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Abstract
Combinatorial methods for learning general policies that
solve large collections of planning problems have been re-
cently developed. One of their strengths, in relation to deep
learning approaches, is that the resulting policies can be un-
derstood and shown to be correct. A weakness is that the
methods do not scale up and learn only from small training
instances and feature pools that contain a few hundreds of
states and features at most. In this work, we propose a new
symbolic method for learning policies based on the general-
ization of sampled plans that ensures structural termination
and hence acyclicity. The proposed learning approach is not
based on SAT/ASP, as previous symbolic methods, but on
a hitting set algorithm that can effectively handle problems
with millions of states, and pools with hundreds of thousands
of features. The formal properties of the approach are ana-
lyzed, and its scalability is tested on a number of benchmarks.

1 Introduction
The problem of learning policies that solve large collec-
tions of planning problems is an important challenge in
both planning and reinforcement learning. Symbolic meth-
ods yield general policies that can be shown to be cor-
rect but are limited to small training instances and feature
pools containing at most hundreds of states and features
(Francès, Bonet, and Geffner 2021). Deep learning meth-
ods, on the other hand, do not require feature pools and scale
up gracefully, yet the resulting policies are opaque and, in
general, do not generalize equally well (Toyer et al. 2020;
Ståhlberg, Bonet, and Geffner 2022).

The aim of this work is to develop a different way of learn-
ing general policies in the symbolic setting that scales up
to much larger training instances and feature pools, includ-
ing millions of states and hundreds of thousands of features.
This scalability is also needed to address a limitation that is
shared by the symbolic and deep learning approaches, and
which has to do with the type of state features that can be
computed. When description logic grammars or graph neu-
ral networks are used, the only logical features that can be
captured are those that can be defined in first-order logic
with two variables and counting quantifiers (Barceló et al.
2020; Grohe 2021). Addressing this limitation in the sym-
bolic setting, calls for novel and richer feature grammars that
result in larger feature pools, thus requiring more scalable
learning algorithms.

Previous symbolic methods like (Francès, Bonet, and
Geffner 2021; Drexler, Seipp, and Geffner 2022) scale up
poorly because they reduce the task of learning the features
and the policy to a combinatorial optimization problem that
is cast and solved by weighted-SAT or ASP solvers. In these
settings, relaxing the optimality criterion, or some of the
constraints, yield policies that do not generalize well outside
the training set. In this work, we use an scalable, heuristic
algorithm for min-cost hitting set problems as the basis of a
new procedure for learning general policies.

For obtaining the new formulation, two ingredients are
needed. First, a classical planner that generates plans which
are then generalized. Second, a new structural termination
criterion that ensures that the generalization does not intro-
duce cycles. Provided with this guarantee, the plan gener-
alizations become fully general policies when they are also
closed and safe; meaning that they do not reach states where
the policy is undefined or which are dead ends, respectively.
The resulting algorithm consists of an efficient, polynomial-
time, core algorithm, based on min-cost hitting sets, that
yields a policy that generalizes given sets of positive and
negative state transitions, X+ and X−, and a wrapper al-
gorithm that manipulates these two sets until the resulting
policy is closed and safe, and hence correct. Interestingly,
when the algorithm fails to produce a correct policy, the rea-
sons for the failure can be understood, and sometimes, fixed.

The rest of the paper is structured as follows. We discuss
related work, cover relevant background, introduce the new
termination criterion, and present the resulting formulation
and algorithm, assessing its properties and its performance.

2 Related Work
General policies. The problem of learning general poli-
cies has a long history (Khardon 1999; Fern, Yoon, and
Givan 2006; Srivastava, Immerman, and Zilberstein 2008;
Hu and De Giacomo 2011; Belle and Levesque 2016;
Illanes and McIlraith 2019; Celorrio, Segovia-Aguas, and
Jonsson 2019). General policies have been formulated in
terms of first-order logic (Srivastava, Immerman, and Zil-
berstein 2011; Illanes and McIlraith 2019), first-order re-
gression (Boutilier, Reiter, and Price 2001; Wang, Joshi,
and Khardon 2008; Sanner and Boutilier 2009), and neu-
ral networks (Groshev et al. 2018; Toyer et al. 2018; Bueno
et al. 2019; Rivlin, Hazan, and Karpas 2020; Karia, Nay-



yar, and Srivastava 2022; Ståhlberg, Bonet, and Geffner
2023). Our work builds on formulations where the fea-
tures and policies defined on such features and rules are
learned using SAT encodings (Bonet and Geffner 2018;
Francès, Bonet, and Geffner 2021), and is also related to
early supervised approaches that use polynomial algorithms
and explicit feature pools (Martı́n and Geffner 2004).

QNPs, Termination, Acyclicity. While a policy that is
closed, safe, and acyclic must solve a problem, enforcing
acyclicity is not easy computationally, as it is not a local
property. Interestingly, structural criteria and algorithms that
ensure acyclicity have been developed in the setting of qual-
itative numerical planning problems or QNPs (Srivastava et
al. 2011; Bonet and Geffner 2020), which involve Boolean
and numerical variables that can be increased and decreased
by random amounts. A policy terminates in a QNP if all
“fair” trajectories are finite, where trajectories where a vari-
able increases finitely often and decreases infinitely often
are regarded as “unfair”, and can be ignored. An algorithm
called SIEVE establishes termination in time that is exponen-
tial in the number of variables in the QNP. In this work a new
termination criterion is introduced that is slightly weaker
than SIEVE but that is more convenient and can be built into
the selection of the features.

Imitation learning and inverse reinforcement learning
(IRL). The use of sampled plans for learning general poli-
cies has been used in early work (Khardon 1999; Martı́n
and Geffner 2004; Fern, Yoon, and Givan 2006), and its a
common idea in imitation learning (Ng and Russell 2000;
Ho and Ermon 2016). Learning to imitate plans or behavior
in a mindless manner, however, prevents good generaliza-
tion. The idea in IRL is to learn the reward distribution from
the examples and then solve the underlying problem where
these rewards are to be optimized. The problem in IRL is in
the assumptions that need to be made so that the resulting
task is well-posed. In this work, we also aim to go beyond
the examples (plans) and solve the more general problem
that the examples illustrate. The task is not just to general-
ize the given plans, but to obtain a policy that is structurally
terminating and which hence must converge to a goal.

3 Background
We review classical planning, generalized planning, rule-
based policies, learning these policies, and termination,
following (Francès, Bonet, and Geffner 2021; Bonet and
Geffner 2024).

3.1 Planning and Generalized Planning
We deal with planning instances P = 〈D, I〉 where D is
a domain specification containing object types, constants,
predicate signatures, and action schemas, and I is an in-
stance specification containing the objects and their types,
and the description of the initial and goal situations, I andG
respectively, both as sets of ground atoms.

