Heuristics for Planning with Penalties and Rewards Using Compiled Knowledge

Blai Bonet
Universidad Simón Bolívar
Caracas, Venezuela

Héctor Geffner
ICREA & Univ. Pompeu Fabra
Barcelona, Spain
Motivation

• Planning is a form of **general problem solving**

\[\text{Problem} \implies \text{Language} \implies \boxed{\text{Planner}} \implies \text{Solution} \]

• **Idea:** problems **described** at high-level and **solved** automatically

• **Goal:** facilitate modeling with small penalty in performance
Planning and General Problem Solving: How general?

For which class of problems planner should work?

- **Classical planning** focuses on problems that map into state models
 - a state space S
 - an initial state $s_0 \in S$
 - goal states $S_G \subseteq S$
 - actions $A(s)$ applicable in each s
 - a successor state function $f(a, s)$, $a \in A(s)$
 - action costs $c(a, s) = 1$

- The solution of this model is an applicable action sequence that maps s_0 into a goal state

- A solution is optimal if it minimizes the sum of action costs
Variety of Models in Planning

- Other forms of planning work over different models; e.g. **conformant planning** works over models given by

 - a state space S
 - an initial **set of states** $S_0 \in S$
 - goal states $S_G \subseteq S$
 - actions $A(s)$ applicable in each s
 - a set of possible successor states $F(a, s)$, $a \in A(s)$
 - action costs $c(a, s) = 1$

- If model extended with **sensors**, we get model for **contingent planning**,

- If uncertainty quantified with probabilities, we get **MDPs** and **POMDPs**
A more precise definition of Planning

- **Planning** is about development of solvers for certain classes of models

- The **models** expressed in compact form over planning languages

- For example, in **Strips**, a 'classical planning problem' expressed as tuple $\langle F, O, I, G \rangle$ where

 - F stands for set of all **fluents** or **atoms** (boolean vars)
 - O stands for set of all **actions**
 - $I \subseteq F$ stands for **initial situation**
 - $G \subseteq F$ stands for **goal situation**

and each action a represented by

- **Add** list $Add(a) \subseteq F$
- **Delete** list $Del(a) \subseteq F$
- **Precondition** list $Pre(a) \subseteq F$
From Language to Model: Semantics of Strips

Strips problem $P = \langle F, O, I, G \rangle$ represents state model $S(P)$

- the states $s \in S$ are collections of atoms
- the initial state s_0 is I
- the goal states $s \in S_G$ are such that $G \subseteq s$
- the actions in s are the $a \in O$ s.t. $Pre(a) \subseteq s$
- the state that results from doing a in s is $s' = s - Del(a) + Add(a)$
- action costs $c(a, s)$ are all 1

The (optimal) solution of planning problem P is the (optimal) solution of State Model $S(P)$
Progress in Classical Planning

- large problems solved fast

- empirical methodology
 - standard PDDL language (richer than Strips)
 - planners and benchmarks available
 - focus on performance, planning competitions, ...

- novel ideas and formulations
 - e.g., extraction and use of heuristics $h(s)$ for guiding search
Our goal in this work

Extend classical planning methods to richer cost model

\[
c(a, s) = \begin{cases}
c \quad \text{uniform costs} \\
c(a) \quad \text{action-dependent costs} \\
c(s) \quad \text{state-dependent costs}
\end{cases}
\]

• We want to be able to plan with state-dependent costs which may be positive (penalties) or negative (rewards)

• For this, we will define a richer cost model and heuristic \(h_c^+ \)
• Elevator Problem with 10 floors, 5 positions, 1 elevator.
• No hard goals: penalties and rewards associated with positions
• Question: How to model and solve these problems effectively?
Some Results using New Heuristic h_c^+

Elevator instance n-m-k has n floors, m positions, and k elevators

<table>
<thead>
<tr>
<th>Problem</th>
<th>Length</th>
<th>Optimal Cost</th>
<th>Solved with h_c^+</th>
<th>Solved blind</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time</td>
<td>Nodes</td>
<td>Time</td>
<td>Nodes</td>
</tr>
<tr>
<td>4-4-2</td>
<td>12</td>
<td>−9</td>
<td>0.35</td>
<td>1,382</td>
</tr>
<tr>
<td>6-6-2</td>
<td>23</td>
<td>−14</td>
<td>21.44</td>
<td>24,386</td>
</tr>
<tr>
<td>6-6-3</td>
<td>23</td>
<td>−14</td>
<td>133.48</td>
<td>76,128</td>
</tr>
<tr>
<td>10-5-1</td>
<td>11</td>
<td>−3</td>
<td>0.39</td>
<td>238</td>
</tr>
<tr>
<td>10-5-2</td>
<td>32</td>
<td>−5</td>
<td>330.72</td>
<td>189,131</td>
</tr>
</tbody>
</table>

• What is the cost model, and how heuristic h_c^+ defined, computed, and used in the search?

