
Learning Generalized Policies Without Supervision
Using GNNs

Simon St̊ahlberg1 Blai Bonet2 Hector Geffner2,3,1

1Linköping University, Sweden
2Universitat Pompeu Fabra, Spain

3ICREA, Barcelona, Spain

Introduction

• General policies represent strategies for solving many planning instances

. E.g., general policy for solving all Blocksworld problems

• Three main methods for learning such policies (no “synthesis” methods yet!)

. Combinatorial optimization using explicit pool of C2 features obtained from domain

predicates [B. et al., 2019; Francès et al., 2021]

2 Transparent, can be proved correct, trouble scaling up

. Deep learning (DL) using domain predicates but no explicit pool [Toyer et al., 2020;

Garg et al., 2020]

2 Opaque, complex, not 100% coverage, scalable

. DL exploiting relation between C2 logic and GNNs [Barceló et al., 2020; Grohe, 2020;

St̊ahlberg et al., 2022]

2 More transparent, scalable, simple

2 GNN architecture adapted from Max-CSP[Γ] [Toenshoff et al., 2021]

2 Supervised and optimal: Learn value function V (s) from optimal V ∗(s) targets

2 Problem: In many domains no optimal general policy exists

St̊ahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022. 2

In this work . . .

• Learn general policies with no supervision and not necessarily optimal

• Same GNN architecture [St̊ahlberg et al., 2022] adapted from [Toenshoff et al., 2021]

• Transparent, 100% coverage, scalable, simple

• C2 and GNN correspondence used to understand limitations and potential fixes,
at logical level

• Insights on limitations of RL due to “conflict” between optimality and generality

St̊ahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022. 3

Outline

• Generalized planning and representations in Lifted STRIPS

• Value functions and policies

• Optimality vs. generality

• Graph neural networks (GNNs)

• GNN for learning value functions

• Loss functions

• Experimental results

• Analysis

• Conclusions

St̊ahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022. 4

Generalized Planning and First-Order STRIPS

• Generalized planning is about finding general plans or strategies that solve
classes of planning problems

• Generalized task is collection of ground instances Pi = 〈D, Ii〉 that share a
common first-order STRIPS domain D together with a init and goal descr.

• Instances P = 〈D, I〉 for general planning domain:

. Domain D specified in terms of action schemas and predicates

. Instance is P = 〈D, I〉 where I details objects, init, goal

Distinction between general domain D and specific instance P = 〈D, I〉 important
for reusing action models, and also for learning them

St̊ahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022. 5

Example: 2-Gripper Problem P = 〈D, I〉 in PDDL

(define (domain gripper)

(:requirements :typing)

(:types room ball gripper)

(:constants left right - gripper)

(:predicates (at-robot ?r - room) (at ?b - ball ?r - room)

(free ?g - gripper) (carry ?o - ball ?g - gripper))

(:action move

:parameters (?from ?to - room)

:precondition (at-robot ?from)

:effect (and (at-robot ?to) (not (at-robot ?from))))

(:action pick

:parameters (?obj - ball ?room - room ?gripper - gripper)

:precondition (and (at ?obj ?room) (at-robot ?room) (free ?gripper))

:effect (and (carry ?obj ?gripper) (not (at ?obj ?room)) (not (free ?gripper))))

(:action drop

:parameters (?obj - ball ?room - room ?gripper - gripper)

:precondition (and (carry ?obj ?gripper) (at-robot ?room))

:effect (and (at ?obj ?room) (free ?gripper) (not (carry ?obj ?gripper)))))

(define (problem gripper2)

(:domain gripper)

(:objects roomA roomB - room Ball1 Ball2 - ball)

(:init (at-robot roomA) (free left) (free right) (at Ball1 roomA) (at Ball2 roomA))

(:goal (and (at Ball1 roomB) (at Ball2 roomB))))

St̊ahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022. 6

Value Functions and Greedy Policies

• General value functions for a class of problems defined over features φi that
have well-defined values on all reachable states of such problems as:

V (s) = F (φ1(s), . . . , φk(s))

• E.g., linear value functions have the form

V (s) =
∑

1≤i≤kwi φi(s)

• Greedy policy πV (s) chooses action a = argmina∈A(s) 1 + V (sa):

. If V (s) = 0 for goals, and V (s) = 1 + mina V (sa) for non-goals, πV is optimal

. If V (s) = 0 for goals, and V (s)≥ 1 + mina V (sa) for non-goals, πV solves any state s

St̊ahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022. 7

Optimal vs. Suboptimal Policies

• Some domains have general optimal policies; others like Logistics and Blocks
don’t

