A Robust and Fast Action Selection
Mechanism for Planning*

Blai Bonet

Gabor Loerincs

Héctor Geffner

Departamento de Computacién
Universidad Simén Bolivar

Aptdo. 89000, Caracas 1080-A, Venezuela
{bonet,gloerinc,hector } @usb.ve

Abstract

The ability to plan and react in dynamic environ-
ments is central to intelligent behavior yet few
algorithms have managed to combine fast plan-
ning with a robust execution. In this paper we
develop one such algorithm by looking at plan-
ning as real time search. For that we develop
a variation of Korf’s Learning Real Time A™* al-
gorithm together with a suitable heuristic func-
tion. The resulting algorithm interleaves looka-
head with execution and never builds a plan. It
is an action selection mechanism that decides at
each time point what to do next. Yet it solves
hard planning problems faster than any domain
independent planning algorithm known to us, in-
cluding the powerful SAT planner recently intro-
duced by Kautz and Selman. It also works in
the presence of perturbations and noise, and can
be given a fixed time window to operate. We
illustrate each of these features by running the

algorithm on a number of benchmark problems.!

Introduction

The ability to plan and react in dynamic environ-
ments is central to intelligent behavior yet few algo-
rithms have managed to combine fast planning with
a robust execution. On the one hand, there is a
planning tradition in Al in which agents plan but
do not interact with the world (e.g., (Fikes & Nils-
son 1971), (Chapman 1987), (McAllester & Rosen-
blitt 1991)), on the other, there is a more recent sit-
uated action tradition in which agents interact with
the world but do not plan (e.g., (Brooks 1987), (Agre
& Chapman 1990), (Tyrrell 1992)). In the middle,
a number of recent proposals extend the language
of plans to include sensing operations and contin-
gent execution (e.g. (Etzioni et al. 1992)) yet only
few combine the benefits of looking ahead into the
future with a continuous ability to exploit opportu-
nities and recover from failures (e.g, (Nilsson 1994;
Maes 1990))

In this paper we develop one such algorithm. It is
based on looking at planning as a real time heuristic

*Copyright (©1997, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

! This paper is a slightly revised version of the paper
with the same title to appear in the AAAI-97 Proceedings.

search problem like chess, where agents explore a lim-
ited search horizon and move in constant time (Korf
1990). The proposed algorithm, called asp, is a vari-
ation of Korf’s Learning Real Time A* (Korf 1990)
that uses a new heuristic function specifically tailored
for planning problems.

The algorithm AsP interleaves search and execution
but actually never builds a plan. It is an action se-
lection mechanism in the style of (Maes 1990) and
(Tyrrell 1992) that decides at each time point what
to do next. Yet it solves hard planning problems
faster than any domain independent planning algo-
rithm known to us, including the powerful SAT planner
(SATPLAN) recently introduced by Kautz and Selman
in (1996). AsP also works in the presence of noise and
perturbations and can be given a fixed time window to
operate. We illustrate each of these features by running
the algorithm on a number of benchmark problems.

The paper is organized as follows. We start with a pre-
view of the experimental results, discuss why we think
planning as state space search makes sense computa-
tionally, and then introduce a simple heuristic func-
tion specifically tailored for the task of planning. We
then evaluate the performance of Korf’s LRTA* with
this heuristic and introduce a variation of LRTA* whose
performance approaches the performance of the most
powerful planners. We then focus on issues of represen-
tation, report results on the sensitivity of Asp to dif-
ferent time windows and perturbations, and end with
a summary of the main results and topics for future
work.

Preview of Results

In our experiments we focused on the domains used by
Kautz and Selman (1996): the “rocket” domain (Blum
& Furst 1995), the “logistics” domain gVeloso 19922,
and the “blocks world” domain. Blum’s and Furst’s
GRAPHPLAN outperforms PRODIGY (Carbonell et al.
1992) and ucpoP (Penberthy & Weld 1992) on the
rocket domains, while SATPLAN outperforms GRAPH-
PLAN in all domains by at least an order of magnitude.