A state trajectory in P seeded at s0 is a state sequence
τ = 〈s0, s1, s2, . . .〉 such that for each transition (si, si+1),
there is a ground action that maps si to si+1. A state s is

reachable iff there is a trajectory seeded at the initial state
that ends in s; it is a dead end iff it is reachable, and there is
no state trajectory seeded at s that ends in a goal state; and
it is alive iff it is reachable, and it is not a goal nor a dead-
end state. The task for P is to find a trajectory seeded at the
initial state that ends in a goal state, or declare that no such
trajectory exist; a sequence of ground actions that map each
state into the next in such a trajectory is a plan.

Semantically, a policy π for P is a set of state transitions
(s, t) in P . A π-trajectory from state s0 is a state trajectory
τ = 〈s0, s1, s2, . . .〉 such that (si, si+1) is in π. The states in
the trajectory are said to be π-reachable in P . The policy π
solves P iff each maximal π-trajectory from the initial state
is finite and ends in a goal state. The policy π is closed if for
each alive state s that is π-reachable, there is π-transition
(s, s′); it is safe if it does not reach a dead end; and it is
acyclic if there is no infinite π-trajectory seeded at the initial
state. The following characterizes policies that solve P :

Theorem 1 (Solutions for P ). Let P be a planning instance,
and let π be a policy for P . Then, π solves P iff π is closed,
safe, and acyclic in P .

3.2 Generalized Planning
Generalized planning deals with the computation of policies
that solve collections of planning instances rather than just a
single planning instance. A collection of planning instances
is a, finite or infinite, set Q of instances Pi = 〈D, Ii〉 over
a common domain D. In some cases, all the instances in Q
have the same or similar goal, like achieving a specific atom,
but this is not required, nor assumed.

Semantically, a policy π forQ represents a subset of state
transitions in each instance P in Q. The policy π solves Q
iff it solves each instance P in Q. Notions about states like
reachable, alive, goal, etc., and about policies like closed,
safe, etc., are naturally lifted from P intoQ. A similar char-
acterization for solutions for Q applies:

Theorem 2 (Solutions forQ). LetQ be a collection of plan-
ning instances, and let π be a policy for Q. Then, π solves
Q iff π is closed, safe, and acyclic in Q.

3.3 Features
General policies can be represented in terms of collections
of feature-based rules. Features are functions that map
states into values. Boolean features take values in {0, 1},
and numerical features take values in the non-negative in-
tegers. In logical accounts, features are commonly de-
fined in terms of concepts (unary predicates), which are
generated from sets of atomic concepts and roles, us-
ing description logic grammars (Martı́n and Geffner 2004;
Fern, Yoon, and Givan 2006; Bonet, Frances, and Geffner
2019). The denotation of concept C (resp. roleR) in a state
s is a set of objects (resp. pairs of objects) from s, denoted
by C(s) (resp. R(s)). Concept C defines a numerical fea-
ture fC whose value at s is the cardinality |C(s)| of the set
C(s). When the value of fC is always in {0, 1}, the concept
defines a Boolean rather than a numerical feature.

For a domain D, the atomic concepts (resp. roles) are
given by the object types, constants, and unary predicates



(resp. the binary predicates) in D. A pool of features F
can be generated using the domain D, and parameters that
bound the maximum complexity and depth for the features
in F . The generation process is given a set T of transitions
over instances in D to prune redundant features; namely,
if S is the set of states mentioned in the transitions in T , a
feature f is redundant if there is a feature g of lesser com-
plexity, or equal complexity but earlier in a static ordering,
such that both are S-equivalent, or T -equivalent. Feature
f is S-equivalent to g iff f(s) = g(s) for each state s in S,
and f is T -equivalent to g if for each (s, t) in T , both have
the same Boolean valuation at s, and both change equiva-
lently across (s, t) (i.e., f(s)> 0 iff g(s)> 0, and both in-
crease/decrease/stay equal across (s, t)).

In the generalized planning setting, states s for an instance
P are assumed to contain the description of the goal in P via
goal predicates pg (Martı́n and Geffner 2004), one for each
predicate p in D with denotation {ū | G � p(ū)}. These
predicates allow policies to work for different goals G.

Example. Let us consider the domain for Blocksworld with
4 operators (i.e., with a gripper) and an instance P whose
goal description is G= {clear(A)}. The domain descrip-
tion contains the predicates clear/1 and on/2. The follow-
ing concepts are generated by the grammar:

– ‘clearg’ whose denotation is the singleton with block A,
– ‘∃on.>’ whose denotation consists of the blocks that rest

on another block (> is the concept that includes all ob-
jects), and

– ‘∃on+.clearg’ whose denotation consists of the blocks
that are above block A.

The second concept defines a feature that counts the number
of blocks that rest on another block, while the third defines a
feature that counts the number of blocks above the “target”
block A.

For a set G of features, a Boolean valuation ν is a func-
tion ν :G→{0, 1} that assigns a Boolean value to all the fea-
tures in a state, whether Boolean or numerical, as ν(f) = 0 if
f(s) = 0, and ν(f) = 1 if f(s)> 0. In these valuations, the
exact value of numerical features is abstract away, replaced
by a Boolean that is true iff the value is strictly positive.

3.4 Rule-based Policies
While semantically, policies select subset of state transitions
in each instance P in Q, syntactically, policies are repre-
sented by collection of rules over a given set of features F .
A policy ruleC 7→E consists of a conditionC, and an effect
E, where C contains expressions like p and ¬p for Boolean
features p, and n= 0 and n> 0 for numerical features n.
The effect E in turn contains expressions like p, ¬p, and p?
for Booleans p, and n↑, n↓, and n? for numericals n.

A set of rules defines a policy π where a state transition
(s, t) is a π-transition if it is compatible with one of the rules
r = C 7→E. This is true if the feature conditions in C are
true in s, and the features change in the transition in a way
that is compatible with E; i.e., (s, t) is compatible with r iff

– if p (resp. ¬p) in C, p(s) (resp. ¬p(s)),

– if p (resp. ¬p) in E, p(t) (resp. ¬p(t)),
– if {p,¬p, p?} ∩ E = ∅, p(s) iff p(t),
– if n= 0 (resp. n> 0) in C, n(s) = 0 (resp. n(s)> 0),
– if n↑ (resp. n↓) in E, n(s)<n(t) (resp. n(s)>n(t)), and
– if {n↑, n↓p, n?} ∩ E = ∅, n(s) =n(t).

The transition (s, t) is in π if it is compatible with some rule
r in π; we use notations like (s, t)∈π, and {(s, t)} ⊆ π.

Feature-based rules permit the representation of general
policies that are not tied to a particular set of instances, as
those used for learning such a policy, as the features and
rules can be evaluated on any instance for the shared domain.
Example. A general policy for Blocksworld instances with a
gripper and goal descriptions of the form G= {clear(A)},
for arbitrary block A, can be expressed with only two rules
{¬H,n> 0} 7→{H,n↓} and {H} 7→{¬H}, where H is a
Boolean feature that tells whether a block is being held, and
n counts the number of blocks above the target block (i.e.,
the block mentioned in G). The first rule says to pick block
above the target when holding nothing, while the second to
put the block being held somewhere not above the target (this
last condition is achieved as the effect of the second rule
requires n to be remain constant).