• Indeed,

. For NP-hard tasks, no (general) optimal value function can be learned

. Even if planning task is in P , no neural net (circuit) may exist that produces
(general) optimal value functions

• Forcing learned value function V to be optimal [St̊ahlberg et al., 2022] not good
idea for broad coverage

In this work, we compute greedy suboptimal policies using GNNs

St̊ahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022. 8

Graph Neural Networks (GNNs)

• GNN is message-passing computational model over undirected graphs:

. Each vertex u embbeded into real vector f(u) of dimension k

. Computation performed for number of rounds L, where in a round:

2 Each vertex u receives embeddings f(v) from its neighbours v ∈ N(u)

2 These are aggregated and then combined with f(u) to produce new f(u)

. Final readout for graph computed on aggregation of embeddings f(u) for all vertices

• Typically, aggregation and combination functions are the same for all vertices

• Model specified by (embedding) dimension k, number of rounds L, aggregation
and combination functions, and final readout

GNN not tied to fixed-sized graphs; it can be applied to graphs of any size!

St̊ahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022. 9

GNN Architecture for Computing and Learning V (s)

• Planning states s over STRIPS domain D correspond to relational structures:

. Relational symbols given by D and hence shared by all states s

. Denotations of predicates p given by ground atoms p(ō) true at s

• Adapt architecture of [Toenshoff et al., 2021] for handling relational structures

generalized planning can be understood by comparing (4)
with the linear value functions (3) used by Francès, Corrêa,
Geissmann, and Pommerening (2019) in combination with
description logic features. These Boolean and numerical
features bq(s) and nq(s) are defined in terms of derived
unary predicates q, where bq(s) = 1 (true) if there is an ob-
ject o such that q(o) is true in s, otherwise 0; and nq(s) = m
is the number of objects o for which q(o) is true in s. Clearly,
if the feature vectors �(oi) in (4) contain a bit encoding
whether q(o) is true in s, then the readout function F would
just need to take the max and the sum of the bits q(o) as

bq(s) = max
o

q(o) , (5)

nq(s) =
X

o

q(o) , (6)

in order to capture such features, where the objects o range
over all the objects o in the instance. In other words, the
object-embedding form (4) is no less expressive than the lin-
ear form that uses description logic features, provided that
the feature vectors �(o) are expressive enough to represent
the bits qi(o) for unary predicates qi derived from the do-
main predicates using the description logic grammar. This in
turn is known to be within the capabilities of standard, mes-
sage passing GNNs, that can capture the properties that can
be expressed in the guarded fragment of the variable logic
with counting C2, which includes the standard description
logics (Barceló et al., 2020).

Below we follow the terminology of graph neural net-
works and refer to graphs and not states, and to vertex em-
beddings f(v) and not object embeddings �(o). After con-
sidering standard GNNs for undirected graphs, we intro-
duce the generalization needed for dealing with the rela-
tional structures represented by planning states.

6.2 GNNs on Graphs
GNNs represent trainable, parametric, and generalizable
functions over graphs (Scarselli et al., 2008; Hamilton,
2020) specified by means of aggregate and combination
functions aggi and combi, and a readout function F . For
each vertex v of the input graph G, the GNN maintains
a state (vector) fi(v) 2 Rk, the vertex embedding, i =
0, . . . , L, where L is the number of iterations or layers. The
vertex embeddings f0(v) are fixed and the embeddings fi+1

for all v are computed from the fi embeddings as:

fi+1(v) := combi

�
fi(v), aggi

�
{{fi(w)|w2NG(v)}}

��
(7)

where NG(v) is the set of neighbors for vertex v in G, and
{{. . .}} denotes a multiset. In words, the embeddings fi+1(v)
at iteration i + 1 are obtained by combining the aggrega-
tion of neighbors’ embeddings fi(w) at iteration i with v’s
own embeddings fi(v). This process is usually seen as an
exchange of messages among neighbor nodes in the graph.
The aggregation functions aggi map arbitrary collections of
real vectors of dimension k into a single Rk vector. Com-
mon aggregation functions are sum, max, and smooth-max
(a smooth approximation of the max function). The combi-
nation functions combi map pairs of Rk vectors into a single

Algorithm 1: GNN maps state s into scalar V (s)

Input: State s: set of atoms true in s, set of objects
Output: V(s)

1 f0(o) ⇠ 0k/2N (0, 1)k/2 for each object o 2 s;
2 for i 2 {0, . . . , L � 1} do
3 for each atom q := p(o1, . . . , om) true in s do