• Heuristic h_c^+ not only must estimate cost to goal, but must select the goals too!
Where is the KR?

- We show how to construct a circuit whose input is a state s, and whose output, computed in linear time, is $h^+_c(s)$ for any s

- For this, the heuristic $h^+_c(s)$ is formulated as rank $r(T(P) \land I(s))$ of propositional theory $T(P) \land I(s)$ obtained from problem P and state s

 $$r(T) = \min_{M \models T} r(M) \quad \text{and} \quad r(M) = \sum_{L \in M} r(L)$$

- Rank $r(T(P) \land I(s))$ intractable in general but computable in linear time if $T(P)$ compiled into d-DNNF (Darwiche)

- The circuit is the compiled $T(P)$ formula; the compilation may take exponential time and space, but not necessarily so (like OBDDs)
Our plan for (the rest!) of the talk

1. Define the **cost model** for planning problems \(P \)

2. Define the **heuristic** \(h_c^+ \) as relaxation of model

3. Define **encoding** \(T(P) \) such that
 \[
 h_c^+(s) = r(T(P) \land I(s))
 \]
 - \(T(P) \) defined in terms of ’strong completion’ of a Logic Program \(P' \); so \(h_c^+(s) \) can also be thought as rank of best answer set of \(P' \)

4. Define heuristic search **algorithm** (Dijkstra, A*, IDA*, etc don’t work with negative heuristics and costs!)

5. Present experimental results
Planning Model

- A problem P expressed in planning language extended with positive action cost $c(a)$ and positive or negative fluent costs $c(p)$

- Cost of a plan π for P given by cost of the actions in π and the atoms $F(\pi)$ made true by π (at any time)

$$c(\pi) \overset{\text{def}}{=} \sum_{a \in \pi} c(a) + \sum_{p \in F(\pi)} c(p)$$

- Cost of problem P is

$$c^*(P) = \min_{\pi} c(\pi)$$
Heuristic h^+_c

- **Heuristic** $h^+_c(P)$ defined in terms of the **delete-relaxation** P^+:

$$h^+_c(P) \overset{\text{def}}{=} c^*(P^+)$$

- **Heuristic** h^+_c is **informative** and **admissible** (under certain conditions)

- For the **classical cost function** $c(\text{action}) = 1$ and $c(\text{fluents}) = 0$, h^+_c is the well known delete-relaxation heuristic, **approximated by tractable heuristics** in planners such as HSP and FF
Modeling

The model is simple but flexible, and can represent . . .

• **Terminal Costs:** an atom p can be rewarded or penalized if true at the end of the plan, by means of new atom p' initialized to false, and conditional effect $p \rightarrow p'$ for action End.

• **Goals:** not strictly required; can be modeled as a sufficiently high terminal reward

• **Conditional Preferences:** in terms of conditional effects

• **Rewards on Conjunctions:** in terms of atoms and actions . . .

Not so simple to represent repeated costs or rewards, penalties on sets of atoms (would need ramifications), partial preferences, . . .
Heuristics, Ranks and d-DNNF Compilation

Claim: If $h_c^+(s) = r(T(P) \land I(s))$ where $I(s)$ is a set of literals and

$$r(T) = \min_{M \models T} r(M) \quad \text{and} \quad r(M) = \sum_{L \in M} r(L)$$

then $h_c^+(s)$ computable in linear time for any s if $T(P)$ in d-DNNF.

This follows from two results by Darwiche and Marquis about d-DNNF:

1. **Ranks**: If T in d-DNNF then $r(T)$ computable in linear time
2. **Conjoining**: If T in d-DNNF and I is a set of literals, then $T \land I$ can be brought into d-DNNF in linear-time too
Stratified Encodings

Plans for a Strips problem $P = \langle F, I, O, G \rangle$ with horizon n can be obtained from models of propositional theory $T_n(P)$ (Kautz and Selman):

1. **Actions:** For $i = 0, 1, \ldots, n - 1$ and all a
 - $a_i \supset p_i$ for $p \in \text{Pre}(a)$
 - $C_i \land a_i \supset L_{i+1}$ for each effect $a : C \rightarrow L$

2. **Frame:** For $i = 0, \ldots, n - 1$ and all p
 - $p_i \land (\bigwedge_{a:C \rightarrow p} (\neg a_i \lor \neg C_i)) \supset p_{i+1}$
 - $\neg p_i \land (\bigwedge_{a:C \rightarrow p} (\neg a_i \lor \neg C_i)) \supset \neg p_{i+1}$

3. **Seriality, Init, Goals, . . .