Notice, however, that if the second rule is replaced by
{H} 7→{¬H,n?}, the resulting policy does not solve such
instances as it can generate infinite trajectories where the
same block is picked and put back above the target block,
repeatedly. The policy above cannot generate infinite tra-
jectories, independently of the interpretation of H and n;
we say that it is structurally terminating.

3.5 Learning Rule-based Policies
The new method for learning general policies builds on the
SAT approach developed by Francès, Bonet, and Geffner
(2021) that constructs a CNF theory Th(T ,F) from a set
T of state transitions (s, t) in a collection Q′ of training in-
stances, and a pool F of Boolean and numerical features.
The theory contains propositions good(s, t) and select(f)
that tell which transitions (s, t) in T and features f in F
should be included in the resulting policy π. The policies π
over the features in F that solve Q′ are in correspondence
with the models of Th(T ,F). Indeed, the rules in π are de-
termined by the true good(s, t) and select(f) atoms: each
good transition (s, t) yields a rule C 7→E where C captures
the Boolean valuations of the selected features at state s, and
E captures the changes of such features across (s, t). Such
a policy rule is called the projection of the transition (s, t)
over the set of selected features.

By constructing a policy π∗ from a satisfying assignment
of minimum cost, as determined by the complexity of the se-
lected features, the policy π∗ is expected to generalize over
the entire class Q from which the training instances in Q′
have been drawn. While correct generalization is not guar-
anteed, this can be established by manually analyzing π∗.

The key constraints in the SAT theory, expressed with the
good(s, t) and select(f) atoms, ensure that any resulting
policy π is closed, safe, and acyclic in Q′. For this, the full
state space of such instances, states and transitions, need to



be calculated and represented in Th(T ,F) as well as all the
features in the pool, making the approach only feasible for
small state spaces and feature pools.

3.6 Termination
The idea of structural termination in settings where vari-
ables can be increased and decreased “qualitatively” (i.e.,
by random amounts) is that certain state trajectories are not
possible if the variables have minimal and maximal values
in each instance, and the changes cannot be infinitesimally
small (Srivastava et al. 2011; Bonet and Geffner 2020). In
the generalized planning setting, it is the numerical features
that change in this way. An infinite state trajectory where a
numerical feature is increased finitely often, and decreased
infinitely often, or vice versa, is not possible. If the infinite
state trajectories generated by a policy all have this form, the
policy must be acyclic.

This notion of termination is particularly interesting be-
cause it comes up with a sound and complete algorithm for
checking the termination of a given policy π, called SIEVE
(Srivastava et al. 2011) that runs in time O(2n) where n is
the number of features in π, and which works on the so-
called policy graph, whose nodes are the possible Boolean
valuations of the features in π. Indeed, while acyclicity is
property of the policy π in a particular instance P , termi-
nation is a property of the rules in π that ensures acyclicity
for any instance. The notion of stratified rule-based policies
introduced below provides a novel twist to this idea which is
more convenient for learning policies that are terminating
by design. Indeed, the new structural termination criterion
runs more efficiently than SIEVE and can be compiled into
the procedure that selects the policy features given the good
transitions, ensuring that the resulting policy is terminating.

4 The Plan
The approach for learning general policies via SAT reviewed
above is simple and elegant but does not scale up. The new
learning method can be thought as a simplification where:

1. The “good” state transitions are not selected by the SAT
solver but incrementally, by a planner.

2. The acyclicity constraint, which is global and hard to en-
force, is replaced by a new termination criterion that is
enforced implicitly in the selection of the features.

3. The selection of the features is carried out by a scalable
hitting set algorithm and not by SAT.

The three elements are all critical for the performance of
the resulting learning algorithm. The second and third el-
ements are addressed by an algorithm that we call GENEX,
for generalization from examples, and that can handle sets
of state transitions and features that are orders of magnitude
larger that the ones handled by current approaches. The first
element, on the other hand, that uses a planner to select tran-
sitions, is addressed by a simple WRAPPER algorithm around
GENEX.

An essential idea of the new method is the decoupling
of the two selections involved in the computation of gen-
eral policies: the selection of the “good” transitions in the

training set, and the selection of the features. In the SAT ap-
proach these two decisions are coupled, ensuring complete-
ness: if there is a general policy over the features that solves
the training instances, the SAT approach would find it. This
guarantee is now gone, replaced by the decoupling that en-
ables scalability. The experiments below evaluate this trade
off.

The next sections introduce the new termination criterion,
a new basic learning algorithm that yields terminating poli-
cies that generalizes given sets of “good” and “bad” transi-
tions, and a wrapping mechanism that extends this policy to
be safe and closed.

5 Termination Revisited
A new notion of termination is introduced by means of strat-
ified policies. These are rule-based policies whose features
can be layered up in such a way, that features in the first
layer can be shown to be terminating without having to con-
sider other features, while features in successive layers can
be shown to be terminating given features in previous layers.
A feature f is terminating in a policy π if it cannot keep
changing values forever; namely, if the number of times that
f changes value in a π-trajectory is finite. The policy π is
terminating if all the features involved are terminating.

We take advantage of the assumption that the numerical
features are non-negative integer valued and upper bounded
in any instance. Hence, a trajectory where a feature is
increased (resp. decreased) infinitely often but decreased
(resp. increased) finitely often is not possible. In the defi-
nitions, Boolean features are treated as numerical features
with decrements and increments referring to value changes
from from 1 to 0, and from 0 to 1, respectively.

5.1 Stratified Policies
The first class of terminating features are the features that
are monotone in the set of (policy) rules R, meaning that R
does not contain rules that increase and that decrease f .

Definition 3 (Monotone Features). Let F be a set of fea-
tures, let R be a set of policy rules over F , and let f be a
feature that appears in some rule inR. Then, f is monotone
in R iff either there is no rule in R that increases f , or there
is no rule in R that decreases f .

Clearly, a monotone feature can only change value a finite
number of times along a given trajectory, as it eventually
reaches a minimum or maximum value, and stays put.

The second class of terminating features f are those that
are rendered monotone by other monotone features g. In-
deed, since g can change a finite number of times, f will be
monotone given g if f is monotone over the rules that do
not change the value of g and which share the same value of
g in the conditions.

To capture this form of conditional monotonicity, we de-
fine the following rule subsets from R and a given feature g:

%(R, g,=)
.
= {r∈R | {g↑, g↓}∩ eff(r) = ∅} ,

%(R, g, 0)
.
= {r∈ %(R, g,=) | ‘g > 0’ 6∈ cond(r)} ,

%(R, g, 1)
.
= {r∈ %(R, g,=) | ‘g= 0’ 6∈ cond(r)} .