Table 1 compares the performance of the new algo-
rithm Asp (using functional encodings) against both
GRAPHPLAN and SATPLAN (using direct encodings)
over some of the hardest planning problems that we
consider in the paper.? SATPLAN performs very well

2All algorithms are implemented in C and run on an

GRAPH SAT ASP

problem steps | time | time | steps | time
rocket_ext.a 34 268 0.1 28 6
logistics.b 47 | 2,538 6.0 51 29
bw_large.c 14 — 524 18 14
bw_large.d 18 — | 4,220 25 51
bw_large.e — — — 36 | 417

Table 1: Preview of experimental results. Time in sec-
onds. A long dash (—) indicates that we were unable
to complete the experiment due to time (more than 10
hours) or memory limitations.

on the first problems but has trouble scaling up with
the hardest block problems.® AsP, on the other hand,
performs reasonably well on the first two problems and
does best on the hardest problems.

The columns named ‘Steps’ report the total num-
ber of steps involved in the solutions found. SATPLAN
and GRAPHPLAN find optimal parallel plans (Kautz &
Selman 1996) but such plans are not always optimal in
the total number of steps. Indeed, Asp finds shorter se-
quential plans in the first two problems. On the other
hand, the solutions found by AsP in the last three prob-
lems are inferior to SATPLAN’s. In general ASP does not
guarantee optimal or close to optimal solutions, yet on
the domain in which Asp has been tested, the quality
of the solutions has been reasonable.

Planning as Search

Planning problems are search problems (Newell & Si-
mon 1972): there is an initial state, there are operators
mapping states to successor states, and there are goal
states to be reached. Yet planning is almost never for-
mulated in this way in either textbooks or research.*
The reasons appear to be two: the specific nature of
planning problems, that calls for decomposition, and
the absence of good heuristic functions. Actually, since
most work to date has focused on divide-and-conquer
strategies for planning with little attention being paid
to heuristic search strategies, it makes sense to ask:
has decomposition been such a powerful search device
for planning? How does it compare with the use of
heuristic functions?

These questions do not admit precise answers yet
a few numbers are illustrative. For example, domain
independent planners based on divide-and-conquer
strategies can deal today with blocks world problems
of up to 10 blocks approximately.® That means 107

IBM RS/6000 C10 with a 100 MHz PowerPC 601 processor.
We thank Blum, Furst, Kautz and Selman for making the
code of GRAPHPLAN and SATPLAN available. The code for
ASP is available at http://www.eniac.com/ bbonet.

% Actually, the fourth entry for SATPLAN is an estimate
from the numbers reported in (Kautz & Selman 1996) as
the memory requirements for the SAT encoding of the last
two problems exceeded the capacity of our machines.

“By search we mean search in the space of states as
opposed to the search in the set of partial plans as done in
non-linear planning (McAllester & Rosenblitt 1991).

5This has been our experience but we don’t have a ref-
erence for this.

different states.® Heuristic search algorithms, on the
other hand, solve random instances of problems like
the 24-puzzle (Korf & Taylor 1996) that contain 102
different states.

This raises the question: is planning in the blocks
world so much more difficult than solving N-puzzles?
Planning problems are actually ‘nearly decomposable’
and hence should probably be simpler than puzzles of
the same (state) complexity. Yet the numbers show
exactly the opposite. The explanation that we draw
is that decomposition alone, as used in divide-and-
conquer strategies, is not a sufficiently powerful search
device for planning. This seems confirmed by the re-
cent planner of Kautz and Selman (1996) that using a
different search method solves instances of blocks world
problems with 19 blocks and 10'? states.

In this paper, we cast planning as a problem of
heuristic search and solve random blocks world prob-
lems with up to 25 blocks and 10?7 states (bw_large.e
in Table 1). The search algorithm uses the heuristic
function that is defined below.

An Heuristic for Planning Problems

The heuristic function hg(s) that we define below pro-
vides an estimate of the number of steps needed to
go from a state s to a state s’ that satisfies the goal
G. A state s is a collection of ground atoms and an
action a determines a mapping from any state s to a
new state s’ = res(a,s). In sTRIPs (Fikes & Nilsson
1971), each (ground) action a is represented by three
sets of atoms: the add list A(a), the delete list D(a)
and the precondition list P(a), and res(a, s) is defined
as s — D(a) + A(a) if P(a) C s. The heuristic does
not depend on the STRIPS representation and, indeed,
later on we move to a different representation scheme.
Yet in any case, we assume that we can determine in a
straightforward way whether an action a makes a cer-
tain (ground) atom p true provided that a collection
C of atoms are true. If so, we write C' — p. If actions
are represented as in STRIPS, this means that we will
write C' = p when for an action a, p belongs to A(a)
and C' = P(a).