// Msgs q ! o for each o = oj in q
4 mq,o := [MLPp(fi(o1), . . . , fi(om))]j ;
5 for each o in s do

// Aggregate, update embeddings
6 fi+1(o) :=MLPU

�
fi(o), agg({{mq,o|o 2 q}})

�
;

// Final Readout
7 V := MLP2

�P
o2s MLP1(fL(o))

�

Rk vector. The embeddings fL(v) in the last layer are aggre-
gated and mapped into the output of the GNN by means of a
readout function F . In our setting, the output will be a scalar
V , and the aggregation and combination functions aggi and
combi will be homogeneous and not depend on the layer in-
dex i. All the functions are parametrized with weights that
are adjusted by minimizing a suitable loss function. By de-
sign, the function computed by a GNN is invariant with re-
spect to graph isomorphisms, and once a GNN is trained, its
output is well defined for any graph G regardless size.

6.3 GNNs for Planning States
States s in planning do not represent graphs but more gen-
eral relational structures that are defined by the set objects,
the set of domain predicates, and the atoms p(o1, . . . , om)
that are true in the state: the objects define the universe,
the domain predicates, the relations, and the atoms, their
denotations. The set of predicate symbols p and their ari-
ties are fixed by the domain, but the sets of objects oi may
change from instance to instance. The adaptation of the ba-
sic GNN architecture for dealing with planning states s fol-
lows (Ståhlberg et al., 2022), which is an elaboration of the
architecture for learning to solve Max-CSP problems over
a fixed class of binary relations introduced by Toenshoff,
Ritzert, Wolf, and Grohe (2021). The new GNN still main-
tains just the object embeddings fi(o) for each of the objects
o in the input state s, i = 0, . . . , L, but now rather than mes-
sages flowing from “neighbor” objects to objects as in (7),
the messages flow from objects oi to the true atoms q in s
that include oi, q = p(o1, . . . , om), 1  i  m, and from
such atoms q to all the objects oj involved in q as:

fi+1(o) := combU

�
fi(o), agg

�
{{mq,o|o 2 q, q 2 s}}

��
(8)

where mq,o for q = p(o1, . . . , om) and o = oj is:

mq,o := [combp(fi(o1), . . . , fi(om))]j . (9)

In these updates, the combination function combU takes the
concatenation of two real vectors of size k and outputs a
vector of size k, while the combination function combp, that
depends on the predicate symbol p, takes the concatenation
of m vectors of size k, where m is the arity of p, and outputs
m vectors of size k as well, one for each object involved in

Parameters θ: embedding dimension k, rounds L, {MLPp : p ∈ D}, MLPU , MLP1,MLP2

St̊ahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022. 10

Training and Loss Functions

• For given/learned θ, Vθ provides values for any state in any instance P = 〈D, I〉

• Training using SGD minimizes loss over training set by finding best θ

• Loss functions:

Loss =
∑

s in trainset

|V ∗(s)− Vθ(s)|

Loss′ =
∑

s in trainset

max
{

0,
[
1 + mina Vθ(sa)

]
− Vθ(s)

}

• If Loss= 0, Vθ =V ∗ yields optimal policies on training set [St̊ahlberg et al., 2022]

• If Loss′= 0, Vθ(s)≥ 1 + mina Vθ(sa) yields policies that solve training set

• We care about generalization performance over new, test instances

St̊ahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022. 11

Experiments: Setup

• Experiments aimed at testing generalization (coverage and quality) of greedy
policy πV for V = Vθ

• Standard instances from International Planning Competition (IPC)

• Hyperparameters k and L set to 64 and 30: L affects how far messages propagate,
k affects number of features in Vθ

• Optimizer: Adam with learning rate 0.0002

• Hardware: NVIDIA A100 GPUs for up to 12 hours

• During training, loss measured on “validation set”; best θ selected

• Quality measured with respect to optimal plans

St̊ahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022. 12

Experimental Results: Minimizing Loss′

• Instance sizes in training, validation and testing by number of objects

Domain Train Validation Test

Blocks [4, 7] [8, 8] [9, 17]

Delivery [12, 20] [28, 28] [29, 85]

Gripper [8, 12] [14, 14] [16, 46]

Logistics [5, 18] [13, 16] [15, 37]

Miconic [3, 18] [18, 18] [21, 90]

Reward [9, 100] [100, 100] [225, 625]

Spanner* [6, 33] [27, 30] [22, 320]

Visitall [4, 16] [16, 16] [25, 121]

• Performance of two deterministic greedy policies: πVθ with and without cycle avoidance