The intuitions for these subsets is that when a transition
(s, t) is compatible with a rule r, then

• r∈ %(R, g,=) iff g may remain unchanged across (s, t),
• r∈ %(R, g, 0) iff r∈ %(R, g,=) and g= 0 may hold at s,
• r∈ %(R, g, 1) iff r∈ %(R, g,=) and g > 0 may hold at s.

Conditional monotonicity is defined as follows:
Definition 4 (Conditional Monotonicity). Let F be a set of
features, letR be a set of policy rules overF , and let f and g
be features that are mentioned inR. Then, f is monotone in
R given g iff f is monotone in %(R, g, 0) and f is monotone
in %(R, g, 1).

A set of rules R encodes a stratified policy if the features
in the policy can be ordered in such a way that features f
with a positive rank κ(f) are monotone given features g of
lower rank.
Definition 5 (Stratified Policies). Let π be a rule-based pol-
icy over a set F of features. Then, π is a stratified iff
1. Each rule in π entails the change of some feature f , and
2. There is a ranking κ for the features in π such that

2a. If κ(f) = 0, then f is monotone in π, and
2b. If κ(f)> 0, then there is feature g such that

κ(g)<κ(f) and f is monotone in π given g.
Where a rule C 7→E entails the change of feature f iff f is
numerical and E∩{f↑, f↓} 6= ∅, or f is Boolean and either
p∈C ∧ ¬p∈E, or ¬p∈C ∧ p∈E.

A stratified policy cannot generate infinite trajectories just
due to its form, without regard for the class of instances Q
where it is applied, or the interpretation of the features; i.e.,
Theorem 6 (Termination). Let π be a rule-based policy over
a set of features F . If π is stratified, π is terminating.
Example. We illustrate a terminating policy for the Grip-
per domain which involves a robot that must move balls
from room A to room B, using two grippers. The rooms A
andB are declared in the domain specification as constants,
thus shared by all instances and identified with nominal con-
cepts. The policy π is defined over the features: A that tells
whether the robot is in room A, m that counts the number of
balls being held, and n that counts the number of objects in
room A. The rules are:

r1 : {n> 0} 7→ {n↓,m?} ,
r2 : {m> 0} 7→ {m↓} ,
r3 : {A,m> 0} 7→ {¬A} ,
r4 : {¬A,m= 0} 7→ {A} .

The first rule says to decrease the number of balls in roomA
(i.e., to pick them up) whenever possible, perhaps affecting
m; the second to drop balls somewhere while not affecting
n (the only way to achieve this is to drop balls in room B);
the third rule says to move from room A to B when holding
a ball, and the last one to move from B to A when holding
nothing. This is a general policy that moves all balls in room
A to room B, and that works for any number of balls.

The policy is stratified and thus terminating (cf. Def. 5
and Thm. 6). The feature n is monotone in π as no rule

increases it, m is monotone in π given n as it is monotone
in %(π, n, 0) = %(π, n, 1) = {r2, r3, r4}, and A is monotone
in π given m as it is monotone in %(π,m, 0) = {r1, r4} and
it is monotone in %(π,m, 1) = {r1, r4}.

5.2 k-Stratified Policies
Stratified policies can be generalized to cases where the
monotonicity of f depends on multiple features of lower
rank. For this, we need to define when a feature f is mono-
tone given a set G of features, and this requires the consid-
eration of Boolean valuations over the features. Recall that
a Boolean valuation assigns a Boolean value ν(g) in {0, 1}
for every feature g, whether Boolean or numerical.
Definition 7 (k-Conditional Monotonicity). Let F be a set
of features, let R be a set of policy rules over F , and let f
and G be a feature and a set of features, respectively, men-
tioned in R. Then, f is monotone in R given G iff for each
Boolean valuation ν for G, f is monotone in %(R,G, ν),
where %(R,G, ν)

.
= ∩{%(R, g, ν(g)) | g ∈G}.

As G increases, more “contexts” %(R,G, ν) need to be
considered, but each context is smaller. Thus, the chances
for f being monotone given G increase as G contains more
features. Also, f is monotone given G′ when it is monotone
given G and G⊆G′. The definition of k-stratified policies
can be similarly expressed as before:
Definition 8 (k-Stratified Policies). Let π be a rule-based
policy defined over the features in F , and let k be a positive
integer. Then, π is a k-stratified policy iff
1. Each rule in π entails the change of some feature f , and
2. There is ranking κ for the features in π such that

2a. If κ(f) = 0, f is monotone in π, and
2b. If κ(f)> 0, there are features G= {g1, g2, . . . , g`},

with `≤ k, such that max{κ(g) | g ∈G}<κ(f) and
f is monotone in π given G.

It is not difficult to show that for any integer k > 1, there
are policies that are k-stratified but not (k − 1)-stratified,
and that there are policies that are terminating, but not k-
stratified for any k. As before, k-stratified policies are ter-
minating too:
Theorem 9 (Termination of k-Stratified Policies). Let π be
a rule-based policy defined on a set of features F , and let k
be a positive integer. If π is k-stratified, π is terminating.

Proof (sketch). Let π be a k-stratified policy, and let κ be a
suitable ranking for π. Let us suppose that π is not terminat-
ing; i.e., there is an infinite trajectory of Boolean valuations
over the features that is compatible with π.

Since for each transition compatible with π, there is a fea-
ture that changes across the transition, there must be a fea-
ture f in π that is increased and decreased infinitely often
in τ . Let f be such a feature of minimum rank. Clearly,
κ(f) cannot be zero as such features are monotone in π.
Therefore, there is a set G with at most k features and
max{κ(g) | g ∈ G}<κ(f) such that f is monotone in π
given G. This means that f is monotone in %(π,G, ν) for
all the Boolean valuations ν of the features in G. Therefore,
there are at least two valuations ν0 and ν1 for G that appear



infinitely often in τ . Hence, there is some feature g in G
whose Boolean value flips infinitely often in τ , which im-
plies that g is increased and decreased infinitely often in τ .
This contradicts the choice of f because κ(g)<κ(f).

At the same time, checking k-stratification is exponen-
tial in k and not exponential in the number of features like
SIEVE. This is important because the notion of termination
captured by k-stratification for a low value of k is most often
powerful enough. Indeed, our learning algorithm uses k= 1.

Theorem 10 (Testing k-Stratification). Let π be rule-based
policy defined on a set of features F , and let k be a positive
integer. Testing whether π is k-stratified can be done in time
that is exponential in k, but polynomial in |π| and |F|, where
|π| refers to the number of rules in π.

Proof (sketch). In order to check that π is k-stratified, one
needs to “construct” a suitable ranking κ. The construction
proceeds in stages, first identifying the features of rank 0,
then those of rank 1, etc. First, at stage 0, the monotone
features f in π are identified in linear time and assigned
κ(f) = 0. Then, at stage `, each feature f not yet ranked
is tested whether there is a subset G of at most k features of
rank less than ` such that f is monotone in π given G. The
number of subsets to try isO(nk), where n is the number of
features in π, and for each such candidate, O(2k) contexts
must be considered. Hence, testing whether a new feature f
can be assigned a rank requires time that is exponential only
in k. This check must be repeated O(n) times as there are n
features, and for at most O(n) stages.

