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Introduction

e General policies represent strategies for solving many planning instances

> E.g., general policy for solving all Blocksworld problems

e Three main methods for learning such policies (no “synthesis” methods yet!)
> Combinatorial optimization using explicit pool of C, features obtained from domain
predicates [B. et al., 2019; Frances et al., 2021]

O Transparent, can be proved correct, trouble scaling up

> Deep learning (DL) using domain predicates but no explicit pool [Toyer et al., 2020;
Garg et al., 2020]

O Opaque, complex, not 100% coverage, scalable

> DL exploiting relation between C, logic and GNNs [Barcel6 et al., 2020; Grohe, 2020;
Stdhlberg et al., 2022]

O More transparent, scalable, simple

O GNN architecture adapted from Max-CSP[I'] [Toenshoff et al., 2021]

O Supervised and optimal: Learn value function V' (s) from optimal V™ (s) targets
U

Problem: In many domains no optimal general policy exists
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In this work . ..

e Learn general policies with no supervision and not necessarily optimal
e Same GNN architecture [Stihlberg et al., 2022] adapted from [Toenshoff et al., 2021]
e Transparent, 100% coverage, scalable, simple

e Cy and GNN correspondence used to understand limitations and potential fixes,
at logical level

e Insights on limitations of RL due to “conflict” between optimality and generality
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Outline

e Generalized planning and representations in Lifted STRIPS
e Value functions and policies

e Optimality vs. generality

e Graph neural networks (GNNs)

e GNN for learning value functions

e Loss functions

e Experimental results

e Analysis

e Conclusions
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Generalized Planning and First-Order STRIPS

e Generalized planning is about finding general plans or strategies that solve
classes of planning problems

o Generalized task is collection of ground instances P; = (D, ;) that share a
common first-order STRIPS domain D together with a init and goal descr.

e Instances P = (D, I) for general planning domain:

> Domain D specified in terms of action schemas and predicates

> Instance is P = (D, I) where I details objects, init, goal

Distinction between general domain D and specific instance P = (D, I) important
for reusing action models, and also for learning them
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Example: 2-Gripper Problem P = (D, ) in PDDL

(define (domain gripper)

(

(
(:
(

:requirements :typing)
:types room ball gripper)
constants left right - gripper)
:predicates (at-robot ?r - room) (at ?b - ball ?r - room)
(free ?g - gripper) (carry 7o - ball ?g - gripper))
:action move
:parameters  (?from 7to - room)
:precondition (at-robot 7from)
reffect (and (at-robot 7to) (not (at-robot 7from))))
raction pick
:parameters (?0bj - ball ?Proom - room 7gripper - gripper)
:precondition (and (at 7obj ?7room) (at-robot ?room) (free 7gripper))
reffect (and (carry 7obj ?gripper) (not (at 7obj 7room)) (not (free ?gripper))))
:action drop
:parameters  (7obj - ball 7room - room 7gripper - gripper)
:precondition (and (carry ?obj 7gripper) (at-robot ?room))
reffect (and (at 7obj ?room) (free 7gripper) (mnot (carry 7obj ?gripper)))))

(define (problem gripper2)

(:domain gripper)

(:objects roomA roomB - room Balll Ball2 - ball)

(:init (at-robot roomA) (free left) (free right) (at Balll roomA) (at Ball2 roomA))
(:goal (and (at Balll roomB) (at Ball2 roomB))))
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Value Functions and Greedy Policies

e General value functions for a class of problems defined over features ¢; that
have well-defined values on all reachable states of such problems as:

V(s) = F(¢1(5),- -, x(s))
e E.g., linear value functions have the form

VI(s) = 2icicrwi di(s)

o Greedy policy 7y (s) chooses action a = argmin,¢ 45 1 + V(54):

> If V(s) =0 for goals, and V' (s) =1 + min, V (s,) for non-goals, 7y is optimal

> If V(s) =0 for goals, and V(s) > 1 4+ min, V(s,) for non-goals, 7y, solves any state s
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Optimal vs. Suboptimal Policies

e Some domains have general optimal policies; others like Logistics and Blocks
don't

e Indeed,

> For NP-hard tasks, no (general) optimal value function can be learned

> Even if planning task is in P, no neural net (circuit) may exist that produces
(general) optimal value functions

e Forcing learned value function V' to be optimal [Stahlberg et al., 2022] not good
idea for broad coverage

In this work, we compute greedy suboptimal policies using GNNs
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Graph Neural Networks (GNNs)

e GNN is message-passing computational model over undirected graphs:

> Each vertex u embbeded into real vector f(u) of dimension k
> Computation performed for number of rounds L, where in a round:

O Each vertex u receives embeddings f(v) from its neighbours v € N (u)

O These are aggregated and then combined with f(wu) to produce new f(u)

> Final readout for graph computed on aggregation of embeddings f(u) for all vertices

e Typically, aggregation and combination functions are the same for all vertices

e Model specified by (embedding) dimension k, number of rounds L, aggregation
and combination functions, and final readout

GNN not tied to fixed-sized graphs; it can be applied to graphs of any size!
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GNN Architecture for Computing and Learning V' (s)

e Planning states s over STRIPS domain D correspond to relational structures:

> Relational symbols given by D and hence shared by all states s

> Denotations of predicates p given by ground atoms p(o) true at s

e Adapt architecture of [Toenshoff et al., 2021] for handling relational structures