Heuristic h_c^+ could be defined from suitable rank of theory $T_n(P^+)$, where P is the delete-relaxation, yet . . .

- how to define the horizon n and deal with large n?
- how to define ranking so that $h_c^+(s) = r(T_n(P^+) \land I(s))$?
Logic Program Encodings: Implicit Stratification

- **Normal Actions:** For each positive (conditional) effect \(a : C \rightarrow p \) of action \(a \) with precond \(Pre(a) \) add

 \[
p \leftarrow C, Pre(a), a
 \]

- **Set Actions:** Add \(set(p) \) actions, which are true in \(I(s) \) iff \(p \in s \):

 \[
p \leftarrow set(p)
 \]

Let \(T(P) \) be resulting logic program, and \(\text{wff}_c(T(P)) \) be the formula that picks up the models of \(T(P) \) where fluents are well-supported:

Theorem: For any \(s \), \(h_c^+(s) = r(\text{wff}_c(T(P)) \land I(s)) \), where \(r \) is the literal ranking function s.t \(r(l) = c(l) \) for positive literals \(l \) and \(r(l) = 0 \) otherwise.
Main Theorem

If the theory $\text{wffc}(T(P))$ is compiled into d-DNNF, then the value $h_c^+(s)$ can be computed for any state s and cost function c in linear time.

Some remarks:

- The compilation of $\text{wffc}(T(P))$ may take exponential time and space, although this is not necessarily so (like OBDDs).
- The search for plans requires computing $h_c^+(s)$ at many states; effort of compilation amortized throughout these intractable calls.
- Similar ideas can be used for deriving the heuristic values $h_c^+(g)$ for any subgoal g for guiding a regression search.
- Last, admissible approximations of h_c^+ can be obtained by ’relaxing’ the problem (e.g., removing non-rewarding atoms) . . .
From Heuristic to Search

- A* does not work due to negative edge costs and heuristics

- However, since heuristic is monotone, only need to change termination condition

- In addition, due to semantics of model, nodes in search graph must keep track of penalties and rewards collected
Empirical Results: Compilation Serialized Logistics

<table>
<thead>
<tr>
<th>Problem</th>
<th>backward theory</th>
<th>forward theory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time</td>
<td>Nodes</td>
</tr>
<tr>
<td>4-0</td>
<td>0.34</td>
<td>1,163</td>
</tr>
<tr>
<td>...</td>
<td>....</td>
<td>......</td>
</tr>
<tr>
<td>6-2</td>
<td>0.21</td>
<td>1,163</td>
</tr>
<tr>
<td>6-3</td>
<td>0.32</td>
<td>1,163</td>
</tr>
<tr>
<td>7-0</td>
<td>1.26</td>
<td>3,833</td>
</tr>
<tr>
<td>7-1</td>
<td>1.38</td>
<td>3,837</td>
</tr>
<tr>
<td>8-0</td>
<td>1.30</td>
<td>3,833</td>
</tr>
<tr>
<td>8-1</td>
<td>1.37</td>
<td>3,837</td>
</tr>
<tr>
<td>9-0</td>
<td>1.98</td>
<td>3,854</td>
</tr>
<tr>
<td>9-1</td>
<td>1.27</td>
<td>3,833</td>
</tr>
<tr>
<td>10-0</td>
<td>6.86</td>
<td>13,153</td>
</tr>
<tr>
<td>10-1</td>
<td>6.87</td>
<td>13,090</td>
</tr>
</tbody>
</table>

- These are first 18 logistic problems from 2nd IPC (serialized)
- d-DNNF compiler due to Darwiche (c2d) and Completion $\text{wffc}(T)$ obtained following Lin and Zhao, IJCAI-03.
Runtime Serialized Logistics