Assuming a set of ‘rules’ C' — p resulting from the
actions to be considered, we say that an atom p is
reachable from a state s if p € s or there is a rule
C' — p such that each atom ¢ in (' is reachable from s.

The function g(p,s) defined below, inductively as-
signs each atom p a number ¢ that provides an estimate
of the steps needed to ‘reach’ p from s. That is, g(p, s)
is set to 0 for all atoms p that are in s, while g(p, s) is
set to i 4+ 1, for ¢ > 0, for each atom p for which a rule
C — p exists such that > - g(r,s) =i

0 ifpes
9(p,) def } 41 if for some C' — p, ;g(r, s) =14
0 if p is not reachable from s

For convenience we define the function ¢ for sets of
atoms C' as: ot
9(Cys) = glg,s)
qeC

®See (Slaney & Thiébaux 1996) for an estimate of the
sizes of block worlds planning search spaces.

gloi: iy

o
" c O
C,
A

__[all
Initial State h=135 Goal State
B
C
A

Figure 1: Heuristic for Sussman’s Problem

h=4

and the heuristic function hg(s) as:

def

ha(s) = g(G, s)

The heuristic function hg(s) provides an estimate of
the number of steps needed to achieve the goal G from
the state s. The reason that hg(s) provides only an es-
timate is that the above definition presumes that con-
junctive goals are completely independent; namely that
the cost of achieving them together is simply the sum
of the costs of achieving them individually. This is ac-
tually the type of approximation that underlies decom-
positional planners. The added value of the heuristic
function is that it not only decomposes a goal GG into
subgoals, but also provides estimates of the difficulties
involved in solving them.

The complexity of computing ke (s) is linear in both
the number of (ground) actions and the number of
(ground) atoms. Below we abbreviate hg(s) as sim-
ply h(s), and refer to h(-) as the planning heuristic.

Figure 1 illustrates the values of the planning heuris-
tic for the problem known as Sussman’s anomaly. It
is clear that the heuristic function ranks the three
possible actions in the right way pointing to (PUT-
DOWN C A) as the best action. For example, to deter-
mine the heuristic value h(s3) of the state s3 in which
(oN B ¢) and (ON ¢ A) hold relative to the goal in
which (oN A B) and (oN B ¢) hold, we first determine
the g-values of all atoms, e.g., g((oN B ¢),s3) = 0,
g((CLEAR B),s3) = 0, ..., g((CLEAR C),s3) =1, ...,
g((CLEAR A),s3) = 2, ..., g((ON A B),s3) = 3, ...,
and hence h(s3z) becomes the sum of g((oN B ©), s3)
and g((ON A B), s3), and thus h(s3) = 3.

The Algorithms

The heuristic function defined above often overesti-
mates the cost to the goal and hence is not admissible
(Pearl 1983?. Thus if we plug it into known search
algorithms like A*, solutions will not be guaranteed
to be optimal. Actually, A* has another problem: its
memory requirements grows exponentially in the worst
case. We thus tried the heuristic function with a sim-
ple N-best first algorithm in which at each iteration the
first node is selected from a list ordered by increasin

values of the function f(n) = g(n) + h(n), where g(n%
is the number of steps involved in reaching n from the
initial state, and h(n) is the heuristic estimate associ-
ated with the state of n. The parameter N stands for
the number of nodes that are saved in the list. N-best

SATPLAN N-best
problem steps | time | steps | time
bw_large.a 6 0.7 8 1
bw_large.b 9 17.8 12 2
bw_large.c 14 524 21 40
bw_large.d 18 | 4,220 25 50

Table 2: Performance of N-best first compared with
SATPLAN over some hard blocks world problems. Time
is in seconds.

first thus takes constant space. We actually used the
value N = 100.

The results for some of the benchmark planning
problems discussed in (Kautz & Selman 1996) are
shown in Table 2, next to the the results obtained over
the same problems using SATPLAN with direct encod-
ings. The results show that the simple N-best first
algorithm with a suitable heuristic function ranks as
good as the most powerful planners even if the quality
of the solution is not as good.

