Generalized Planning: Non-Deterministic Abstractions and Trajectory Constraints

B. Bonet1 G. De Giacomo2 H. Geffner3 S. Rubin4

1 Universidad Simón Bolívar, Venezuela
2 Sapienza Università di Roma, Italy
3 ICREA & Universitat Pompeu Fabra, Spain
4 Università degli Studi di Napoli Federico II, Italy
Generalized Planning: Example

Want policy that works for many (possibly ∞) problem instances

Example: Problem Counter-n:
- Counter problem with **single variable** X with initial value $X = n$
- Agent **senses** whether $X = 0$ or $X > 0$
- Agent can **increase** or **decrease** value of X
- **Observable goal** is to reach $X = 0$

Policy: “if $X > 0$, decrease X” works:
- for any $n \geq 0$
- problems with more than one possible initial state
- even if actions may fail sometimes; e.g. decrease don’t work sometimes

(Srivastava et al. 2008, 2011; Hu & Levesque 2010; Hu & De Giacomo 2011; B. & Geffner 2015; Belle & Levesque 2016; etc)
Generalized Planning: Formulation

- In Hu & De Giacomo (2011) formulation, collection \mathcal{P} of instances assumed to share common pool of observations and actions

- Policy μ mapping observations into actions said to generalize to \mathcal{P} if it solves all problems in \mathcal{P}

- General finite-state controllers can be defined in same way
Generalized Planning: Computation

Top-down approach:

- If \mathcal{P} is finite, **compile** \mathcal{P} into a regular planning problem or do **search** in controller space (Hu & De Giacomo 2011)

- If \mathcal{P} is infinite, finite subset of \mathcal{P} sometimes ensures generalization to \mathcal{P} (e.g. 1D problems; Hu & Levesque 2010)

Bottom-up approach:

- Solve **single** “representative instance” P of \mathcal{P} and **prove** that solution ensures generalization (B. et al. 2009)

- **Example:** solution to Counter problem with **two** possible initial states **generalizes** to class $\mathcal{P} = \{\text{Counter-}n : n \geq 0\}$
Goal for this paper

Key question in **bottom-up approach:**

– What’s the **common structure** between **single problem** P and class \mathcal{P} that yields the generalization?

Question partially answered in earlier work:

Theorem (B. & Geffner 2015)

> If P reduces to P' and μ is strong cyclic solution for P', then μ solves P if it terminates in P over fair trajectories

In this work, we:

– analyze necessity of **termination** in B. & Geffner (2015) formulation
– show how to **get rid** of termination condition
Outline

• Basic framework
• Observation projections abstractions
• Trajectory constraints
• New generalization theorems
• Generalized planning as LTL Synthesis
• Generalized planning over QNPs as FOND planning
• Wrap up
Partially obs. non-det. problem $P = (S, I, \Omega, Act, T, A, obs, F)$:

- S is state space (finite or infinite)
- $I \subseteq S$ is set of initial states
- Ω is set of observations
- Act is set of actions
- $T \subseteq S$ is set of goal states
- $A : S \rightarrow 2^{Act}$ is available-actions function
- $obs : S \rightarrow \Omega$ is observation function
- $F : Act \times S \rightarrow 2^S \setminus \{\emptyset\}$ is non-deterministic transition function

Class \mathcal{P} of PONDPs with observable goals and action preconditions, and where all problems share common:

- set of actions Act
- set of observations Ω
- subset T_Ω of goal observations; $\forall P \forall s : s \in T_P \iff obs_P(s) \in T_\Omega$
- subsets A_ω of actions: $\forall P \forall s : A_P(s) = A_{obs(s)}$
Standard Solution Concepts

Policy is function $\mu : \Omega^+ \rightarrow \text{Act}$

Policy μ is **valid** for problem P if it selects **applicable actions**

Let P be a problem and μ be a valid policy for P:

- μ is **(strong) solution** for P iff every μ-trajectory is goal reaching
- μ is **fair solution** or **strong cyclic solution** for P iff every **fair** μ-trajectory is goal reaching

Henceforth, we focus on valid policies
Abstractions: Observation Projection

Project entire class \mathcal{P} into single non-deterministic problem P^o:

- **state space:** $S^o = \Omega$

- **initial states:** $\omega \in I^o$ iff $\text{obs}_P(s) = \omega$ for some P and $s \in I_P$

- **actions:** $\text{Act}^o = \text{Act}$ and $A^o(\omega) = A_\omega$

- **goal states:** $T^o = T_\Omega$

- **transitions:** $\omega' \in F^o(a, \omega)$ iff $s' \in F_P(a, s)$ for some problem P in \mathcal{P}, and states s and s' with $a \in A_P(s)$, $\text{obs}_P(s) = \omega$ and $\text{obs}_P(s') = \omega'$

Example: For class of Counter-n problems, P^o features:

- **2 states** (observations): $[X = 0]$ and $[X > 0]$

- **non-deterministic** transitions; e.g. $[X > 0]$ transitions under decrease action to both $[X = 0]$ and $[X > 0]$
Need for More Structure

Policy \(\mu = "\text{if } X > 0, \text{ decrement } X" \) solves all Counter-\(n \) problems but doesn’t solve projection \(P^o \)

\(P^o \) is non-deterministic and \(\mu \) may get trapped into loop where Decrement \(X \) doesn’t work

Projection \(P^o \) misses important structural property that all Counter-\(n \) problems share but that is lost projection:

