
A Robust and Fast Action SelectionMechanism for Planning�Blai Bonet G�abor Loerincs H�ector Ge�nerDepartamento de Computaci�onUniversidad Sim�on Bol��varAptdo. 89000, Caracas 1080-A, Venezuelafbonet,gloerinc,hectorg@usb.veAbstractThe ability to plan and react in dynamic environ-ments is central to intelligent behavior yet fewalgorithms have managed to combine fast plan-ning with a robust execution. In this paper wedevelop one such algorithm by looking at plan-ning as real time search. For that we developa variation of Korf's Learning Real Time A� al-gorithm together with a suitable heuristic func-tion. The resulting algorithm interleaves looka-head with execution and never builds a plan. Itis an action selection mechanism that decides ateach time point what to do next. Yet it solveshard planning problems faster than any domainindependent planning algorithm known to us, in-cluding the powerful SAT planner recently intro-duced by Kautz and Selman. It also works inthe presence of perturbations and noise, and canbe given a �xed time window to operate. Weillustrate each of these features by running thealgorithm on a number of benchmark problems.1IntroductionThe ability to plan and react in dynamic environ-ments is central to intelligent behavior yet few algo-rithms have managed to combine fast planning witha robust execution. On the one hand, there is aplanning tradition in AI in which agents plan butdo not interact with the world (e.g., (Fikes & Nils-son 1971), (Chapman 1987), (McAllester & Rosen-blitt 1991)), on the other, there is a more recent sit-uated action tradition in which agents interact withthe world but do not plan (e.g., (Brooks 1987), (Agre& Chapman 1990), (Tyrrell 1992)). In the middle,a number of recent proposals extend the languageof plans to include sensing operations and contin-gent execution (e.g. (Etzioni et al. 1992)) yet onlyfew combine the bene�ts of looking ahead into thefuture with a continuous ability to exploit opportu-nities and recover from failures (e.g, (Nilsson 1994;Maes 1990))In this paper we develop one such algorithm. It isbased on looking at planning as a real time heuristic�Copyright c1997, American Association for Arti�cialIntelligence (www.aaai.org). All rights reserved.1This paper is a slightly revised version of the paperwith the same title to appear in the AAAI-97 Proceedings.

search problem like chess, where agents explore a lim-ited search horizon and move in constant time (Korf1990). The proposed algorithm, called asp, is a vari-ation of Korf's Learning Real Time A� (Korf 1990)that uses a new heuristic function speci�cally tailoredfor planning problems.The algorithm asp interleaves search and executionbut actually never builds a plan. It is an action se-lection mechanism in the style of (Maes 1990) and(Tyrrell 1992) that decides at each time point whatto do next. Yet it solves hard planning problemsfaster than any domain independent planning algo-rithm known to us, including the powerful SAT planner(satplan) recently introduced by Kautz and Selmanin (1996). asp also works in the presence of noise andperturbations and can be given a �xed time window tooperate. We illustrate each of these features by runningthe algorithm on a number of benchmark problems.The paper is organized as follows. We start with a pre-view of the experimental results, discuss why we thinkplanning as state space search makes sense computa-tionally, and then introduce a simple heuristic func-tion speci�cally tailored for the task of planning. Wethen evaluate the performance of Korf's lrta� withthis heuristic and introduce a variation of lrta� whoseperformance approaches the performance of the mostpowerful planners. We then focus on issues of represen-tation, report results on the sensitivity of asp to dif-ferent time windows and perturbations, and end witha summary of the main results and topics for futurework. Preview of ResultsIn our experiments we focused on the domains used byKautz and Selman (1996): the \rocket" domain (Blum& Furst 1995), the \logistics" domain (Veloso 1992),and the \blocks world" domain. Blum's and Furst'sgraphplan outperforms prodigy (Carbonell et al.1992) and ucpop (Penberthy & Weld 1992) on therocket domains, while satplan outperforms graph-plan in all domains by at least an order of magnitude.Table 1 compares the performance of the new algo-rithm asp (using functional encodings) against bothgraphplan and satplan (using direct encodings)over some of the hardest planning problems that weconsider in the paper.2 satplan performs very well2All algorithms are implemented in C and run on an