These results and similar ones we have obtained sug-
gest than heuristic search provides a feasible and fruit-
ful approach to planning. In all cases, we have found
plans of reasonable quality in reasonable amounts of
time (the algorithms are not optimal in either dimen-
sion). Yet, this amount of time that may be reasonable
for off-line planning is not always reasonable for real
time planning where an agent may be interacting with
a dynamic world. Moreover, as we show below, such
amounts of time devoted to making complete plans are
often not needed. Indeed, we show below that plans of
similar quality can be found by agents that do not plan
at all and spend less than a second to figure out what
action to do nezt.

To do that we turn to real time search algorithms
and in particular to Korf’s LRTA* (Korf 1990). Real
time search algorithms, as used in 2-players games such
as chess (Berliner & Ebeling 1989), interleave search
and execution performing an action after a limited lo-
cal search. They don’t guarantee optimality but are
fast and can react to changing conditions in a way that
off-line search algorithms cannot.

LRTA*

A trial of Korf’s LRTA* algorithm involves the following
steps until the goal is reached:

1. Ezpand: Calculate f(z') = k(x, ') + h(2') for each
neighbor #' of the current state z, where h(2') is
the current estimate of the actual cost from z’ to
the goal, and k(z, z') is the edge cost from x to #’.

Initially, the estimate h(z') is the heuristic value for
the state.

2. Update: Update the estimate cost of the state x as
follows:

3. Move: Move to neighbor &’ that has the minimum
f(z') value, breaking ties arbitrarily.

The LRTA* algorithm can be used as a method for off-
line search where it gets better after successive trials.

Indeed, if the initial heuristic values h(z) are admis-
sible, the updated values h(z) after successive trials
eventually converge to the true costs of reaching the
goal from x (Kort 1990). The performance of LRTA*
with the planning heuristic and the STRIPS action rep-
resentation is shown in columns 5 and 6 of Table 3:
LRTA* solves few of the hard problems and it then uses
a considerable amount of time.

Some of the problems we found using LRTA* are the
following:

e Instability of solution quality: LRTA* tends to ex-
plore unvisited states, and often moves along a far
more expensive path to the goal than one obtained

before (Ishida & Shimbo 1996).

e Many trials are needed to converge: After each move
the heuristic value of a node is propagated to its
neighbors only, so many trials are needed for the
information to propagate far in the search graph.

A slight variation of LRTA*, that we call B-LrRTA* (for
bounded LRTA™), seems to avoid these problems by
enforcing a higher degree of consistency among the
heuristic values of nearby nodes before making any
moves.

B-LRTA*

B-LRTA* is a true action selection mechanism, select-
ing good moves fast without requiring multiple trials.
For that, B-LRTA™ does more work than LRTA* before
it moves. Basically it simulates n moves of LRTA™, re-
peats that simulation m times, and only then moves.
The parameters that we have used are n = 2 and
m = 40 and remain fixed for all the planning prob-
lems.

B-LRTA™ repeats the following steps until the goal is
reached:

1. Deep Lookahead: From the current state x, perform
n simulated moves using LRTA".

2. Shallow Lookahead: Still without moving from =z,
perform Step 1 m times always starting from state
x.

3. Move: Execute the action that leads to the neigh-
bor #' that has minimum f(z') value, breaking ties
randomly.

B-LRTA™ is thus a recursive version of LRTA® that does
a bit more exploration in the local space before each
move, and usually converges in a much smaller num-
ber of trials. This local exploration, however, unlike
the local min-min exploration in the standard version
of LRTA* with lookahead (see (Korf 1990)) is not ex-
haustive. For that reason, we have found that B-LRTA*
is able to exploit the information in the local search
space more efficiently than LRTA* with lookahead. In-
deed, in almost all the planning problems that we have
considered (including different versions of the n-puzzle)
and any lookahead depth, we have found that B-LRTA*
achieves solutions with the same quality as LRTA™ but
in much smaller time (we hope to report these results in
the full paper). Even more important for us, B-LRTA*
seems to perform very well even after a single trial. In-
deed, the improvement of B-LRTA* after repeated trials
does not appear to be significant (we don’t have an ad-
missible heuristic).

We call the single trial B-LRTA* algorithm with
the planning heuristic function, Asp for Action Selec-
tion for Planning. The performance of aAsp based on
the sSTRIPS representation for actions is displayed in
columns 7 and 8 of Table 3. The time performance of
AsP does not match the performance of SATPLAN, but
what is surprising is that the resulting plans, computed
in a single trial by purely local decisions, are close to
optimal.