If variable \(X \) is decreased infinitely often and increased only a finite number of times, it eventually reaches \(X = 0 \)

In this work we extend the model to make such properties explicit
Trajectory Constraints

Trajectory constraint C over P is subset of infinite state-action sequences (i.e. $C \subseteq (S \times Act)^\infty$) or subset of infinite observation-action sequences (i.e. $C \subseteq (\Omega \times Act)^\infty$)

Trajectory τ satisfies C if τ is finite, or either $\tau \in C$ (if $C \subseteq (S \times Act)^\infty$), or $obs(\tau)$ in C (if $C \subseteq (\Omega \times Act)^\infty$) where

$$obs(\langle s_0, a_0, s_1, a_1, \ldots \rangle) = \langle obs(s_0), a_0, obs(s_1), a_1, \ldots \rangle$$

- Problem P extended with constraint C' is denoted by P/C
- Problem P satisfies constraint C if all trajectories in P satisfy C'

New solution concept: μ solves P/C iff every μ-trajectory τ that satisfies C' is goal reaching

Example: $C = \{\tau : \tau$ is infinite and satisfies the crucial property$\}$ for P
Theorem (Generalization)

Let \mathcal{P} be a class of FONDP and C a constraint such that every P in \mathcal{P} satisfies C. Then, μ solves all problems in \mathcal{P} if μ solves P^o/C.

Example: trajectories in P^o that satisfy C happen to be fair. Thus, μ must be fair solution (P^o has no strong solution by non-determinism). Theorem asserts μ solves all instances in which decrease action satisfies constraint.

Theorem (Completeness)

If P^o is obs. projection for class \mathcal{P} and μ solves all problems in \mathcal{P}, there is constraint C over P^o such that every P in \mathcal{P} satisfies C and μ solves P^o/C.
Generalized Planning as LTL Synthesis

When trajectory constraints can be expressed in LTL (over language $\Sigma = \text{Act} \cup \Omega$), LTL techniques can be used to obtain general plans.

Theorem

Let P^o/C be obs. projection with constraint C expressed in LTL as Ψ. Then, solving P^o/C (and hence all P/C for $P \in \mathcal{P}$) is 2EXPTIME-complete; it’s double-exponential in $|\Psi| + |T^o|$ and polynomial in $|P^o|$.

Sketch: Idea is to think of policies μ as Ω-branching Act-labeled graph:

- Build **tree-automaton** accepting policies μ such that every μ-trajectory satisfies formula $\Phi = \Psi \supset \Diamond T^o$ where $\Diamond T^o$ is reachability goal in \mathcal{P}

- Check **non-emptiness** of language accepted by tree-automaton; this test yields witness (i.e. policy) if it exists
Qualitative Numerical Planning

- Problem R_V with set V of non-negative numeric variables (don’t have to be integer variables) and standard Boolean propositions
- Actions can affect propositions and also increase or decrease value of numeric variables non-deterministically
- Propositions are fully observable while only $X = 0$ and $X > 0$ can be observed for each var X
- Paper describes syntax for specifying class of QNPs sharing same set of vars, fluents, actions, observations, . . .

Example: General problem of stacking a block x on a block y in instance with any number of blocks can be cast as QNP

Abstractions for some QNPs appear in (Srivastava et al., 2011, 2015)
Solving QNPs with FOND Planners

Given QNP R_V, obs. projection R^o_V constructed syntactically:

- Projection contains only propositions and no numeric variables
- For each variable X, there are propositions $X > 0$ and $X = 0$
- Each effect $Inc(X)$ replaced by atom $X > 0$, and effect $Dec(X)$ replaced by non-det. effect $X > 0 \mid X = 0$

Non-determinism in P^o isn’t fair (Srivastava et al. 2011); i.e. strong cyclic plan for R^o_V isn’t guaranteed to be solution

Projection R^o_V is modified to target interesting subclasses of QNPs:

Theorem (Soundness and Completeness)

Let R_V be QNP such that a) actions with $Dec(X)$ effects have prec. $X > 0$, and b) actions have decrement effects for at most one variable. μ is fair solution to modified R^o_V iff μ solves all problems in class defined by R_V
Related Work

- QNPs related to problems considered by (Srivastava et al. 2011, 2015)

- 1D problems (Hu & Levesque 2010; Hu & De Giacomo 2011) is infinite class of “identical” problems characterized by single integer parameter

- Hu & De Giacomo (2011) construct a single “large enough” abstraction whose solution provides a solution to the class

- Sardiña et al. (2006) also analyze tasks in which “global properties” are lost in observation projection; we recover such properties with constraints

- De Giacomo et al. (2016) show that trace constraints are necessary for belief construction to work on infinite domains
Summary

- Bottom-up approach for generalized planning where general policies are obtained from solutions of single instances

- Non-deterministic abstraction P^o extended with trajectory constraints avoid need for checking termination for solutions

- Solutions to class P of problems that satisfy constraint C obtained from solutions to P^o/C

- P^o/C can be solved using LTL (if constraints are LTL-expressible) or, in some cases, using more efficient FOND planners
Discussion

- There are many constraints that are satisfied by given target class of instances; Which constraints to make explicit?

- Can we automate the discovery of relevant constraints?

- Extend scope of QNPs that can be solved using FOND planners; General results?

- Analyze and test LTL synthesis for specific and relevant types of problems/constraints; Can existing LTL synthesis techniques be **effectively** used to solve interesting generalized planning tasks?