6 Basic Learning Task and GENEX
We formulate the problem of learning generalized policies
from examples (plans) in two parts:

1. Basic learning task (BLT): Given sets X+ and X− of
“good” and “bad” state transitions, respectively, and a
feature pool F , the task is to find a stratified policy π
over the features in F such that the good transitions are
π-transitions, and no bad transition is a π-transition. In
other words, the BLT task is about generalizing the good
transitions, which may come from plans, while avoiding
the bad transitions and ensuring termination.

2. Meta learning task (MLT): Find the sets of good and
bad transitions so that the BLT returns a policy that is
closed and safe over all instances P in a training set Q.

We focus on the basic learning task in this section and on
the meta learning task in the next one.

6.1 Task and Algorithm
The task is to learn a stratified policy that includes the good
transitions, and excludes the bad transitions; formally,

Definition 11 (Basic Learning Task). Let F be a pool
of features, and let X+ and X− be sets of transitions,
called “good” and “bad” transitions, respectively. Then,
BLT (F ,X+,X−) is the task of finding a stratified policy
π over F such that X+ ⊆ π and X− ∩ π = ∅.

The BLT is defined in this way, leaving aside closedness
and safeness, because it can be cast as a hitting set problem
that admits efficient algorithms.

In general, a hitting set problem is the tuple 〈S,H, c〉
where S is a set of items,H is a collection of S-subsets, and
c : S → N+ is a cost function. The task is to find a min-cost
subset S′⊆S that “hits” every subset inH (i.e., S′∩Si 6= ∅
for Si ∈H), where the cost of S′ is c(S′) .

=
∑

i∈S′ c(i).

Definition 12 (Hitting Set Problem Induced by BLT). Let F
be a pool of features, and letX+ andX− be sets of good and
bad transitions. The hitting set problem H(F ,X+,X−) is
the tuple 〈F ,H, c〉where the cost function cmaps f ∈F into
its complexity, andH consists of the following F-subsets:

• For each transition (s, t) in X+, H contains the set
{f ∈F | f changes across (s, t)}.

• For each (s, t) in X− and each (s′, t′) in X+,H contains
{f ∈F | f changes differently in (s, t) and (s′, t′)}.

• For each pair (s, s′) of goal and non-goal states
in the transitions in X+, H contains the set
{f ∈F | the Boolean valuation of f differs on {s, s′}}.
The last type of subsets is not needed for solving the BLT.

However, policies that contain features that identify goal
states tend to generalize better over new unseen instances.

From a solution G for H(F ,X+,X−), one can construct
a policy π=π(G,X+) whose rules C 7→E are obtained by
projecting the good transitions (s, t) in X+ over the fea-
tures in G, like in previous learning approaches.

GENEX, depicted in Alg. 1, is a standard greedy al-
gorithm that solves H(F ,X+,X−) by growing a hit-
ting set G. To guarantee completeness of the algorithm
(cf. Theorem 13), the algorithm adds a set (chain) Cf =
〈f0, f1, . . . , fk+1 = f〉 of features (of maximum score) that
ends in f , and that provides complete conditional mono-
tonicity for f : f0 is monotone for (the transitions in) X+,
and fi+1 is monotone for X+ given fi, for i = 0, 1, . . . , k.
Stratification is guaranteed by ensuring that no choice of
chains create a circular ordering among the chosen features.
For this, each such chainCf imposes an ordering constraints
fi ≺ fi+1 that are maintained in the set Ord (line 9) and that
is queried for selecting features (line 7).

The greedy algorithm runs in low polynomial time in the
size of H(F ,X+,X−). More interesting is that it is sound
and complete for the basic learning task:

Theorem 13 (Soundness and Completeness of GENEX). Let
F be a pool of features, and let X+ and X− be sets of good
and bad transitions, respectively. If GENEX returns G ⊆F
on input H(F ,X+,X−), then

1. G is a hitting set for H(F ,X+,X−), and
2. the policy π=π(G,X+) obtained by projecting the tran-

sitions in X+ over G solves BLT(F+,X+,X−).

Else, if GENEX returns FAILURE on input H(F ,X+,X−),
then there is no solution π for BLT(F+,X+,X−) whose
features separate goal from non-goal states.

Proof (sketch). Soundness. Let us assume that GENEX re-
turns G. Clearly, G is a hitting set for H(F ,X+,X−).



Algorithm 1 GENEX for solving H(F ,X+,X−).

Input: Hitting set problem H =H(F ,X+,X−).
Output: FAILURE, or hitting set G for H(F ,X+,X−).

1: For each f in F , let cost(f)← complexity(f).
2: For each f ∈F , compute Cf = 〈f0, . . . , fk+1 = f〉 such

that f0 is monotone in X+, fi+1 is monotone in X+

given fi, and Cf is of minimum cost, where the cost of
Cf is

∑k+1
i=0 cost(fi).

3: Let G := ∅
4: Let Ord := ∅ be the empty ordering of chosen features.

Feature f is eligible if Ord∪{〈g, g′〉 | 〈g, g′〉 ∈ Cf}
is acyclic. The set of eligible features is denoted by
E = E(F ,Ord).

5: while G is not a solution for H do
6: Let f∗ ∈E be a feature of max score(f∗), where

score(f) = |{S ∈H | G ∩S = ∅ ∧ Cf ∩S 6= ∅}|
divided by the cost of Cf .

7: If E = ∅ or score(f∗) = 0, return FAILURE

8: Let G ← G ∪ Cf∗

9: Let Ord← Ord ∪ {〈g, g′〉 | 〈g, g′〉 ∈ Cf∗}
10: Set cost(f)← 0 for f ∈ Cf∗ .
11: Recompute chains given new cost of features in Cf

12: end while
13: return G

Also, it is not hard to see that there is a ranking κ that ren-
ders π(G,X+) stratified. Indeed, since Ord remains acyclic,
there is such ranking κ throughout the execution of the loop,
at the start of each iteration.

Completeness. Let π be a stratified policy over G ⊆F
such that X+⊆π, X− ∩ π= ∅, and G separates goal from
non-goal states. Moreover, let π be such a policy with a
minimum number of rules; i.e., each rule in π is compatible
with at least one transition in X+. One can show that during
the execution of GENEX, at the beginning of each iteration,
there is a feature f in G such that the score ofCf is non-zero.
Hence, GENEX cannot terminate with failure.

Finally, if Q is a finite collection of instances, then one
can construct sets X+ and X− of good and bad transi-
tions over the instances in Q such that any solution π for
BLT(F ,X+,X−) solves Q.

Theorem 14. Let Q be a finite class of instances, let F be
a pool of features, and let X+ and X− be set of good and
bad transitions that satisfy the following:

1. For each instance P in Q, and each alive state s in P ,
there is a transition (s, s′) in X+, and

2. For each instance P inQ,X− contains all the transitions
(s, s′) in P where s is alive and s′ is a dead-end state.

If π is a solution of BLT(F ,X+,X−), then π solves Q.

