, and each action a ∈ O

ai ⊃ pi for p ∈ Prec(a)

ai ⊃ pi+1 for each p ∈ Add(a)

ai ⊃ ¬pi+1 for each p ∈ Del(a)

• Persistence: For i = 0, . . . , n − 1, and each atom p ∈ F , where where O(p+) and O(p−)

stand for the actions that add and delete p resp.
pi ∧ ∧a∈O(p−)¬ai ⊃ pi+1

¬pi ∧ ∧a∈O(p+)¬ai ⊃ ¬pi+1

• Sequence: For each i = 0, . . . , n− 1, if a 6= a′, ¬(ai ∧ a′i)

– C(P, n) satisfiable iff there is a plan with length bounded by n

– Plan can be read from truth valuation that satisfies C(P, n).

– Encoding simple but not best computationally; for that: parallelism, NO-OPs, lower bounds

– Best current SAT planners are very good (Rintanen); potentially better than heuristic search

planners on highly constrained problems
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Optimal Planning

State of the art in optimal planning is forward search on state space, either:

• Standard A* combined with admissible heuristics

• Search with data structures to efficiently store state subsets (open/closed lists):

– Search can be blind using breadth-first search

– Informed using symbolic A* with admissible heuristics

In either approach, algorithm is fixed what changes is the heuristic

Most effective heuristics to date:

• Use landmark information to obtain admissible estimates

• Integrate different information automatically extracted from representation
(such as landmarks, abstractions, “constraints” on addition/deletion of atoms
along plans) into LP whose solution is guaranteed to provide admissible estimates
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A Last Twist: A Stupid but Powerful Blind-Search Algorithm?

Assign each state s generated in the breadth-first search, a number, novelty(s):

• novelty(s) = 1 if some atom p true in s and false in all previous states

• novelty(s) = 2 if some atom pair p&q true in s and false in previous states . . .

• . . .

Iterative Width (IW):

• IW(i) is a breadth-first search that prunes newly generated states s with
novelty(s) > i.

• IW(i) runs is exponential in i, not in number of variables as normal BrFS

• IW is sequence of calls IW(i) for i = 1, 2, . . . over problem P until problem
solved or i exceeds number of variables in problem
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How well does IW do? Planning with atomic goals

# Domain I IW(1) IW(2) Neither

1. 8puzzle 400 55% 45% 0%
2. Barman 232 9% 0% 91%
3. Blocks World 598 26% 74% 0%
4. Cybersecure 86 65% 0% 35%
. . . . . . . . . . . . . . .
22. Pegsol 964 92% 8% 0%
23. Pipes-NonTan 259 44% 56% 0%
24. Pipes-Tan 369 59% 37% 3%
25. PSRsmall 316 92% 0% 8%
26. Rovers 488 47% 53% 0%
27. Satellite 308 11% 89% 0%
28. Scanalyzer 624 100% 0% 0%
. . . . . . . . . . . . . . .
33. Transport 330 0% 100% 0%
34. Trucks 345 0% 100% 0%
35. Visitall 21859 100% 0% 0%
36. Woodworking 1659 100% 0% 0%
37. Zeno 219 21% 79% 0%

Total/Avgs 37921 37.0% 51.3% 11.7%

# Instances IW ID BrFS GBFS + hadd

37921 34627 9010 8762 34849

Top: Instances solved by IW(1) and IW(2). Bottom: Comparison with ID, BrFS,
and GBFS with hadd
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Sequential IW: Using IW Sequentially to Solve Joint Goals

SIW runs IW sequentially for achieving one (more) goal at a time (hill-climbing)

Serialized IW (SIW) GBFS + hadd

Domain I S Q T M/Awe S Q T

8puzzle 50 50 42.34 0.64 4/1.75 50 55.94 0.07
Blocks World 50 50 48.32 5.05 3/1.22 50 122.96 3.50
Depots 22 21 34.55 22.32 3/1.74 11 104.55 121.24
Driver 20 16 28.21 2.76 3/1.31 14 26.86 0.30
Elevators 30 27 55.00 13.90 2/2.00 16 101.50 210.50
Freecell 20 19 47.50 7.53 2/1.62 17 62.88 68.25
Grid 5 5 36.00 22.66 3/2.12 3 195.67 320.65
OpenStacksIPC6 30 26 29.43 108.27 4/1.48 30 32.14 23.86
ParcPrinter 30 9 16.00 0.06 3/1.28 30 15.67 0.01
Parking 20 17 39.50 38.84 2/1.14 2 68.00 686.72
Pegsol 30 6 16.00 1.71 4/1.09 30 16.17 0.06
Pipes-NonTan 50 45 26.36 3.23 3/1.62 25 113.84 68.42
Rovers 40 27 38.47 108.59 2/1.39 20 67.63 148.34
Sokoban 30 3 80.67 7.83 3/2.58 23 166.67 14.30
Storage 30 25 12.62 0.06 2/1.48 16 29.56 8.52
Tidybot 20 7 42.00 532.27 3/1.81 16 70.29 184.77
Transport 30 21 54.53 94.61 2/2.00 17 70.82 70.05
Visitall 20 19 199.00 0.91 1/1.00 3 2485.00 174.87
Woodworking 30 30 21.50 6.26 2/1.07 12 42.50 81.02
...

Summary 1150 819 44.4 55.01 2.5/1.6 789 137.0 91.05
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Why IW does so well? A Width Notion

Consider a chain t0 → t1 → . . .→ tn where each ti is a set of atoms from P

• A chain is valid if t0 is true in Init and all optimal plans for ti can be extended into optimal
plans for ti+1 by adding a single action

• The size of the chain is the size of largest ti in the chain

• Width of P is size of smallest chain t0 → t1 → . . . → tn such that that the optimal plans

for tn are optimal plans for P .

Theorem 1: Domains like Blocks, Logistics, Gripper, . . . have all bounded and
small width, independent of problem size provided that goals are single atoms

Theorem 2: IW runs in time exponential in width of P

IW is blind search/exploration. No PDDL or goals used, and can be used with a
simulator
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IW on the Atari Video Games
IW(1) BFS BrFS UCT

Game Score Time Score Time Score Score

Alien 25634 81 12252 81 784 7785

Amidar 1377 28 1090 37 5 180

Assault 953 18 827 25 414 1512

Asterix 153400 24 77200 27 2136 290700

Asteroids 51338 66 22168 65 3127 4661

Atlantis 159420 13 154180 71 30460 193858

Bank Heist 717 39 362 64 22 498

Battle Zone 11600 86 330800 87 6313 70333

Beam Rider 9108 23 9298 29 694 6625

. . . . . . . . . . . . . . . . . . . . .