<table>
<thead>
<tr>
<th>Problem</th>
<th>$c^*(P)$</th>
<th>$h^2(P)$</th>
<th>Time</th>
<th>Nodes</th>
<th>$h^+_c(P)$</th>
<th>Time</th>
<th>Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-0</td>
<td>20</td>
<td>12</td>
<td>0.23</td>
<td>4,295</td>
<td>19</td>
<td>0.02</td>
<td>40</td>
</tr>
<tr>
<td>...</td>
<td>..</td>
<td>..</td>
<td>.....</td>
<td>.....</td>
<td>..</td>
<td>.....</td>
<td>...</td>
</tr>
<tr>
<td>6-2</td>
<td>25</td>
<td>10</td>
<td>25.49</td>
<td>301,054</td>
<td>23</td>
<td>0.89</td>
<td>517</td>
</tr>
<tr>
<td>6-3</td>
<td>24</td>
<td>12</td>
<td>7.87</td>
<td>99,827</td>
<td>21</td>
<td>0.84</td>
<td>727</td>
</tr>
<tr>
<td>7-0</td>
<td>36</td>
<td>12</td>
<td>---</td>
<td>---</td>
<td>33</td>
<td>97.41</td>
<td>4,973</td>
</tr>
<tr>
<td>7-1</td>
<td>44</td>
<td>12</td>
<td>---</td>
<td>---</td>
<td>39</td>
<td>4,157.70</td>
<td>175,886</td>
</tr>
<tr>
<td>8-0</td>
<td>31</td>
<td>12</td>
<td>---</td>
<td>---</td>
<td>29</td>
<td>11.64</td>
<td>591</td>
</tr>
<tr>
<td>8-1</td>
<td>44</td>
<td>12</td>
<td>---</td>
<td>---</td>
<td>41</td>
<td>283.32</td>
<td>12,913</td>
</tr>
<tr>
<td>9-0</td>
<td>36</td>
<td>12</td>
<td>---</td>
<td>---</td>
<td>33</td>
<td>65.81</td>
<td>3,083</td>
</tr>
<tr>
<td>9-1</td>
<td>30</td>
<td>12</td>
<td>---</td>
<td>---</td>
<td>29</td>
<td>1.54</td>
<td>81</td>
</tr>
<tr>
<td>10-0</td>
<td>?</td>
<td>12</td>
<td>---</td>
<td>---</td>
<td>41</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>10-1</td>
<td>42</td>
<td>12</td>
<td>---</td>
<td>---</td>
<td>39</td>
<td>5,699.2</td>
<td>20,220</td>
</tr>
</tbody>
</table>

- Heuristic h^2 planner corresponds basically to 'serial' Graphplan
- Heuristic h^+_c with mutex, adds $h^+_c(g) = \infty$ when g mutex
Elevator

Elevator instance $n\cdot m\cdot k$ has n floors, m positions, and k elevators

<table>
<thead>
<tr>
<th>Problem</th>
<th>Length</th>
<th>Optimal Cost</th>
<th>Solved with h^+_c</th>
<th>Solved blind</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time</td>
<td>Nodes</td>
<td>Time</td>
<td>Nodes</td>
</tr>
<tr>
<td>4-4-2</td>
<td>12</td>
<td>-9</td>
<td>0.35</td>
<td>1,382</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.19</td>
<td>29,247</td>
</tr>
<tr>
<td>6-6-2</td>
<td>23</td>
<td>-14</td>
<td>21.44</td>
<td>24,386</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,965.90</td>
<td>6,229,815</td>
</tr>
<tr>
<td>6-6-3</td>
<td>23</td>
<td>-14</td>
<td>133.48</td>
<td>76,128</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>10-5-1</td>
<td>11</td>
<td>-3</td>
<td>0.39</td>
<td>238</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>161.85</td>
<td>445,956</td>
</tr>
<tr>
<td>10-5-2</td>
<td>32</td>
<td>-5</td>
<td>330.72</td>
<td>189,131</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

- Theory $\text{wff}_c(T(P))$ does not actually compile for Elevator

- Heuristic above is admissible approximation that results from ’relaxing’ atom $\text{inside}(e)$ from P
Blocks

- Block World instances do not compile as well as Logistics

- We could only compile first 8 instances from the 2nd IPC

- These are very small instances having at most 6 blocks, where h^+_c does not pay off (for classical planning)
Wrap up

In this work we have combined ideas from a number of areas, such as search, planning, knowledge compilation, and answer set programming to define and compute an heuristic for optimal planning with penalties and rewards.

- Some theories compile well, others do not; in certain cases, admissible and informed approximations obtained from ’relaxing’ certain atoms.

- Correspondence between heuristic and rank of preferred models or answer sets suggests possible use of Weighted SAT or ASP solvers.

- Compilation-based approach, however, yields circuit or evaluation network that maps situations into appraisals in linear-time; a role similar to emotions . . .