Proof. Let P be in Q, and let τ = (s0, s1, . . . , s, t) be a
maximal π-trajectory in P . Clearly, τ is acyclic since π is
stratified. Since all transitions (s, t) in P from an alive state
s to a dead-end t are in X−, t is not a dead-end state. On
the other hand, t cannot be alive as otherwise there would
be a transition (t, t′) in X+, implying that τ is not maximal.
Therefore, t must be a goal state.

7 Meta Learning Task: WRAPPER

The basic learning task BLT(F ,X+,X−) is solved effi-
ciently by GENEX, provided it has solution. There is how-
ever an important open question: what state transitions from
the training instances to include in X+ and X−?

One answer to above question is given by sets X+ and
X− that comply with the conditions in Theorem 14. How-
ever, this is impractical as computing such sets requires the
expansion of the state space for the training instances in Q,
and would result in very large sets of transitions, at least one
transition per each alive state in each instance. In this sec-
tion, we describe an efficient wrapper algorithm, simply
called WRAPPER, that starting from example paths computed
by a planner, identifies additional transitions that are added
to X+ and X−. The algorithm, being greedy, is incomplete,
yet it is able to solve a large number of benchmarks.

The idea behind WRAPPER, depicted in Alg. 2, is simple.
To find a policy that solves Q, the wrapper works with a
small subsetQ′⊆Q (line 2), finds a solution π forQ′ using
GENEX (lines 4–7), and tests π on Q (line 8). If π solves Q,
it returns π. Else, Q′ is updated, and the process repeats.

Finding a solution for Q′ may involve multiple calls to
GENEX with different setsX+ andX− of good and bad tran-
sitions for Q′. If H(F ,X+,X−) has solution G, the policy
π=π(G,X+) is executed on the instances inQ′. Three dif-
ferent outcomes may arise: 1) π solves Q′; 2) an alive state
s is found where π is not defined, hence π is not closed; or
3) a dead-end state t is reached,1 hence π is not safe. In case
2, X+ is extended with a transition (s, t) obtained with the
planner. In case 3, X− is extended with the last π-transition
(s, t) leading to the dead-end state. This is repeated until a
solution for Q′ is obtained, or GENEX fails, in which case
WRAPPER also fails (line 5). This loop (lines 4–7) is called
the inner loop of the wrapper.

The optional policy simplification in line 6 tries to remove
conditions and insert unknown effects (i.e., of type n?) in
the rules of the projected policy π=π(G,X+) to increase
its coverage. The simplification is an iterative, greedy, pro-
cess that at each iteration attempts to remove a condition or
insert an unknown effect while preserving the invariant: π
remains stratified under the same ranking κ, π has the same
conditional monotonicites, and π ∩X−= ∅.

Finally, if the found policy, which solves Q′, does not
solveQ, two strategies for updatingQ′ are considered. Both
strategies work with a static ordering P1, P2, P3, . . . of the
instances in Q, determined by the length of the plans com-
puted by the planner Φ, from larger to shorter plans. In the

1Dead-end states are identified with the planner: state t is de-
clared as dead-end state iff the planner cannot find a plan for it.



Algorithm 2 WRAPPER for GENEX.

Input: Training setQ with planning instances P , pool F of
features, and planner Φ.
Output: FAILURE, or stratified policy π that solves Q.

1: Use the planner Φ on each instance P in Q to obtain
plan τP for P . Collect the transitions in τP into the sets
X+

P and X−P = ∅ of good and bad transitions for P .
2: [[Outer loop, lines 2–8]] Get non-empty subset Q′⊆Q

of instances. If no more subsets Q′ are available (see
text), return FAILURE.

3: Let X+← ∪{X+
P |P ∈Q′};X−← ∪{X

−
P |P ∈Q′}.

4: [[Inner loop, lines 4–7]] SolveH =H(F ,X+,X−) with
GENEX (Algorithm 1).

5: Return FAILURE, if GENEX fails, else let π=π(G,X+)
for the solution G of H .

6: [[Optional]] Simplify policy π (see text).
7: Test π onQ′. If, for some P inQ′, there is a π-trajectory
〈s0, . . . , s, t〉 such that t is identified as a dead-end state,
or t is not covered by π, then: in the first case, augment
X− with transition (s, t) (to be avoided), else, in the
second case, augment X+ with a transition (t, t′) “rec-
ommended” by the planner Φ (to be covered). Continue
to Step 4.

8: Test π on Q. If π does not solve P in Q, update the
subset Q′ to contain P (and possibly other instances),
and continue to Step 2. Else, return π as π solves Q.
(See the text for strategies to update Q′.)

first strategy, named S1, Q′ is always a singleton, initial-
ized to {P1}. If π solves Q′= {Pk} but not P`, where ` is
minimum, Q′ is updated to {P`} if `>k, else to {Pk+1}.
In the second strategy, named S2, Q′ also starts as {P1}.
But, if π solves Q′, with max instance index k, but not P`,
of minimum index, Q′ is set to Q′ ∪ {P`} if `<k, else to
{P`}. The loop comprising lines 4–8 is referred to as the
outer loop. The number of iterations of the outer loop is
bounded by |Q| for ther first strategy, and by |Q|2 for the
second strategy.

8 Experiments
We implemented GENEX and WRAPPER in Python with the
help of the libraries DLPLAN and TARSKI (Drexler, Francès,
and Seipp 2022; Francés, Ramirez, and Collaborators 2018).
The planner is SIW (Lipovetzky and Geffner 2012) which
is fast and effective, except for Spanner where BFWS
(Lipovetzky and Geffner 2017) is used because SIW can
only solve instances with one nut. The source code, bench-
marks, and results are publicly available.2

The other approaches for computing general rule-based
policies for generalized planning are: the approach of
Francès, Bonet, and Geffner (2021) for computing general
policies, and the approach of Drexler, Seipp, and Geffner

2http://github.com/bonetblai/learner-policies-from-examples.

(2022) for computing sketches of bounded width. Both ap-
proaches are based on SAT/ASP, and require the full expan-
sion of the state-space for the training instances, and thus
they cannot handle large training instances or feature pools.
Indeed, the reported experiments for the first approach, only
consider 9 domains, with pools of up to 2,000 features, and
instances with up to 6,000 non-equivalent states. General
policies are obtained by a careful choice of the training in-
stances. The second approach reports experiments on 9 do-
mains, from which policies are obtained for 6 domains. The
pools involved have at most a thousand features, and tens of
states. The domains solved by either approach are solved
by the new approach, but not vice versa: there are domains
solved by the new approach that cannot be solved by any of
the previous approaches.

We carried out experiments on 34 standard planning do-
mains of various sorts that pose different type of challenges
for generalized planning. Some of these domains have been
considered before, and others are new (we don’t have space
to describe the domains). In all cases, we pre-computed a
pool of features using DLPLAN with a complexity bound of
15 and max-depth bound of 5, except for Logistics and 8-
puzzle domains where the bound was increased to 20. The
WRAPPER starts with strategy S1, switching to strategy S2

when the first fails, as explained below.