Robot Tank 68 34 52 34 2 50

Seaquest 14272 25 6138 33 288 5132

Space Invaders 2877 21 3974 34 112 2718

Star Gunner 1540 19 4660 18 1345 1207

Tennis 24 21 24 36 -24 3

Time Pilot 35000 9 36180 29 4064 63855

Tutankham 172 15 204 34 64 226

Up And Down 110036 12 54820 14 746 74474

Venture 1200 22 980 35 0 0

Video Pinball 388712 43 62075 43 55567 254748

Wizard Of Wor 121060 25 81500 27 3309 105500

Zaxxon 29240 34 15680 31 0 22610

# Times Best (54 games) 26 13 1 19

Avg Score collected by IW(1) vs. UCT and other when used in on-line mode (lookahead) in 54

Games. Atoms = values of each of the 128 bytes in 1024-bit state
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IW on the General-Video Games (GVG-AI)

Time 50ms 300ms

Game BrFS MC OLMC IW(1) BrFS MC OLMC IW(1) 1-Look RND

Camel Race 2 1 1 0 1 3 0 24 0 1

Digdug 0 0 0 0 0 0 0 0 0 0

Firestorms 12 6 2 13 14 7 6 25 10 0

Infection 20 21 19 22 21 19 22 21 19 22

Firecaster 0 0 0 0 0 0 1 0 0 0

Overload 9 6 8 20 17 3 5 23 0 0

Pacman 1 0 0 2 1 1 4 14 0 0

Seaquest 13 13 15 9 11 17 22 9 12 0

Whackamole 20 18 25 23 22 23 25 21 21 5

Eggomania 0 0 1 21 0 0 2 22 0 0

Total 77 65 71 110 87 73 87 159 62 28

Top: # wins per game out of 25

Left: # wins as function of time

for diff algorithms
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AI Planning: Status

• The good news: classical planning works reasonably well

. Large problems can be solved fast (non-optimally)

• Model simple but useful

. Operators not primitive; can be policies themselves

. Fast closed-loop replanning able to cope with uncertainty sometimes

• Limitations

. Does not model Uncertainty (no probabilities)

. Does not deal with Incomplete Information (no sensing)

. Does not accommodate Preferences (simple cost structure)

. . . .
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Beyond Classical Planning: Two Strategies

• Top-down: Develop solver for more general class of models; e.g., Markov
Decision Processes (MDPs), Partial Observable MDPs (POMDPs), . . .

+: generality
−: complexity

• Bottom-up: Extend the scope of current ’classical’ solvers

+: efficiency
−: generality

• We’ll do both, starting with transformations for

. compiling soft goals away (planning with preferences)

. compiling uncertainty away (conformant planning)

. deriving finite state controllers (usually set by hand)

. doing plan recognition (as opposed to plan generation)

. . . .
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Planning with Soft Goals (Terminal Rewards)

• Soft goals as opposed to hard goals are to be achieved if worth the costs

• Utility of plan π is utility of soft goals p achieved minus plan cost:

u(π) =
∑
π|=p

u(p) −
∑
a∈π

c(a)

• Best plan achieves the hard goals while maximizing utility

• 2008 Int. Planning Competition featured soft goal planning track (net-benefit)

• Problem looks different than “classical” minimization of (positive) action costs

• Two choices to make: which soft goals to achieve and how
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Soft Goal Planning with a Classical Planner: Transformation

Yet soft goals can be easily compiled away

• For each soft goal p, create new hard goal p′ initially false, and two new
actions:

. collect(p) with precondition p, effect p′ and cost 0, and

. forgo(p) with an empty precondition, effect p′ and cost u(p)

• Plans π maximize u(π) iff minimize c(π) =
∑
a∈π c(a) in translation

• Classical planners over translation outperform native net-benefit planners

• This transformation is simple and polynomial; others are neither but still useful
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Goal Recognition with a Planner

S

A B C

D

F EH

J

• Agent can move one unit in the four directions

• Possible targets are A, B, C, . . .

• Starting in S, he is observed to move up twice

• Where is he going? Why?

H. Geffner and B. Bonet, Planning Tutorial, IJCAI, July 2016, New York 56



Goal Recognition with a Planner: Formulation

S

A B C

D

F EH

J

• From Bayes, goal posterior is P (G|O) = αP (O|G)P (G), G ∈ G

• P (O|G) measures how well goal G predicts observations O, defined as
monotonic function of difference between two costs:

. c(G+O): cost of achieving G while complying with obs O

. c(G+O): cost of achieving G while not complying with obs O

• These costs can be computed by classical planner after transformation; goal
posterior P (G|O) results from |G| calls to classical planner (assuming priors
P (G) given).
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Goal Recognition Example

1 2 3 4 5 6 7 8 9 10 11

1
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4
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P(

G|
O t

)
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1

G=A
G=B
G=C
G=D
G=E
G=F

Grid shows ‘noisy walk’ and possible targets; curves show resulting posterior
probabilities P (G|O) of each possible target G as function of time

Posterior probabilities P (G|O) obtained from Bayes’ rule and costs computed by
classical planner
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Incomplete Information: Conformant Planning

G
I

Problem: A robot must move from an uncertain I into G with certainty, one cell
at a time, in a grid nxn

• Problem very much like a classical planning problem except for uncertain I

• Plans, however, quite different: best conformant plan must move the robot
to a corner first (localization)
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Conformant Planning: Belief State Formulation

G
I

• call a set of possible states, a belief state

• actions then map a belief state b into a bel state ba = {s′ |s′ ∈ F (a, s) & s ∈ b}
• conformant problem becomes a path-finding problem in belief space

Problem: number of belief state is doubly exponential in number of variables.

– effective representation of belief states b

– effective heuristic h(b) for estimating cost in belief space

Recent alternative: translate into classical planning . . .
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Basic Translation: Move to the ’Knowledge Level’

Given conformant problem P = 〈F,O, I,G〉

• F stands for the fluents in P

• O for the operators with effects C → L

• I for the initial situation (clauses over F -literals)

• G for the goal situation (set of F -literals)

Define classical problem K0(P ) = 〈F ′, O′, I ′, G′〉 as

• F ′ = {KL,K¬L | L ∈ F}
• I ′ = {KL | clause L ∈ I}
• G′ = {KL | L ∈ G}
• O′ = O but preconds L replaced by KL, and effects C → L replaced by KC → KL

(supports) and ¬K¬C → ¬K¬L (cancellation)

K0(P ) is sound but incomplete: every classical plan that solves K0(P ) is a
conformant plan for P , but not vice versa.
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Key elements in Complete Translation KT,M(P )

• A set T of tags t: consistent sets of assumptions (literals) about the initial
situation I

I 6|= ¬t

• A set M of merges m: valid subsets of tags (= DNF)

I |=
∨
t∈m

t

• New (tagged) literals KL/t meaning that L is true if t true initially
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A More General Translation KT,M(P )

Given conformant problem P = 〈F,O, I,G〉

• F stands for the fluents in P

• O for the operators with effects C → L

• I for the initial situation (clauses over F -literals)

• G for the goal situation (set of F -literals)

Define classical problem KT,M(P ) = 〈F ′, O′, I ′, G′〉 as

• F ′ = {KL/t , K¬L/t | L ∈ F and t ∈ T}
• I ′ = {KL/t | if I |= t ⊃ L}
• G′ = {KL | L ∈ G}
• O′ = O but preconds L replaced by KL, and effects C → L replaced by KC/t → KL/t

(supports) and ¬K¬C/t→ ¬K¬L/t (cancellation), and new merge actions∧
t∈m,m∈M

KL/t → KL

The two parameters T and M are the set of tags (assumptions) and the set of merges (valid sets

of assumptions) . . .
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Compiling Uncertainty Away: Properties

• General translation scheme KT,M(P ) is always sound, and for suitable choice of
the sets of tags and merges, it is complete.