In the next section we show that both the time and
quality of the plans can be significantly improved when
the representation for actions is considered.

Representation

The representation for actions in ASP planning is im-
portant for two reasons: it affects memory require-
ments and the quality of the heuristic function.

Consider the STRIPS representation of an action
schema like MOVE(z y 2):

P: (oN 2 y) (CLEAR) (CLEAR 2)
A: (oN z z) (CLEAR y)
D: (oN z y) (CLEAR z)

standing for all the ground actions that can be ob-
tained by replacing the variables z, y, and z by in-
dividual block names. In ASp planning this represen-
tation is problematic not only because it generates n3
operators for worlds with n blocks, but mainly because
it misleads the heuristic function by including spurious
preconditions. Indeed, the difficulty in achieving a goal
like (ON # z) is a function of the difficulty in achieving
the preconditions (CLEAR z) and (CLEAR z), but not
the precondition SON z y). The last atom appears as
a precondition only to provide a ‘handle’ to establish
(CLEAR y). But it does and should not add to the
difficulty of achieving (oN z z).

The representation for actions below avoids this
problem by replacing relational fluents by functional
fluents. In the functional representation, actions are
represented by a precondition list (P) as before but
a new effects list (E) replaces the old add and delete
lists. Lists and states both remain sets of atoms, yet
all atoms are now of the form ¢ = ¢’ where ¢ and ¢’ are
terms. For example, a representation for the action
(MOVE z y z) in the new format can be:

P: location(z) = y, clear(x) = true
clear(z) = true

E: location(z) = z, clear(y) = true
clear(z) = false

This new representation, however, does not give us
much; the parameter y is still there, causing both a
multiplication in the number of ground instances and
the spurious precondition location(z) = y. Yet the
functional representation gives us the flexibility to en-
code the action (MOVE # z) in a different way, using
only two arguments z and z:

P: clear(z) = true clear(z) = true
E: location(z) = z, clear(z) = false,
clear(location(z)) = true

This action schema says that after moving on top of
z, the new location of x becomes z, the new location of

direct STRIPS encoding functional encoding

GRAPHPLAN SATPLAN LRTA* ASP LRTA* ASP
problem steps | time | steps | time | steps | time | steps | time | steps | time | steps | time
rocket_ext.a 34 268 341 0.17 — — 52 82 28 6 28 6
rocket_ext.b — — 30 | 0.15 31| 459 41 58 28 20 30 6
logistics.a 54 | 5,942 54 22 — — 61 | 295 54 57 34
logistics.b 47 | 2,638 47 6 — — 47 | 298 42 51 29
logistics.c — — 65 31 — — 65 | 488 52 61 53
bw_large.a 6 4.6 6 0.7 8 60 8 33 8 2 8 1
bw_large.b 9| 1,119 9 17.8 11 55 11 64 11 7 12 4
bw_large.c — — 14 524 — — — — 19 31 18 14
bw large.d — — 18 | 4,220 — — — — 24 92 25 51
bw_large.e — — — — — — — — 35 | 1,750 36 | 417

Table 3: Performance of different planning algorithms. Time is in seconds. A blank space indicates that LRTA*
didn’t converge after 500 trials; best solution found is shown. A long dash (—) indicates that we were unable to

complete the experiment due to memory limitations.

z is no longer clear, while the old location of becomes
clear.

We have used similar encodings for the other prob-
lems and the results of LRTA™ and ASP over such encod-
ings are shown in the last four columns of Table 3. Note
that both algorithms do much better in both time and
quality with functional encodings than with relational
encodings. Indeed, both seem to scale better than saT-
PLAN over the hardest planning instances. The quality
of the solutions, however, remain somewhat inferior to
SATPLAN’s. We address this problem below by adding
an exploration component to the local search that pre-
cedes ASP moves.

The functional encodings are based on the model for
representing actions discussed in (Geffner 1997), where
both the language and the semantics are formally de-

fined.

Execution

In this section we illustrate two features that makes
ASP a convenient algorithm for real time planning: the
possibility of working with a fixed time window, and
the robustness in the presence of noise and perturba-
tions.