8.1 Results
We divide the results into 5 categories, depending on the
number of considered plans, and the addition of good and
bad transitions, in order to obtain a policy π that solves Q:
C1. 5 domains that require a single call to GENEX (i.e., only

the first plan is considered, and no additional transitions
are needed).

C2. 4 domains that require just the first plan, but additional
good or bad transitions are needed.

C3. 5 domains that require just one plan, but the first plan
considered does not yield a solution.

C4. 6 domains that require the second strategy S2.
C5. 14 domains where no general policy is found with the

reason (only 3 timeouts, and 11 for lack of expressivity,
explained below).

Notice that there are 14 domains where general policies are
found by generalizing a single plan, cf. categories C1–C3.

Table 1 shows the results for categories C1–C4, 20 do-
mains, where |Q| is the number of instances in the training
set Q, |S| is the number of states considered (seen) during
training, |F| is the size of the feature pool, ‘Strat.’ is the
wrapper strategy, and ‘Outer’ and ‘Inner’ are the total num-
ber of iterations for outer and inner loop of WRAPPER, re-
spectively.

The table also contains details for the last outer iteration:
|Q′| is the number of instances fromQ used in the last outer
iteration, ‘Inner∗’ is the number of inner iterations for the
last outer iteration, |X+| and |X−| is the last number of good
and bad transitions, |H| is the size of the hitting set problem,
|G| is the size of hitting set, and |π| is the number of rules in
the projected policy π=π(G,X+).

http://github.com/bonetblai/learner-policies-from-examples


The last four columns in Table 1 show the accumulated
times in seconds spent by preprocessing to support GENEX,
GENEX itself, verification, and total wall time. The verifica-
tion is costly when the number of instances in Q is large, or
the policy visits a large number of states.

The table is vertically divided into four parts correspond-
ing to the categories C1–C4, respectively. The 5 domains in
the top are solved fast, in a few seconds, except Visitall
that requires 18.5min, from which about 16.5min are spent
in the verification over the 460 instances in Q. In the
second part, there are domains with dead-end states, like
Spanner-1nut, which are used to augment the set X− of
bad transitions. Interestingly, just few bad transitions are
needed in domains with dead-end state: 1 for both versions
of Spanner, 2 for Barman-1cocktail-1shot, and 4 for
Sokoban-1stone-7x7. The domains in the third part re-
quire just one example to find a general policy, but such an
example is not the first one considered as determined by a
static ordering of the instances. In Blocks4ops-on, for
example, the second example suffices without the need to
consider additional good or bad transitions (i.e., Inner∗= 1).
Finally, the domains at the bottom of the table required the
strategy S2 that simultaneously considers transitions from
more than one example path. Strategy S2 is used after S1

considers all the Q′ subsets (i.e., each singleton Q′ yields
a policy that solve Q′ but not Q). Regarding times, for
the majority of the cases, a general policy is found in a
few minutes (13 domains finished in less than 10 minutes).
Sokoban-1stone-7x7 takes 7 hours and 50 minutes for
309 calls to GENEX in order to learn a policy that is able to
solve 8 instances of Sokoban with 1 stone on a 7× 7 grid.
The policy has 50 rules and 15 features. It is a policy that is
highly over fit to the training set.

For the remaining 14 domains, WRAPPER was not able to
find a general policy. Table 2 summarizes the results, with
columns similar to Table 1, except for a new column enti-
tled ‘Reason’ that explains the failure of WRAPPER: ‘Edge’
if there is a transition (s, t) in X+ for which the pool con-
tains no feature f that changes across (s, t), and ‘Timeout’
(when the process is killed and no timing data is available).
The ‘Edge’ failure is due to lack of expressivity in the pool.
We believe that for most cases, it would not be enough to
just increase the complexity bounds that are used to gener-
ate the pool of features. Rather, it is simply that the features
needed to express a general policy fall outside the class of
features that are captured by the grammar; i.e., features de-
finable with 2-variable logic and counting quantifiers.

8.2 Further Testing of Policies
The learned policies solve the entire class Q, even though,
in many cases, the number of instances seen during learning
is a fraction of Q. In this section, we go further and test
the policies on instances that are significantly larger than the
ones used for training. For example, for Blocks4ops the
training set contains 5 instances with 10 blocks each, but we
evaluate the resulting policy on instances with 20–45 blocks.

Table 3 shows statistics for this extended test. For each
depicted domain, the table contains the number of instances,
the percentage of coverage (percentage of solved instances),

and the maximum and average effective width.
The width of a sketch π on state s for instance P is the

minimum integer k needed for the search algorithm IW(k)
to find a state t from s such that the pair (s, t) is compatible
with π (Drexler, Seipp, and Geffner 2022). If the sketch π is
a policy, such state t is a successor of s, and IW(0) finds it.
Else, if π is not a proper policy, it is regarded as a sketch and
paired with IW(k) for some k > 0; k= 2 in this test. The
max (resp. average) effective width for instance P is the
max (resp. average) width of π for the states encountered
when using π, and the max (resp. average) effective width
for the class Q is the maximum of the max (resp. average)
effective width of π over instances P in Q.

Values for coverage and effective width that deviate from
100% and 0, respectively, are highlighted in Table 3, as they
exhibit flaws of the policy π when used on large instances.
Nonetheless, in all cases, except Childsnack with a cover-
age of 41.7%, the learned policy solves the large instances
in the test set. Likewise, except for 8puzzle, Blocks4ops,
and Childsnack, an effective width of 0 tells us that the
learned policy is indeed a policy that selects transitions that
lead to goal states. The case for the two version of the 8-
puzzle is interesting. The policies are learned using only
instances for the 8-puzzle, but the test set includes instances
for the (n2− 1)-puzzle, n= 2, 3, . . . , 6. The effective width
is bigger than 0 only on some instances for n in {4, 5, 6}.

9 Conclusions
We have introduced a novel formulation and algorithms for
learning generalized policies from examples computed by
a planner. In many cases, we have shown that the method
yields general policies by generalizing a single plan. In other
cases, a few plans need to be considered.

Two key contributions in relation to existent methods are
that the new method scales up to much larger pools of fea-
tures and training instances, and this enables the solution of
domains that could not be addressed before. At the same
time, this is the first method in which the resulting general
policies are acyclic by design. This is achieved through the
introduction of a new powerful structural termination crite-
rion that is built-in in the selection of the features.

The new learning algorithm is made up of a core algo-
rithm, GENEX, that is implemented by a fast and efficient
hitting-set algorithm, and the WRAPPER around it, that feeds
GENEX with transitions in X+ to be included in the policy,
and others in X− to be excluded. A shortcoming of WRAP-
PER is that it is not complete: there could be positive and
negative transitions that yield a general policy over the tar-
get class of problems, but the wrapper may fail to find them.
An improved, complete and efficient, wrapper around the
complete and efficient GENEX is left as a challenge for fu-
ture work.