• KS0(P ) is complete instance of KT,M(P ) obtained by setting T to the set of
possible initial states of P

• Ki(P ) is a polynomial instance of KT,M(P ) that is complete for problems
with conformant width bounded by i.

. Merges for each L in Ki(P ) chosen to satisfy i clauses in I relevant to L

• The conformant width of most benchmarks bounded and equal 1!

• This means that such problems can be solved with a classical planner after a
polynomial translation
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Derivation of Finite State Controllers Using Planners

• Starting in A, move to B and back to A; marks A and B observable.

A B

• This finite-state controller solves the problem

q0

A/Right
-/Right

q1
B/Left

-/Left

• FSC is compact and general: can add noise, vary distance, etc. and still works

• Heavily used in practice, e.g. video-games and robotics, but written by hand

H. Geffner and B. Bonet, Planning Tutorial, IJCAI, July 2016, New York 65



Derivation of Finite State Controllers Using Planners: Idea

• FSC maps controller state, observation pair into action, controller state pair

(q, o) 7→ (a, q′)

• For deriving FSC using planner, introduce “actions” (q, o, a, q′) for reducing
original problem P with sensing into conformant problem P ′

• Action (q, o, a, q′) behaves like action a but conditional on q and o being true,
making q′ true as well

• Actions (q, o, a, q′) in the plan for transformed problem P ′ encode finite-state
controller that solves P

• Plan for conformant P ′ can be obtained by running classical planner on further
transformed problem problem K(P ′)
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Finite State Controller: Learning from a Single Example

q0

TB/Up
-B/Up

TC/Right

q1
-C/Down

TB/Right

-B/Down

• Example: move ‘eye’ (circle) one cell at a time til green block found

• Observables: Whether cell ‘seen’ contains a green block (G), non-green block
(B), or neither (C); and whether on table (T) or not (–)

• Controller shown derived using a classical planner after transformations

• Derived controller is general and applies not only to instance shown but to any
other problem instance; i.e., any number of blocks and any configuration
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Other Problems Solved by Transformations and Classical
Planners

• Temporally Extended Goals expressed in LTL like “monitor room A and room
B forever”: �(♦At(A) ∧ ♦At(B))

• Probabilistic Conformant Planning: find action sequence that achieves goal
with threshold probability

• Off-line planning with partial observability: Contingent planning

• On-line planning with partial observability: Wumpus, Minesweeper, . . .

• Multiagent planning problems; e.g., agent 1 and 2 need to find blocks 1 and
2 resp. hidden in some room; what they should communicate and when?

• . . .
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Outline: Probabilistic Models

• Markov Decision Processes (MDPs)

– Models and solutions
– Basic dynamic programming methods: Value and Policy Iteration
– Dynamic programming + heuristic search

• Partially Observable MDPs (POMDPs)

– Models and solutions
– Value and policy iteration for POMDPs
– Approximate algorithms for POMDPs

• Belief Tracking

– Compact models
– Basic (Flat) belief tracking
– Particle filters and structure
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Markov Decision Processes (MDPs)



Planning with Markov Decision Processes: Goal MDPs

MDPs are fully observable, probabilistic state models:

• state space S

• initial state s0 ∈ S
• a set SG ⊆ S of goal states

• actions A(s) ⊆ A applicable in each state s ∈ S
• transition probabilities Pa(s′|s) for s ∈ S and a ∈ A(s)

• action costs c(a, s) > 0

– Agent always knows current state

– Solutions are functions (policies) mapping states into actions

– Optimal solutions minimize expected cost from s0 to goal
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Discounted Reward Markov Decision Processes

Another common formulation of MDPs:

• state space S

• initial state s0 ∈ S
• actions A(s) ⊆ A applicable in each state s ∈ S
• transition probabilities Pa(s

′|s) for s ∈ S and a ∈ A(s)

• rewards r(a, s) (positive or negative)

• discount factor 0 < γ < 1 ; there are no goal states

– Solutions are functions (policies) mapping states into actions

– Optimal solutions max expected discounted accumulated reward from s0
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Expected Cost/Reward of Policy (MDPs)

• In goal MDPs, expected cost of policy π starting at s, denoted as V π(s), is

V π(s) = Eπ
[∑

i

c(ai, si)

∣∣∣∣ s0 = s, ai = π(si)

]

where si is rv denoting state at time i, and expectation is weighted sum of cost
of possible state trajectories times their probability given π

• In discounted reward MDPs, expected discounted reward from s is

V π(s) = Eπ
[∑

i

γi r(ai, si)

∣∣∣∣ s0 = s, ai = π(si)

]

• In both cases, optimal value function V ∗ expresses V π for best π
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Solving MDPs: Assumptions

Conditions that ensure existence of optimal policies and correctness (convergence)
of some of the methods we’ll see:

• For discounted MDPs:

– discount factor 0 < γ < 1 guarantees that everything is bounded;
e.g. discounted accumulative reward no greater than C/(1− γ), if r(a, s) ≤ C
for all s and a ∈ A(s)

• For goal MDPs:

– under strictly positive costs, absence of dead-ends is assumed so that
V ∗(s) 6=∞ for all s

– under general costs, other (mild) assumptions are needed
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Equivalence of MDP Models

Two MDP models M and R are equivalent if:

– M and R have the same set of actions

– M and R have the same set of non-goal states

– there are constants α 6= 0 and β such that for every policy π (mapping from
non-goal states into actions), and for every non-goal state s:

V πM(s) = αV πR (s) + β

– Additionally, if M and R are of different sign, a < 0; otherwise a > 0

Value functions over non-goal states are related by linear transformation

Consequence: if M and R are equivalent, π is optimal for M iff π is optimal for R
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Equivalence-Preserving Transformations on MDP Models

A transformation is a function that maps MDP models into MDP models

• for discounted reward MDP R, R 7→ R + C adds the constant C (positive or
negative) to all rewards: V πR+C(s) = V πR (s) + C/(1− γ)

• R 7→ kR multiplies all costs/rewards by constant k (positive/negative). If k is
negative, model kR changes sign. We have V πkR(s) = k × V πR (s)

• for discounted cost MDP R, R 7→ R, eliminates discount factor by:

– multiplying transition probabilities Pa(s
′|s) by γ

– adding new (dummy) goal state g with transition probabilities
Pa(g|s) = (1− γ) for all s and a ∈ A(s)

We have V π
R

(s) = V πR (s)

All transformations R 7→ R+ C, R 7→ kR and R 7→ R preserve equivalence
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Solving MDPs: From Discounted Reward MDPs to Goal MDPs

Discounted reward MDPs can be converted into equivalent goal MDPs
(no similar transformation known in opposite direction)