Time for Action

There are situations that impose restrictions on the
time available to take actions. This occurs frequently
in real time applications where decision time is critical
and there is no chance to compute optimal plans.

This kind of restriction is easy to implement in ASP
as we just need to limit the time for ‘deliberation’ (i.e.,
lookahead search) before making a decision. When the
time expires, the algorithm has to choose the best ac-
tion and move.

Table 4 illustrates the results when such time limit is
enforced. For each problem instance in the left column,
the table lists the limit in deliberation time and the
quality of the solutions found. Basically, in less than
one second all problems are solved and the solutions
found are very close to optimal (compare with Table 3
above). For times smaller than one second, the algo-
rithm behaves as an anytime planning algorithm (Dean
& Boddy 1988), delivering solutions whose quality gets
better with time.

time | bw_large.a | bw_large.b | bw_large.c
limit steps steps steps
0.05 18 46 —
0.10 9 18 119
0.25 9 12 81
0.50 9 12 20
1.00 9 12 18

Table 4: Quality of Asp plans as a function of a fixed
time window for taking actions. Time is in seconds.
A long dash (—) indicates that no solution was found
after 500 steps.

Robustness

Most planning algorithms assume that actions are de-
terministic and are controlled by the planning agent.
Stochastic actions and exogenous perturbations are
usually not handled. Asp, being an action selection
mechanism, turns out to be very robust in the pres-
ence of such perturbations.

Table 5 shows the results of running ASP in the
bw_blocks.c problem using a very demanding type of
perturbation: each time ASP selects an action, we force
ASP to take a different, arbitrary action with probabil-
ity p. In other words, when he intends to move, say,
block a to block ¢, he will do another randomly chosen
action instead, like putting B on the table or moving ¢
to A, with probability p.

The results show how the quality of the resulting
plans depend on the probability of perturbation p. It
is remarkable that even when one action out of four
misfires (p = 0.25), the algorithm finds solutions that
are only twice longer that the best solutions in the
absence of perturbations (p = 0). Actually, it appears
that ASP may turn out to be a good planner in stochas-
tic domains. That’s something that we would like to
explore in the future.

Learning and Optimality

We have also experimented with a simple strategy that
makes the local exploration that precedes AspP moves
less greedy. Basically, we added noise in the selec-
tion of the simulated moves (by means of a standard
Boltzmann distribution and a temperature parameter

p 0.070.0170.05]70.1T70.2570.570.75
steps | 18 18 19 24 39 64 | —

Table 5: Quality of plans with perturbations with
probability p (for bw_large.c). A long dash (—) in-
dicates that no solution was found after 500 steps.

20
— bw-large.b
e bw-large.c
18 A

Steps

8
15 20 25 30 35 40 45
Trials

Figure 2: Quality of plans obtained after repeated tri-
als of Asp with local randomized exploration.

that gradually cools off (Kaelbling, Littman, & Moore
1996)) and have found that while the quality perfor-
mance of ASP in a single trial often decays slightly with
the randomized local search (i.e., the number of steps
to the goal), the quality performance of repeated tri-
als of Asp tends to improve monotonically with the
number of trials. Figure 2 shows this improvement
for two instances of the blocks world, bw_large.b and
bw_large.c, where optimal solutions to the goal are
found after a few trials (7 and 35 trials respectively).

Summary

We have presented a real time algorithm Asp for plan-
ning that is based on a variation of Korf’s LRTA* and
a suitable heuristic function. ASP is robust and fast:
it performs well in the presence of noise and perturba-
tions and solves hard planning at speeds that compare
well with the most powerful domain independent plan-
ners known to us. We also explored issues of represen-
tation and proposed an action representation scheme,
different from STRIPS, that has a significant impact on
the performance of AsP. We also experimented with
randomized selection of the simulated moves and have
found that the quality performance of ASP improves
monotonically with the number of trials, until the op-
timal ‘plans’ are found.

A number of issues that we’d like to address in the
future are refinements of the heuristic function and the
representations, uses in off-line search algorithms and
stochastic domains, and variations of the basic Asp al-

orithm for the solution of Markov Decision Processes
Puterman 1994). Indeed, the asp algorithm (like Ko-
rf’s LRTA*) turns out to be a special case of Barto’s
et al. Real Time Dynamic Programming algorithm

(Barto, Bradtke, & Singh 1995), distinguished by an
heuristic function derived from an action representa-
tion that is used for setting the initial state values

Acknowledgments

We thank Andreas Meier of the Laboratorio de Mul-
timedia of the Universidad Simén Bolivar and Roger
Bonet of Eniac, C.A. for the use of the machines in
which the experiments were run. We also want to
thank Bart Selman for many useful comments and
pointers.