Algorithm 1: GNN maps state s into scalar V' (s)

Input: State s: set of atoms true in s, set of objects
Output: V(s)

fo(o) ~ 082N (0, 1)"3/2 for each object o € s;

[y

2 fori € {0,...,L — 1} do
3 for each atom q := p(01,...,0m) true in s do
// Msgs q— o for each o=o0; in ¢
4 Mgq,0 := [MLPy(fi(01), ..., filom))l;;
5 for each o in s do
// Aggregate, update embeddings
6 fi+1(0):=MLPuy (fi(0),agg({mq.0lo € q}));

// Final Readout
7 V := MLP2(}_,., MLP:(fL(0)))

Parameters 0: embedding dimension k, rounds L, {MLP, : p € D}, MLPy, MLP;, MLP,

Stahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022. 10



Training and Loss Functions

o For given/learned 6, Vj provides values for any state in any instance P = (D, I)
e Training using SGD minimizes loss over training set by finding best 6

e Loss functions:

Loss = Y |V*(s) = Vy(s)]

s In trainset

Loss' = Z max { 0, |1+ min, Vy(sq)| — Va(s) }

s In trainset

o If Loss=0, Vy=V7 yields optimal policies on training set [Stihlberg et al., 2022]
o If Loss’=0, Vy(s)>1+ min, Vy(s,) yields policies that solve training set

e We care about generalization performance over new, test instances

Stahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022. 11



Experiments: Setup

e Experiments aimed at testing generalization (coverage and quality) of greedy
policy my for V =V}

e Standard instances from International Planning Competition (IPC)

e Hyperparameters k and L set to 64 and 30: L affects how far messages propagate,
k affects number of features in Vjy

e Optimizer: Adam with learning rate 0.0002
e Hardware: NVIDIA A100 GPUs for up to 12 hours
e During training, loss measured on ‘“validation set”; best 6 selected

e Quality measured with respect to optimal plans
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Experimental Results: Minimizing Loss

e Instance sizes in training, validation and testing by number of objects

Domain Train Validation Test

Blocks [4, 7] [8, 8] [9, 17]

Delivery  [12, 20] [28, 28] [29, 85]
Gripper [8, 12] [14, 14] [16, 46]
Logistics  [5, 18]  [13,16]  [15, 37]
Miconic  [3,18]  [18, 18]  [21, 90]
Reward  [9,100] [100, 100] [225, 625]
Spanner*  [6, 33| [27, 30] [22, 320]
Visitall [4,16]  [16,16]  [25, 121]

/

e Performance of two deterministic greedy policies: 7y, with and without cycle avoidance

Deterministic policy 7y with cycle avoidance

Deterministic policy 7y alone

Domain (#) Coverage (%) L PQ=PL/OL(#) Coverage (%) L PQ=PL/OL(#)

Blocks (20) 20 (100%) 790 1.0427 = 440 / 422 (13) 20 (100%) 790 1.0427 = 440 / 422 (13)
Delivery (15) 15 (100%) 400 1.0000 = 400 / 400 (15) 15 (100%) 404 1.0100 = 404 / 400 (15)
Gripper (16) 16 (100%) 1,286 1.0000 = 176 / 176 (4) 16 (100%) 1,286 1.0000 = 176 / 176 (4)
Logistics (28) 17 (60%) 4,635 9.7215 = 3,665 / 377 (15) 0 (0%) 0 —

Miconic (120) 120 (100%) 7,331 1.0052 = 1,170 / 1,164 (35) 120 (100%) 7,331 1.0052 = 1,170 / 1,164 (35)
Reward (15) 11 (73%) 1,243 1.2306 = 1,062 / 863 (10) 3 (20%) 237 1.1232 = 237 / 211 (3)
Spanner*-30 (41) 30 (73%) 1,545 1.0000 = 1,545 / 1,545 (30) 24 (58%) 940 1.0000 = 940 / 940 (24)
Visitall (14) 14 (100%) 004 1.0183 = 556 / 546 (10) 11 (78%) 631 1.0107 = 471 / 466 (9)

Total (269) 243 (90%) 18,134 1.6410 = 9,014 / 5,493 (132) 209 (77%) 11,619 1.0156 = 3,838 / 3,779 (103)
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Understanding and Overcoming Limitations

e Coverage:

> 5 out 8 fully solved: Blocks, Delivery, Gripper, Miconic, Visitall
> Exceptions: Logistics (60%), Reward (73%), Spanner (73%)

e Why not full coverage then?

> Logistics needs role composition, not in Co/GNN

> Reward/Spanner need to compute distances larger than # of GNN iterations

e Fixes:

> Logistics: add new atoms in states representing role compositions

> Spanner: add transitive closure of binary predicates

e Results:

> In Logistics and Spanner coverage jumps to 100%
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Summary

e Adapt GNN architecture for Max-CSP(I") [Toenshoff et al., 2021] for learning general
value functions Vj that yield policies 7y,

e Approach like [Stahlberg et al., 2022] but V' learned without supervision
e Limitations of approach understood and “fixed at logical level”

e Conflict between generality and optimality as often there are no optimal
general policies over many domains (e.g., Blocks)

e Loss function prefers generality rather than optimality
e Standard Bellman/RL losses try to achieve both but don't get either
e General and crisp limitation of RL methods for computing general policies

e Open: formal characterization of expressivity a la [Barcelé et al., 2020; Grohe, 2020]
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