Given discounted reward MDP model R:

1. Multiply rewards by −1 applying R 7→ −R
(Result: −R is cost-based and discounted MDP)

2. Add big constant C to make all costs positive using R 7→ R+ C on −R
(Result: −R + C has no rewards, only positive costs, but it has discount factor γ)

3. Eliminate discount factor using R 7→ R over −R+ C
(Result: −R + C is Goal MDP)

Consequence: solvers for goal MDPs can be used for discounted reward MDPs
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Example of Elimination of Discount Factor γ = 0.95

openR/.50

listen/1.0
openL/.50

openR/.50

openL/.50
listen/1.0

openR/.50
openL/.50


openR/.50
openL/.50

left right

right

target

openL/1.0
listen/1.0

openR/1.0

listen/.05

openR/.05
openL/.05

openR/.05

listen/.05
openL/.05

openR/.475

openR/.475
openL/.475

openL/.475

leftopenL/.475
openR/.475

listen/.95
openL/.475
openR/.475

listen/.95
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Basic Dynamic Programming Methods: Value Iteration (1 of 3)

• Greedy policy πV for V = V ∗ is optimal:

πV (s) = argmin
a∈A(s)

[
c(s, a) +

∑
s′∈S

Pa(s
′|s)V (s′)

]

• Optimal V ∗ is unique solution to Bellman’s optimality equation for MDPs:

V (s) = min
a∈A(s)

[
c(s, a) +

∑
s′∈S

Pa(s
′|s)V (s′)

]
with V (s) = 0 for goal states s

• For discounted reward MDPs, Bellman equation is

V (s) = max
a∈A(s)

[
r(s, a) + γ

∑
s′∈S

Pa(s
′|s)V (s′)

]
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Basic DP Methods: Value Iteration (2 of 3)

• Value Iteration (VI) finds V ∗ solving Bellman eq. by iterative procedure:

– Set V0 to arbitrary value function with V0(s) = 0 for s ∈ SG; e.g. V0 ≡ 0

– Set Vi+1 to result of Bellman’s right hand side using Vi in place of V :

Vi+1(s) := min
a∈A(s)

[
c(s, a) +

∑
s′∈S

Pa(s
′|s)Vi(s′)

]
and Vi+1(s) := 0 for goal states s

• This is parallel Value Iteration as the values for all states are updated in each
iteration
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Basic DP Methods: Value Iteration (3 of 3)

• Asymptotic convergence: Vi → V ∗ as i→∞

• Paralle VI can be implemented with two vectors to store current and next value
function

• In practice, stop when residual Res = maxs |Vi+1(s)−Vi(s)| is sufficiently small

• Bellman eq. for discounted reward MDPs similar, but with max instead of min,
and sum multiplied by γ

• Discounted reward MDPs: loss of early termination bounded by 2γRes/(1−γ)
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Example: Value Iteration

G

Initial value function V0

• Agent navigates grid: 37 states, 4 actions

• Actions Up, Right, Down and Left move correctly with probability p = 0.8, move
in orthogonal direction (possibly more than one dir.) with rest of probability

• Initial vector is V0 ≡ 0
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Example: Value Iteration

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0

0.0

0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

Initial value function V0

• Agent navigates grid: 37 states, 4 actions

• Actions Up, Right, Down and Left move correctly with probability p = 0.8, move
in orthogonal direction (possibly more than one) with rest of probability

• Initial vector is V0 ≡ 0
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Example: Value Iteration

1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0

1.0

1.0 0.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0

Second value function V1

• Agent navigates grid: 37 states, 4 actions

• Actions Up, Right, Down and Left move correctly with probability p = 0.8, move
in orthogonal direction (possibly more than one) with rest of probability

• Initial vector is V0 ≡ 0
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Example: Value Iteration

2.0 2.0 2.0 2.0 2.0 2.0

2.0 2.0 2.0 2.0 2.0 2.0

2.0 2.0 2.0 2.0 2.0 2.0

2.0 2.0 2.0 2.0 1.2 2.0

2.0 2.0 2.0

2.0

1.2 0.0 1.2

2.0 2.0 2.0 2.0 1.2 2.0

Third value function V2

• Agent navigates grid: 37 states, 4 actions

• Actions Up, Right, Down and Left move correctly with probability p = 0.8, move
in orthogonal direction (possibly more than one) with rest of probability

• Initial vector is V0 ≡ 0
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Example: Value Iteration

11.0 10.0 9.4 5.9 5.6 5.7

10.0 9.4 8.4 4.9 4.3 4.7

9.4 8.2 6.9 3.8 3.0 3.6

8.4 6.9 5.4 2.7 1.5 2.5

9.4 8.1 6.9

3.7

1.5 0.0 1.5

10.0 9.0 7.9 2.5 1.5 2.5

Value function with residual < 0.001

• Agent navigates grid: 37 states, 4 actions

• Actions Up, Right, Down and Left move correctly with probability p = 0.8, move
in orthogonal direction (possibly more than one) with rest of probability

• Initial vector is V0 ≡ 0
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Asynchronous Value Iteration

• Asynchronous Value Iteration is asynchronous version of VI, where each
iteration updates the value of one or more states, in any order

• Asynchronous VI converges to V ∗ when all states updated infinitely often

• It can be implemented with single V vector
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Executions and Proper Policies

Given policy π and state s, an interleaved sequence (s0, a0, s1, . . . , an−1, sn) of
states and actions is a π-execution from s when:

– it starts at s; i.e. s0 = s

– actions are given by π; i.e. ai = π(si) for i = 0, 1, . . . , n− 1

– transitions are possible; i.e. Pai(si+1|si) > 0 for i = 0, 1, . . . , n− 1

Policy π is proper if for every state s, there is a π-execution (s0, a0, s1, . . . , sn)
from s that terminates in goal state

The notion of proper policy only applies to goal MDPs
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Example of Proper Policy

G G

Goal MDP Non-optimal but proper policy

Actions at each state yield intended effect with some probability p > 0
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Basic DP Methods: Policy Iteration (1 of 3)

• Expected cost V π(s) for policy π characterized with set of linear equations

V π(s) = c(a, s) +
∑
s′∈S

Pa(s
′|s)V π(s′)

where a = π(s) and V π(s) = 0 for goal states

• Linear equations can be solved by standard methods, or by VI-like procedure

• Optimal expected cost at s, V ∗(s), is minπ V
π(s) and optimal policy is πV ∗

• Similar for discounted reward MDPs, but c(s, a) replaced by r(a, s),
min replaced by max, and sum discounted by γ
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Basic DP Methods: Policy Iteration (2 of 3)

• Let Qπ(s, a) be expected cost from s when doing a first and following π:

Qπ(s, a) = c(a, s) +
∑
s′∈S

Pa(s
′|s)V π(s′)

• Given policy π, we can strictly improve π by changing π(s) to a when:

– in discounted reward MDPs: Qπ(s, a) > Qπ(s, π(s))

– in goal MDPs: π is proper and Qπ(s, a) < Qπ(s, π(s))