References

Agre, P., and Chapman, D. 1990. What are plans for?
Robotics and Autonomous Systems 6:17-34.

Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning
to act using real-time dynamic programming. Artificial

Intelligence 72:81-138.
Berliner, H., and Ebeling, C. 1989. Pattern knowledge and

search: The suprem architecture. Artificial Intelligence

38:161-198.

Blum, A., and Furst, M. 1995. Fast planning through
planning graph analysis. In Proceedings of IJCAI-95.

Brooks, R. 1987. A robust layered control system for a
mobile robot. IEEFE J. of Robotics and Automation 2:14—
27.

Carbonell, J.; Blythe, J.; Etzione, O.; ; Gil, Y.; Joseph,
R.; Kahn, D.; Knoblock, C.; and Minton, S. 1992. Prodigy
4.0: The manual and tutorial. Technical Report CMU-CS-
92-150, CMU.

Chapman, D. 1987. Planning for conjunctive goals. Arti-
ficial Intelligence 32:333-377.

Dean, T., and Boddy, M. 1988. An analysis of time de-
pendent planning. In Proceedings AAAI-88, 49-54.
FEtzioni, O.; Hanks, S.; Draper, D.; Lesh, N.; and
Williamson, M. 1992. An approach to planning with in-
complete information. In Proceedings of the Third Int.
Conference on Principles of Knowledge Representation
and Reasoning, 115-125. Morgan Kaufmann.

Fikes, R., and Nilsson, N. 1971. STRIPS: A new approach
to the application of theorem proving to problem solving.

Artificial Intelligence 1:27-120.
Geffner, H. and J. Wainer. 1997. A model for actions,

knowledge and contingent plans. Technical report, Depto.
de Computacién, Universidad Simén Bolivar, Caracas,
Venezuela.

Ishida, T., and Shimbo, M. 1996. Improving the learning
efficiencies of realtime search. In Proceedings of AAAI-96,
305-310. Protland, Oregon: MIT Press.

Kaelbling, L.; Littman, M.; and Moore, A. 1996. Rein-
forcement learning: A survey. Journal of Artificial Intel-
ligence Research 4.

Kautz, H., and Selman, B. 1996. Pushing the envelope:
Planning, propositional logic, and stochastic search. In
Proceedings of AAAI-96, 1194-1201. Protland, Oregon:
MIT Press.

Korf, R., and Taylor, L. 1996. Finding optimal solutions
to the twenty-four puzzle. In Proceedings of AAAI-96,
1202-1207. Protland, Oregon: MIT Press.

Korf, R. 1990. Real-time heuristic search. Artificial In-
telligence 42:189-211.

Maes, P. 1990. Situated agents can have goals. Robotics
and Autonomous Systems 6:49-70.

McAllester, D., and Rosenblitt, D. 1991. Systematic
nonlinear planning. In Proceedings of AAAI-91, 634-639.
Anaheim, CA: AAAIT Press.

Newell, A., and Simon, H. 1972. Human Problem Solving.
Englewood Cliffs, NJ: Prentice—Hall.

Nilsson, N. 1994. Teleo-reactive programs for agent con-

trol. JAIR 1:139-158.
Pearl, J. 1983. Heuristics. Morgan Kaufmann.

Penberthy, J., and Weld, D. 1992. Ucpop: A sound,
complete, partiall order planner for adl. In KR-92.

Puterman, M. 1994. Markov Decision Processes: Discrete
Dynamic Stochastic Programming. John Wiley.

Slaney, J., and Thiébaux, S. 1996. Linear time near-
optimal planning in the blocks world. In Proceedings of
AAAI-96,1208-1214. Protland, Oregon: MIT Press.

Tyrrell, T. 1992. Defining the action selection problem.
In Proceedings of Simulation of Adaptive Behaviour.

Veloso, M. 1992. Learning by Analogical Reasoning in
General Problem Solving. Ph.D. Dissertation, Computer
Science Department, CMU. Tech. Report CMU-CS-92-
174.