graph sat aspproblem steps time time steps timerocket ext.a 34 268 0.1 28 6logistics.b 47 2,538 6.0 51 29bw large.c 14 | 524 18 14bw large.d 18 | 4,220 25 51bw large.e | | | 36 417Table 1: Preview of experimental results. Time in sec-onds. A long dash (|) indicates that we were unableto complete the experiment due to time (more than 10hours) or memory limitations.on the �rst problems but has trouble scaling up withthe hardest block problems.3 asp, on the other hand,performs reasonably well on the �rst two problems anddoes best on the hardest problems.The columns named `Steps' report the total num-ber of steps involved in the solutions found. satplanand graphplan �nd optimal parallel plans (Kautz &Selman 1996) but such plans are not always optimal inthe total number of steps. Indeed, asp �nds shorter se-quential plans in the �rst two problems. On the otherhand, the solutions found by asp in the last three prob-lems are inferior to satplan's. In general asp does notguarantee optimal or close to optimal solutions, yet onthe domain in which asp has been tested, the qualityof the solutions has been reasonable.Planning as SearchPlanning problems are search problems (Newell & Si-mon 1972): there is an initial state, there are operatorsmapping states to successor states, and there are goalstates to be reached. Yet planning is almost never for-mulated in this way in either textbooks or research.4The reasons appear to be two: the speci�c nature ofplanning problems, that calls for decomposition, andthe absence of good heuristic functions. Actually, sincemost work to date has focused on divide-and-conquerstrategies for planning with little attention being paidto heuristic search strategies, it makes sense to ask:has decomposition been such a powerful search devicefor planning? How does it compare with the use ofheuristic functions?These questions do not admit precise answers yeta few numbers are illustrative. For example, domainindependent planners based on divide-and-conquerstrategies can deal today with blocks world problemsof up to 10 blocks approximately.5 That means 107IBM RS/6000 C10 with a 100 MHz PowerPC 601 processor.We thank Blum, Furst, Kautz and Selman for making thecode of graphplan and satplan available. The code forasp is available at http://www.eniac.com/~bbonet.3Actually, the fourth entry for satplan is an estimatefrom the numbers reported in (Kautz & Selman 1996) asthe memory requirements for the SAT encoding of the lasttwo problems exceeded the capacity of our machines.4By search we mean search in the space of states asopposed to the search in the set of partial plans as done innon-linear planning (McAllester & Rosenblitt 1991).5This has been our experience but we don't have a ref-erence for this.

di�erent states.6 Heuristic search algorithms, on theother hand, solve random instances of problems likethe 24-puzzle (Korf & Taylor 1996) that contain 1025di�erent states.This raises the question: is planning in the blocksworld so much more di�cult than solving N-puzzles?Planning problems are actually `nearly decomposable'and hence should probably be simpler than puzzles ofthe same (state) complexity. Yet the numbers showexactly the opposite. The explanation that we drawis that decomposition alone, as used in divide-and-conquer strategies, is not a su�ciently powerful searchdevice for planning. This seems con�rmed by the re-cent planner of Kautz and Selman (1996) that using adi�erent search method solves instances of blocks worldproblems with 19 blocks and 1019 states.In this paper, we cast planning as a problem ofheuristic search and solve random blocks world prob-lems with up to 25 blocks and 1027 states (bw large:ein Table 1). The search algorithm uses the heuristicfunction that is de�ned below.An Heuristic for Planning ProblemsThe heuristic function hG(s) that we de�ne below pro-vides an estimate of the number of steps needed togo from a state s to a state s0 that satis�es the goalG. A state s is a collection of ground atoms and anaction a determines a mapping from any state s to anew state s0 = res(a; s). In strips (Fikes & Nilsson1971), each (ground) action a is represented by threesets of atoms: the add list A(a), the delete list D(a)and the precondition list P (a), and res(a; s) is de�nedas s � D(a) + A(a) if P (a) � s. The heuristic doesnot depend on the strips representation and, indeed,later on we move to a di�erent representation scheme.Yet in any case, we assume that we can determine in astraightforward way whether an action a makes a cer-tain (ground) atom p true provided that a collectionC of atoms are true. If so, we write C ! p. If actionsare represented as in strips, this means that we willwrite C ! p when for an action a, p belongs to A(a)and C = P (a).Assuming a set of `rules' C ! p resulting from theactions to be considered, we say that an atom p isreachable from a state s if p 2 s or there is a ruleC ! p such that each atom q in C is reachable from s.The function g(p; s) de�ned below, inductively as-signs each atom p a number i that provides an estimateof the steps needed to `reach' p from s. That is, g(p; s)is set to 0 for all atoms p that are in s, while g(p; s) isset to i+ 1, for i > 0, for each atom p for which a ruleC ! p exists such that Pr2C g(r; s) = i:g(p; s) def= 8><>: 0 if p 2 si + 1 if for some C ! p,Xr2C g(r; s) = i1 if p is not reachable from sFor convenience we de�ne the function g for sets ofatoms C as: g(C; s) def= Xq2C g(q; s)6See (Slaney & Thi�ebaux 1996) for an estimate of thesizes of block worlds planning search spaces.