• In goal MDPs, improved policy is guaranteed to remain proper when π is proper
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Basic DP Methods: Policy Iteration (3 of 3)

• Policy Iteration (PI) computes π∗ iteratively by sequence of evaluation and
improvement steps:

1. Starting with arbitrary proper policy π (if discounted, start with arbitrary policy)

2. Compute V π(s) for all states s (evaluation step)

3. Improve π by setting π(s) := argminaQ
π(s, a) for some s (improvement

step)

4. If π changed in 3, go back to 2

• In reward MDPs, improvement is done by setting π(s) = argmaxaQ
π(s, a)

• PI finishes with π∗ after finite number of iterations as set of states is finite, set
of policies is finite, and each policy is better than previous policy for at least
one state
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Obtaining a Proper Policy

Different ways to get proper policy in problems without dead-ends

• Solve set of linear equations, one per state s:

V (s) =
1

|A(s)|
∑

a∈A(s)

[
c(a, s) +

∑
s′∈S

Pa(s
′|s)V (s′)

]

Define π(s) = argmina∈A(s)[c(a, s) +
∑
s′∈S Pa(s

′|s)V (s′)]

• For each state s, obtain one execution (s0, a0, s1, . . . , sn) such that

– s0 = s
– ai ∈ A(si) for i = 0, 1, . . . , n− 1
– Pai(si+1|si) > 0 for i = 0, 1, . . . , n− 1
– sn is goal state

Define π(s) = a0 for such execution

Both methods yield proper policies that can be used in PI
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Dynamic Programming and Heuristic Search

• DP methods like Value and Policy Iteration are exhaustive: they need to
maintain vectors of size |S|

• Heuristic search algorithms like A* are incremental, and with good admissible
heuristics can solve much larger problems optimally; e.g. Rubik’s Cube

Question: Can admissible heuristics (lower bounds) and initial state s0 be used
to focus the updates in DP methods?

H. Geffner and B. Bonet, Planning Tutorial, IJCAI, July 2016, New York 91



Focussed Updates in Dynamic Programming

• Given initial state s0, we only need policy π that is optimal from s0

• Convergence to V ∗ over all s not needed to get optimal policy for given s0

• Convergence is only required over states reachable from s0

• Convergence of V at a state s is measured with its V -residual:

ResV (s) = |V (s)− min
a∈A(s)

QV (s, a)|

where QV (s, a) = c(a, s) +
∑
s′∈S Pa(s

′|s)V (s′)

Theorem. If V is an admissible value function and the V -residuals over
states reachable with πV from s0 are all zero, πV is an optimal policy for s0

(i.e. V π(s0) = V ∗(s0) for π = πV )
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Learning Real Time A* (LRTA*) Revisited

1. Start at s := s0

2. Evaluate each action a in s as: Q(s, a) = c(a, s) + V (s′)

3. Apply action a∗ that minimizes Q(s, a)

4. Update V (s) to Q(s, a∗)

5. Observe resulting state s′

6. Exit if s′ is goal, else go to 2 with s := s′

• LRTA* can be seen as asynchronous value iteration algorithm for deterministic
actions that takes advantage of theorem above (i.e. update in 4 is DP update)

• Convergence of LRTA* implies V -residuals along πV -reachable states from s0

are all zero

• Then: 1) V = V ∗ along such states, 2) πV is optimal for s0, but 3) πV may not
be optimal for other states (yet irrelevant if s0 is given)
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Real Time Dynamic Programming (RTDP) for MDPs

RTDP is a generalization of LRTA* to MDPs due to (Barto et al. 95); just adapt
Bellman equation used in the Eval step

1. Start at s := s0

2. Evaluate each action a applicable in s as

Q(s, a) = c(a, s) +
∑
s′∈S

Pa(s
′|s)V (s

′
)

3. Apply action a∗ that minimizes Q(s, a∗)

4. Update V (s) to Q(s, a∗)

5. Observe resulting state s′

6. Exit if s′ is goal, else go to 2 with s := s′

Same properties as LRTA* but over MDPs: after repeated trials, greedy policy
πV eventually becomes optimal for s0 if initial V (s) is admissible
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A General DP + Heuristic Search Scheme for MDPs

• Optimal π for MDPs from s0 can be obtained for sufficiently small ε > 0:

1. Start with admissible V ; i.e. V (s) ≤ V ∗(s) for all states s

2. Repeat: find state s πV -reachable from s0 with ResV (s) > ε, and Update it

3. Until no such states left

• V remains admissible (lower bound) after updates

• Number of iterations until ε-convergence bounded by 1
ε

∑
s∈S[V ∗(s)− V (s)]

• Like in heuristic search, convergence achieved without visiting or updating
many of the states in S when initial V is good lower bound

• Heuristic search MDP algorithms like LRTDP, ILAO*, HDP, LDFS, etc. are
all instances of this general schema
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Scaling Up to larger MDPs: A Little Map

• Off-line Methods: compute complete policies or complete policies from s0

– Dynamic programming: VI, PI

– Heuristic search: RTDP, LAO*, Find-and-Revise, HDP, LDFS, . . .

• On-line Methods: compute action to do in current state (not policy)

– Finite-Horizon Relaxation: Solved anytime with UCT, RTDP, AO*, . . .

– Deterministic Relaxation: Solved using classical planners like FF-Replan

• Alternative Off-Line Methods:

– FOND Relaxation: Strong cyclic plans yield proper policies; e.g. PRP

– Function Approximation: Parameterized value function; common in RL

– Symbolic Methods: Compact, symbolic representation of value function
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Partially Observable Markov Decision Processes
(POMDPs)



Partially Observable MDPs: Goal POMDPs

POMDPs are partially observable, probabilistic state models:

• state space S

• actions A(s) ⊆ A applicable at each state s ∈ S
• transition probabilities Pa(s

′|s) for s ∈ S and a ∈ A(s)

• unknown initial state: distribution b0 for initial state

• set of observable target states SG

• action costs c(a, s) > 0

• sensor model given by observable tokens Ω and probabilities Pa(o|s) for o ∈ Ω

– History is interleaved sequence of actions and observations, beginning with action

– Solutions are policies that map histories into actions

– Optimal policies minimize expected cost to go from b0 to target belief state
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Discounted Reward POMDPs

A common alternative formulation of POMDPs:

• state space S

• actions A(s) ⊆ A applicable at each state s ∈ S
• transition probabilities Pa(s

′|s) for s ∈ S and a ∈ A(s)

• unknown initial state: distribution b0 for initial state

• sensor model given by observable tokens Ω and probabilities Pa(o|s) for o ∈ Ω

• rewards r(a, s) (positive or negative)

• discount factor 0 < γ < 1 ; there are no goal states

– History is interleaved sequence of actions and observations, beginning with action

– Optimal policies max expected discounted accumulated reward from b0

– Discounted reward POMDPs can be converted into equivalent goal POMDPs
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Belief States

A belief state b is a probability distribution over states

A belief state summarizes all information contained in a history that is needed for
computing optimal policies

Given history h (interleaved sequence of actions and observations), there is unique
belief state bh that summarizes the relevant information in h