Deterministic policy πV with cycle avoidance Deterministic policy πV alone

Domain (#) Coverage (%) L PQ = PL / OL (#) Coverage (%) L PQ = PL / OL (#)

Blocks (20) 20 (100%) 790 1.0427 = 440 / 422 (13) 20 (100%) 790 1.0427 = 440 / 422 (13)
Delivery (15) 15 (100%) 400 1.0000 = 400 / 400 (15) 15 (100%) 404 1.0100 = 404 / 400 (15)
Gripper (16) 16 (100%) 1,286 1.0000 = 176 / 176 (4) 16 (100%) 1,286 1.0000 = 176 / 176 (4)
Logistics (28) 17 (60%) 4,635 9.7215 = 3,665 / 377 (15) 0 (0%) 0 —
Miconic (120) 120 (100%) 7,331 1.0052 = 1,170 / 1,164 (35) 120 (100%) 7,331 1.0052 = 1,170 / 1,164 (35)
Reward (15) 11 (73%) 1,243 1.2306 = 1,062 / 863 (10) 3 (20%) 237 1.1232 = 237 / 211 (3)
Spanner*-30 (41) 30 (73%) 1,545 1.0000 = 1,545 / 1,545 (30) 24 (58%) 940 1.0000 = 940 / 940 (24)
Visitall (14) 14 (100%) 904 1.0183 = 556 / 546 (10) 11 (78%) 631 1.0107 = 471 / 466 (9)

Total (269) 243 (90%) 18,134 1.6410 = 9,014 / 5,493 (132) 209 (77%) 11,619 1.0156 = 3,838 / 3,779 (103)

St̊ahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022. 13

Understanding and Overcoming Limitations

• Coverage:

. 5 out 8 fully solved: Blocks, Delivery, Gripper, Miconic, Visitall

. Exceptions: Logistics (60%), Reward (73%), Spanner (73%)

• Why not full coverage then?

. Logistics needs role composition, not in C2/GNN

. Reward/Spanner need to compute distances larger than # of GNN iterations

• Fixes:

. Logistics: add new atoms in states representing role compositions

. Spanner: add transitive closure of binary predicates

• Results:

. In Logistics and Spanner coverage jumps to 100%

St̊ahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022. 14

Summary

• Adapt GNN architecture for Max-CSP(Γ) [Toenshoff et al., 2021] for learning general
value functions Vθ that yield policies πVθ

• Approach like [St̊ahlberg et al., 2022] but V learned without supervision

• Limitations of approach understood and “fixed at logical level”

• Conflict between generality and optimality as often there are no optimal
general policies over many domains (e.g., Blocks)

• Loss function prefers generality rather than optimality

• Standard Bellman/RL losses try to achieve both but don’t get either

• General and crisp limitation of RL methods for computing general policies

• Open: formal characterization of expressivity à la [Barceló et al., 2020; Grohe, 2020]

St̊ahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022. 15

References

[Barceló et al., 2020] Barceló, P., Kostylev, E. V., Monet, M., Pérez, J., Reutter, J., and Silva, J. P.

(2020). The logical expressiveness of graph neural networks. In ICLR.

[Bonet et al., 2019] Bonet, B., Fuentetaja, R., E-Mart́ın, Y., and Borrajo, D. (2019). Guarantees

for sound abstractions for generalized planning. In Proc. IJCAI, pages 1566–1573.

[Francès et al., 2021] Francès, G., Bonet, B., and Geffner, H. (2021). Learning general planning

policies from small examples without supervision. In Proc. AAAI, pages 11801–11808.

[Garg et al., 2020] Garg, S., Bajpai, A., and Mausam (2020). Symbolic network: generalized neural

policies for relational mdps. In International Conference on Machine Learning, pages 3397–3407.

[Grohe, 2020] Grohe, M. (2020). The logic of graph neural networks. In Proc. of the 35th ACM-IEEE

Symp. on Logic in Computer Science.

[St̊ahlberg et al., 2022] St̊ahlberg, S., Bonet, B., and Geffner, H. (2022). Learning general optimal

policies with graph neural networks: Expressive power, transparency, and limits. In Proc. ICAPS.

[Toenshoff et al., 2021] Toenshoff, J., Ritzert, M., Wolf, H., and Grohe, M. (2021). Graph neural

networks for maximum constraint satisfaction. Frontiers in artificial intelligence, 3:98.

[Toyer et al., 2018] Toyer, S., Trevizan, F., Thiébaux, S., and Xie, L. (2018). Action schema

networks: Generalised policies with deep learning. In AAAI.

St̊ahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022. 16