Last (outer) iteration for WRAPPER Time in seconds

Domain |Q| |S| |F| Strat. Outer Inner |Q′| Inner∗ |X+| |X−| |H| |G| |π| Prep. GENEX Verif. Total

Blocks4ops-clear 53 172 13,579 S1 1 1 1 1 7 0 14 2 2 0.63 0.01 0.18 10.40
Delivery-1pkg 169 981 5,765 S1 1 1 1 1 9 0 18 4 4 0.27 0.02 3.21 24.61
Gripper 5 60 6,154 S1 1 1 1 1 19 0 38 3 4 0.46 0.21 3.95 8.22
Reward 207 1,119 249,122 S1 1 1 1 1 17 0 34 2 2 26.16 33.73 6.97 152.51
Visitall 460 4,288 146,085 S1 1 1 1 1 20 0 40 2 3 15.68 1.41 991.55 1,110.15

Childsnack 10 85 2,900 S1 1 2 1 2 15 0 30 6 8 0.50 0.08 32.17 35.64
Spanner-1nut 90 540 8,001 S1 1 2 1 2 6 1 19 3 3 0.52 0.08 0.58 11.75
Logistics-1truck 67 363 262,509 S1 1 17 1 17 32 0 64 5 8 905.52 803.52 2.71 1,926.61
Barman-1cocktail-1shot 90 1,350 69,040 S1 1 21 1 21 32 2 133 11 22 243.14 539.91 216.19 1,049.92

Blocks4ops-on 94 518 183,322 S1 2 2 1 1 10 0 20 4 7 24.24 1.90 1.14 108.27
Spanner 270 2,160 13,679 S1 2 3 1 2 10 1 31 3 3 1.96 0.39 176.08 210.42
Delivery 397 3,635 13,904 S1 4 21 1 3 23 0 46 4 5 42.18 6.69 23.03 135.30
Ferry 180 1,416 8,547 S1 5 13 1 6 17 0 34 4 5 8.69 3.95 3.66 39.36
Miconic 360 3,504 107,785 S1 9 30 1 6 20 0 40 4 5 253.81 73.78 50.87 502.87

8puzzle-1tile-fixed 18 140 11,230 S2 7 38 4 3 40 0 80 8 14 44.77 25.52 1.89 81.54
8puzzle-1tile 16 122 12,417 S2 8 52 3 6 40 0 80 8 18 69.14 35.62 2.20 117.80
Blocks4ops 5 129 100,897 S2 10 66 3 5 81 0 162 7 24 5,349.49 7,159.42 19.62 12,863.98
Sokoban-1stone-7x7 8 67 115,214 S2 12 309 5 15 94 4 671 15 50 14,248.40 12,712.36 896.13 28,196.51
Logistics-1pkg 24 173 225,518 S2 15 138 4 8 56 0 112 7 16 6,936.58 5,913.87 416.71 16,136.66
Zenotravel-1plane 73 779 24,959 S2 28 266 7 3 122 0 244 7 18 2,039.20 277.37 2,905.90 5,406.45

Table 1: Results for the 20 domains in categories C1–C4 for which WRAPPER yields a general policy. As it can be seen, WRAPPER can
handle hundreds of thousands of features, and instances with millions of reachable states (e.g., all instances in Blocks4ops have 10 blocks).

Last (outer) iteration for WRAPPER Time in seconds

Domain |Q| |S| |F| Strat. Outer Inner |Q′| Inner∗ |X+| |X−| |H| Reason Prep. GENEX Verif. Total

Rovers 608 6,238 190,064 S1 1 1 1 1 25 0 50 Edge 17.26 0.53 0.00 225.75
Tidybot-opt11-strips 8 211 59,402 S1 1 1 1 1 40 0 80 Edge 7.70 0.21 0.00 119.06
Tpp 11 608 14,128 S1 1 1 1 1 201 0 402 Edge 9.32 0.21 0.00 237.19
8puzzle-2tiles 16 207 4,458 S1 1 2 1 2 20 0 40 Edge 0.85 0.14 0.18 6.30
Hiking 180 1,215 16,723 S1 1 2 1 2 8 0 16 Edge 1.41 0.06 4.02 190.05
Depot 18 851 255,079 S1 1 17 1 17 119 0 238 Edge 4,771.50 379.59 415.29 15,511.73
Freecell 65 2,842 146,428 S1 1 35 1 35 133 19 2,964 Timeout -1.00 -1.00 -1.00 -1.00
Barman-1cocktail 270 3,998 69,040 S1 1 94 1 94 105 6 868 Edge 3,056.59 5,474.44 36.43 8,769.37
Tetris-opt14-strips 16 393 37,496 S1 1 142 1 142 180 1 550 Edge 5,109.83 3,458.80 7,157.74 16,500.19
Satellite 950 6,716 171,475 S1 2 209 1 157 168 0 334 Timeout -1.00 -1.00 -1.00 -1.00
Driverlog 381 3,197 172,818 S1 6 152 1 16 31 0 62 Edge 5,768.13 1,822.26 52.39 8,088.94
Zenotravel-1person 80 500 42,271 S1 12 385 1 77 80 3 507 Edge 2,262.94 350.48 1,359.22 4,701.44
Logistics 282 1,855 51,418 S2 11 72 4 5 99 0 198 Edge 987.57 169.34 15.41 1,310.91
Blocks3ops 392 2,216 236,954 S2 17 102 7 8 106 0 206 Timeout -1.00 -1.00 -1.00 -1.00

Table 2: Results for the 14 domains in category C5 for which WRAPPER is unable to find a general policy. The column ‘Reason’ explains
the failure: ‘Edge’ means that there is good transition (s, t) for which no feature in the pool changes across (s, t), and ‘Timeout’ means the
solver did not finish after 12 hours.

Effective width

Domain #inst. %Coverage max. avg.

8puzzle-1tile-fixed 100 100.0% 2.00 0.50
8puzzle-1tile 100 100.0% 2.00 0.32
Blocks4ops-clear 30 100.0% 0.00 0.00
Blocks4ops-on 30 100.0% 0.00 0.00
Blocks4ops 30 100.0% 2.00 0.05
Childsnack 120 41.7% 1.00 0.20
Delivery 30 100.0% 0.00 0.00
Ferry 30 100.0% 0.00 0.00
Gripper 30 100.0% 0.00 0.00
Logistics-1pkg 420 100.0% 0.00 0.00
Logistics-1truck 55 100.0% 0.00 0.00
Miconic 31 100.0% 0.00 0.00
Reward 30 100.0% 0.00 0.00
Zenotravel-1plane 180 100.0% 0.00 0.00

Table 3: Coverage and effective width of some learned policies on
large instances. Values that reveal flaws of the policies when ap-
plied on large instances are highlighted. The few number of high-
lighted cells shows that the learned policies are robust on instances
that are significantly larger than the ones in the training sets.
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