However, two different histories h and h′ may map to the same belief (i.e. bh = bh′)
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Mapping Histories to Belief States

Given history h (interleaved sequence of actions and observations), there is a unique
belief state bh that summarizes the relevant information in h:

• For the empty history h, bh is the distribution b0 for the initial state

• For belief b = bh and action a, the belief for h′ = 〈h, a〉 is ba = bh′:

ba(s) =
∑
s′∈S

Pa(s|s′)b(s′)

• For ba = bh′ and token o ∈ Ω, the belief for h′′ = 〈h, a, o〉 is boa = bh′′:

boa(s) = Pa(o|s) ba(s) / ba(o) ∝ Pa(o|s) ba(s)

where ba(o) is norm. const. given by probability of observing o after h′ = 〈h, a〉
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POMDPs are MDPs over Belief Space

Information needed to select optimal action after history h is in belief b = bh

POMDP becomes an MDP over beliefs in which policies map beliefs into actions

Equations that define MDP over beliefs are:

V (b) = min
a∈A(b)

c(a, b) +
∑
o∈Ω

ba(o)V (boa) (Bellman eq.)

V π(b) = c(π(b), b) +
∑
o∈Ω

bπ(b)(o)V (boπ(b))

where

A(b) = ∩{A(s) : b(s) > 0} is set of applicable actions at b

c(a, b) =
∑
s∈S

c(a, s) b(s) is expected cost of applying a at b
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Computational Methods for POMDPs

• Exact methods:

– Value Iteration over piecewise linear functions
– Policy Iteration as iteration over finite-state controllers

• Approximate and on-line methods:

– Point-based Value Iteration methods: VI over few belief points

– RTDP-Bel: RTDP applied to discretized beliefs

– PO-UCT: UCT applied to action observation histories

– Finite-state controllers: synthesis of controllers of bounded size

• Logical methods: probabilities dropped; beliefs as sets of states

– Compilations and relaxations for action selection

– Belief tracking: for determining truth of action preconditions and goals

– Symbolic approaches: for representing belief states and value functions
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Value Iteration for POMDPs (1 of 2)

• Belief b is goal/target belief if b(s) = 0 for non-goal states s

• Optimal V ∗ given by solution to Bellman eq. with V (b) = 0 for goal bels b

V (b) = min
a∈A(b)

[
c(a, b) +

∑
o∈Ω

ba(o)V (boa)]

]

• Problem is infinite and dense space of beliefs to update

• A piecewise linear and concave (pwlc) function V determined by finite set
Γ of vectors (“pieces”):

V (b) = min
α∈Γ

∑
s∈S

α(s) b(s) = min
α∈Γ

α · b
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Example of PWLC Function

0.0 1.0

10y = 36x+ 17

5y = −6x+ 21

15y = −174x+ 198

b

V (b)
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Value Iteration for POMDPs (2 of 2)

• If V is pwlc-function represented by Γ, we can do (parallel) DP update of V
resulting in pwlc-function V ′ represented by Γ′

• The function V0 ≡ 0 is pwlc represented by Γ0 = {α0} with α0 ≡ 0

• VI over belief states can be implemented as sequence of DP updates over pwlc
functions V0, V1, V2, . . . represented by finite sets of vectors Γ0,Γ1,Γ2, . . .

• (Optional) dominated vectors in Γi detected with LP and removed

• Iterations stopped after reaching residual less than given ε > 0
(Residual between Vi+1 and Vi computed from Γi+1 and Γi using LP)

• Number of “pieces” (i.e. |Γi|) grows exponentially with number of updates
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Example of DP with PWLC Function

0.0 1.0b 0.0 1.0b
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FSCs and Policy Iteration for POMDPs

• When the value function is pwlc, policies can be understood as finite-state
controllers (FSCs)

• Advantage of such policies over functions that map beliefs into actions is that
FSCs don’t require keeping track of beliefs

• FSCs M0,M1,M2, . . . are constructed in a manner that Mk+1 is obtained from
the set of vectors Γk+1 for Vk+1 and Mk

• Approach has basically the same limitations of VI, but it can be understood as a
form of Policy Iteration for POMDPs

• There are ways to cast the FSC synthesis problem with given number N of
controller states as a non-linear optimization problem
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Approximate POMDP Methods: Point-Based VI (1 of 2)

• Exponential blow-up in single DP update due to update of the pwlc function
at all belief states

• Alternative is to update the value at selected beliefs thus controlling the number
of vectors

• State-of-the-art offline algorithms based on this idea known as point-based VI

• If V is pwlc given by Γ, the point-based update of V over belief set F is pwlc
V̂F given by Γ̂ that satisfies

V̂F (b) = VFull-DP(b)

for every b ∈ F , where VFull-DP is the full DP udpate of V

• If F is complete set of beliefs, V̂F = VFull-DP and the point-based update is a full
DP update
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Approximate POMDP Methods: Point-Based VI (2 of 2)

• Starting with V0 given by Γ0 and an initial belief set F0, standard point-based
algorithms do, for i = 0, . . . , k:

– Set Fi+1 := Fi ∪ { backup(Vi, b) : b ∈ Fi }
– Set Vi+1 := V̂Fi+1

where backup(V, b) is the vector that assigns value to b in VFull-DP; i.e.

backup(V, b) = argmin
α∈ΓFull-DP

∑
s∈S

α(s) b(s)

and ΓFull-DP is the set of vectors that define the full DP update VFull-DP of V

• Key result is that backup(V, b) can be computed in polynomial time from V
(i.e. O(|S| |O| |Γ|) where V given by Γ) without computing ΓFull-DP which is of
exponential size
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Approximate POMDP Methods: RTDP-Bel

• Goal POMDPs are goal MDPs over belief space, then RTDP can be used

• However, we can’t maintain a hash table over beliefs (infinite and dense)

• RTDP-Bel discretizes beliefs b for writing to and reading from hash table

RTDP-Bel

% Initial value function V given by heuristic h
% Changes to V stored in hash table using discretization function d(·)
Let b := b0 the initial belief
Sample state s with probability b(s)

While b is not a goal belief do

Evaluate each action a ∈ A(b) as: Q(b, a) := c(a, b) +
∑
o∈Ω ba(o)V (boa)

Select best action a∗ := argmina∈A(b)Q(b, a)

Update value V (b) := Q(b, a∗)

Sample next state s′ with probability Pa∗(s
′|s) and set s := s′

Sample observation o with probability Pa∗(o|s)
Update current belief b := boa∗

end while
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Belief Tracking



POMDPs in Compact Form

• Most of exact and approximated computational methods for POMDPs assume
explicit model

• Interesting problems defined in terms of variables where actions/observations only
affect/sense single or small subset of variables

Challenge: design computational methods that scale over implicit models
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Example of POMDPs in Compact Form

Example: Wumpus and Minesweeper

PIT

PIT

PIT

Breeze

Breeze

Breeze

Breeze

Breeze

Breeze

Stench

Stench

Stench

1

1 3

3

2

2 1

2

4

Wumpus Minesweeper

Factored belief tracking (B&G, 2012): exponential in width which
grows O(n2) for dimension n

Beam tracking: exponential in causal width which is

• Wumpus: constant 4 for any dimension n

• Minesweeper: constant 9 for any dimension n

Example: Naive Model for Wumpus (Causal Width = n + 1)

PIT

PIT

PIT

Breeze

Breeze

Breeze

Breeze

Breeze

Breeze

Stench

Stench

Stench

Glitter W L P1 P2 · · · Pn

W 0 L0 P 0
1 P 0

2 · · · P 0
n

S B

– n + 2 state vars: W (wumpus), L (agent), P1 (pit@1), . . . , Pn (pit@n)

– 2 obs vars: S (stench) and B (breeze)

– 2 beams: B0 = {W, L} and B1 = {L, P1, P2, . . . , Pn}
– Causal width is n + 1 (bounded)

c� 2016 Bonet & Ge↵ner

Minesweeper Wumpus

Example: Minesweeper and 1-Line SLAM

1

1 3

3

2

2 1

2

4

Minesweeper 1-Line SLAM

1-Line SLAM:

– Agent moves left/right in a noisy way

– Agent senses color beneath its cell in a noisy way

– Task is to construct underlying color map: requires simultaneous
localization and mapping

c� 2016 Bonet & Ge↵ner

SLAM

H. Geffner and B. Bonet, Planning Tutorial, IJCAI, July 2016, New York 114



Model-Based Autonomous Behavior for POMDPs

Number of states is exponential in number of variables

Number of beliefs is exponential in number of states (logical setting) or infinite
(probabilistic setting)

Addressing implicit POMDPs requires solving two fundamental tasks (both in-
tractable in worst case):

• Efficient representation of belief states

– Needed for action selection when policies map beliefs into actions

– Needed for monitoring the system

• Algorithms for action selection (control problem)
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Languages for Implicit POMDPs

Two classes of POMDPs:

• Logic POMDPs: no probabilities, only matters which transitions and observa-
tions are possible given actions

– Propositional languages similar to classical planning

• Probabilistic POMDPs: transitions and observations specified in factored
manner

– Usually done with 2-layer dynamic bayesian network (2-DBN)

(2-DBN is standard language for compact specification of probabilistic systems)
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Basic (Flat) Algorithm for Belief Tracking

Task: Given initial belief b0, transitions P (s′|s, a) and sensing P (o|s, a), compute
posterior P (st+1|ot, at, . . . , o0, a0, b0) given execution (a0, o0, . . . , at, ot) from b0

Basic algorithm: Use plain Bayes updating bt+1 = boa for b = bt (at state level):

• Logic POMDPs:

boa = {s ∈ ba : observation o is possible in s after a}
ba = {s′ ∈ S : there is s ∈ b and transition (s, a, s′) is possible}

• Probabilistic POMDPs:

boa(s) = P (o|s, a)× ba(s)/ba(o) ∝ P (o|s, a)× ba(s)
ba(s) =

∑
s′ P (s|s′, a) b(s′)

Complexity: Linear in number of states that is exponential in number of variables

Challenge: Exploit structure to scale up better when not worst case
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Belief Tracking

• Exact, Explicit Flat Methods

• Exact, Lazy Approaches for Planning

– Global beliefs b not strictly required, rather beliefs on preconditions and goals

– In logical setting, this can be cast as SAT problem

– In probabilistic setting, as infenrece problem over a Dynamic Bayesian Network (DBN)

– Both approaches still exponential in worst case, but can be sufficiently practical

• Approximations:

– Particle filtering: when uncertainty in dynamics and sensing represented by probabilities

– Structured methods: exploit structure in logical and probabilistic setting to factorize belief

– Decomposition of joint as product of marginals in probabilistic setting

– Combination particles + decomposition in probabilistic setting given “sufficient” structure

– Translation-based approach in logical setting for simple problems
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Probabilistic Belief Tracking with Particles: Basic Approach

• Particle filtering algorithms approximate b by multi-set of unweighted samples

– Prob. of X = x approximated by ratio of samples in b where X = x holds

• Multi-set Bk+1 (approx. belief) obtained from Bk, a, and o in two steps:

– Sample sk+1 from S with probability Pa(sk+1|sk) for each sk in Bk

– Re-sample new set of samples by sampling each sk+1 with weight P (o|sk+1, a)

• Potential problem:

– Excessive resampling creates a problem known as loss of diversity

– Particles may die out if many probabilities are zero

– May require a big number of particles
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Structure in Particle Filters

In some cases, samples don’t need to be valuations over all variables (states)

It is sufficient to sample a subset of variables and then recover belief over all
variables by either

• polynomial-time inference (e.g. in Rao-Blackwellised PFs)

• more complex, sometimes untractable, inference

Tradeoff because size of sampled var-subset typically larger for first method
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Structure for Belief Tracking

• For each variable X, identify subset of vars that are its immediate causes

– Basically, minimal subset S of variables that make Xt+1 independent of the other variables

at time t given the variables in S ∪ {X} and the action at time t

• Likewise, for each observable variable Z, identify its immediate causes

• The causal context for variable X is the minimum subset S(X) such that:

– X belongs to S(X)

– if Z belongs to S(X) and Y is immediate cause of Z, then Z belongs to S(X)

• The collection {S1, S2, . . . , Sn} is causal decomposition of problem if:

– for each variable X (state or obs. var), there is i such that S(X) ⊆ Si
– no collection with smaller subsets exists

• The causal width of problem is maxi=1,2,...,n |S(Xi)|
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Algorithms for Factored Belief Tracking

Algorithms that decompose beliefs in terms of local and independent beliefs for
subproblems:

• One subproblem per context in causal decomposition

• Size of largest subproblem exponential in causal width

• Versions for logical and probabilistic setting

Algorithms can handle:

• Minesweeper

• Wumpus

• SLAM

• . . .

H. Geffner and B. Bonet, Planning Tutorial, IJCAI, July 2016, New York 122



Demo for Logical POMDPs

• Minesweeper: clear minefield by opening/tagging cells

• Battleship: sink ships of different sizes by firing torpedos in a grid

• Wumpus: find gold in a grid containing wumpuses and pits
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Translation-Based Approaches

• Applies to deterministic models in the logical setting expressed in PDDL-like
syntax

• Belief tracking problem can be “compiled” via polynomial translations into
classical problem

• Translation is based on width-considerations

• Combined with KT,M translation for conformant planning, we can obtain on-line
solvers for logical POMDPs
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LW1 K-Replanner with Front End HCP

average avg. time in seconds average avg. time in seconds

domain problem #sim solved calls length total prep exec solved calls length total prep exec length time

clog 7 12 12 2.2 17.8 0.0 0.0 0.0 12 10.0 39.3 0.2 0.1 0.1 nd nd
clog huge 3125 3125 7.0 45.6 3.5 2.8 0.7 3125 44.6 156.6 6.7 3.6 3.0 53.5 1.8

colorballs 9-5 1000 1000 65.6 126.8 468.2 454.0 14.2 1000 210.4 481.2 725.0 687.9 37.0 320 57.7
colorballs 9-7 1000 1000 69.8 146.1 632.7 615.5 17.1 1000 292.4 613.3 1719.0 1645.9 73.1 425 161.5

doors 17 1000 1000 54.2 114.1 495.3 490.1 5.1 1000 65.0 213.6 88.3 77.1 11.2 143 17.7
doors 19 1000 1000 67.2 140.1 928.2 920.5 7.6 1000 82.7 269.2 143.5 128.5 14.9 184 46.1
ebtcs 50 50 50 25.5 26.5 2.5 1.7 0.7 50 25.5 27.5 1.3 0.9 0.4 nd nd
ebtcs 70 70 70 35.5 36.5 5.2 4.2 1.0 70 35.5 37.5 3.2 2.4 0.7 34.5 0.3
elog 5 8 8 1.9 19.5 0.0 0.0 0.0 8 14.5 67.6 0.4 0.2 0.2 nd nd
elog 7 12 12 2.2 17.8 0.0 0.0 0.0 12 14.0 66.8 0.4 0.2 0.1 19.9 0.0

localize 15 134 134 9.3 15.2 21.8 5.5 16.3 — — — — — — — —
localize 17 169 169 10.7 17.2 69.9 20.1 49.7 — — — — — — — —
medpks 150 151 151 2.0 2.0 10.9 10.0 0.9 151 2.0 2.0 1.3 1.2 0.0 nd nd
medpks 199 200 200 2.0 2.0 26.0 23.5 2.4 200 2.0 2.0 3.2 3.1 0.1 nd nd

rocksample 8-12 1000 1000 6.9 191.5 124.2 1.4 122.7 — — — — — — 115 0.5
rocksample 8-14 1000 1000 10.2 272.3 22.5 2.7 19.7 — — — — — — 135 0.6

unix 3 28 28 17.0 46.5 1.9 1.4 0.4 28 17.0 46.5 1.2 1.0 0.2 42.0 0.6
unix 4 60 60 33.0 93.7 23.0 21.6 1.4 60 33.0 93.7 16.4 15.3 1.1 76.5 7.2

wumpus 5d 8 8 2.2 16.2 0.1 0.0 0.0 8 3.8 25.0 0.2 0.1 0.0 nd nd
wumpus 10d 256 256 4.4 33.8 2.2 2.0 0.2 256 5.3 46.2 1.6 1.0 0.6 nd nd
wumpus 15d 1000 1000 5.3 47.2 27.2 26.4 0.8 1000 6.2 61.0 7.9 6.2 1.6 65.0 2.3
wumpus 20d 1000 1000 5.3 57.2 162.6 160.5 2.0 1000 5.8 69.2 28.9 25.8 3.0 90 5.1
wumpus 25d 1000 1000 5.4 67.3 729.7 724.5 5.1 1000 6.1 80.9 73.5 68.4 5.1 nd nd

Table 1: Comparison of LW1, K-replanner with front end, and HCP on range of contingent benchmarks. Dash (—) means that the planner
cannot solve a domain, and ‘nd’ means that no data is reported for the instance. Key columns are highlighted in gray.

average avg. time in seconds

domain prob. #sim solved calls length total prep exec

mines 3x4 100 11 3.5 14.0 1.0 0.8 0.1
mines 3x5 100 15 4.0 17.0 2.0 1.8 0.2
mines 4x4 100 35 5.1 18.0 11.3 10.7 0.6
mines 5x5 100 48 6.5 27.0 93.4 90.1 3.3
mines 6x6 100 37 9.6 38.0 522.4 506.6 15.8
mines 7x7 100 45 11.0 51.0 1320.7 1278.3 42.3
mines 8x8 100 43 13.1 66.0 3488.2 3365.4 122.7

wumpus 5x5 100 100 12.2 15.2 1.4 0.9 0.4
wumpus 10x10 100 100 54.1 60.5 182.5 173.2 9.2
wumpus 15x15 100 100 109.7 121.0 3210.3 3140.3 70.0

Table 2: LW1 on Minesweeper and richer version of Wumpus.

instances of different size. Figure 1 shows two solved in-
stances for Minesweeper and Wumpus. While LW1 manages
to solve many of the large, non-trivial instances, it doesn’t
solve all of them. This is because some of these problems
require forms of inference that are more sophisticated than
unit resolution.

Conclusions
We have developed a new on-line planner for deterministic
partially observable domains, LW1, that combines the flex-
ibility of CLG with the scalability of the K-replanner. This
is achieved by using two linear translations: one for keep-
ing track of beliefs while ensuring completeness for width-
1 problems; the other for selecting actions using classical
planners. We have also shown that LW1 manages to solve
the problems solved by other planners, and more challeng-
ing problems as well. Width-1 completeness is important for
two reasons: it ensures that the simplest problems where ac-
tions propagate uncertainty will be handled, and it provides a
solid basis for dealing with more complex problems. For ex-
ample, more powerful forms of deduction can be accommo-
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8 ⇥ 8 minesweeper 10 ⇥ 10 wumpus

Figure 1: Example of instances solved by LW1. Left: an 8 ⇥ 8
Minesweeper instance where the star marks the first cell opened.
Right: a 10 ⇥ 10 Wumpus instance with 2 monsters, 2 pits, and
unknown position of gold. The trace shows the path walked by the
agent when looking for the gold, beginning at the lower left corner.

dated, and in certain cases, subsets of variables may be ag-
gregated into one variable if required. Regarding deduction,
the belief tracking algorithm called beam tracking performs
much better than LW1 in Minesweeper and it is also poly-
nomial (?). The reason is that it uses arc-consistency rather
than unit resolution. Yet nothing prevents us from replacing
one by the other in the inner loop of the LW1 planner.
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Summary

• Planning is the model-based approach to autonomous behavior

• Many models and dimensions; all intractable in worst case

• Challenge is mainly computational, how to scale up

• Lots of room for ideas whose value must be shown empirically

• Key technique in classical planning is automatic derivation and use of heuristics

• Power of classical planners used for other tasks via transformations

• Structure and relaxations also crucial for planning with sensing

• Promise: solid methodology for autonomous agent design
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Some Challenges

• Classical Planning

. states & heuristics h(s) not black boxes; how to exploit structure further?

. on-line planners to compete with state-of-the-art classical planners

• Probabilistic MDP & POMDP Planning

. inference can’t be at level of states or belief states but at level of variables

• Multiagent Planning

. should go long way with single-agent planning and plan recognition; game
theory seldom needed

• Hierarchical Planning

. how to infer and use hierarchies; what can be abstracted away and when?
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Best first search can be pretty blind

Small DoorLarge Door

• Problem involves agent that has to get large package through one of two doors

• The package doesn’t fit through the closest door
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Best first search can be pretty blind: Doors Problem

• Numbers in cells show number of states expanded where agent at that cell

• Algorithm is greedy best first search with additive heuristic

• Number of state expansions is close to 998; FF expands 1143 states, LAMA more!

• 34 different states expanded with agent at target, only last with pkg!
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