Figure 1: Heuristic for Sussman's Problemand the heuristic function hG(s) as:hG(s) def= g(G; s)The heuristic function hG(s) provides an estimate ofthe number of steps needed to achieve the goal G fromthe state s. The reason that hG(s) provides only an es-timate is that the above de�nition presumes that con-junctive goals are completely independent; namely thatthe cost of achieving them together is simply the sumof the costs of achieving them individually. This is ac-tually the type of approximation that underlies decom-positional planners. The added value of the heuristicfunction is that it not only decomposes a goal G intosubgoals, but also provides estimates of the di�cultiesinvolved in solving them.The complexity of computing hG(s) is linear in boththe number of (ground) actions and the number of(ground) atoms. Below we abbreviate hG(s) as sim-ply h(s), and refer to h(�) as the planning heuristic.Figure 1 illustrates the values of the planning heuris-tic for the problem known as Sussman's anomaly. Itis clear that the heuristic function ranks the threepossible actions in the right way pointing to (put-down c a) as the best action. For example, to deter-mine the heuristic value h(s3) of the state s3 in which(on b c) and (on c a) hold relative to the goal inwhich (on a b) and (on b c) hold, we �rst determinethe g-values of all atoms, e.g., g((on b c); s3) = 0,g((clear b); s3) = 0, . . . , g((clear c); s3) = 1, . . . ,g((clear a); s3) = 2, . . . , g((on a b); s3) = 3, . . . ,and hence h(s3) becomes the sum of g((on b c); s3)and g((on a b); s3), and thus h(s3) = 3.The AlgorithmsThe heuristic function de�ned above often overesti-mates the cost to the goal and hence is not admissible(Pearl 1983). Thus if we plug it into known searchalgorithms like a�, solutions will not be guaranteedto be optimal. Actually, a� has another problem: itsmemory requirements grows exponentially in the worstcase. We thus tried the heuristic function with a sim-ple N-best �rst algorithm in which at each iteration the�rst node is selected from a list ordered by increasingvalues of the function f(n) = g(n) + h(n), where g(n)is the number of steps involved in reaching n from theinitial state, and h(n) is the heuristic estimate associ-ated with the state of n. The parameter N stands forthe number of nodes that are saved in the list. N-best

satplan N-bestproblem steps time steps timebw large.a 6 0.7 8 1bw large.b 9 17.8 12 2bw large.c 14 524 21 40bw large.d 18 4,220 25 50Table 2: Performance of N-best �rst compared withsatplan over some hard blocks world problems. Timeis in seconds.�rst thus takes constant space. We actually used thevalue N = 100.The results for some of the benchmark planningproblems discussed in (Kautz & Selman 1996) areshown in Table 2, next to the the results obtained overthe same problems using satplan with direct encod-ings. The results show that the simple N-best �rstalgorithm with a suitable heuristic function ranks asgood as the most powerful planners even if the qualityof the solution is not as good.These results and similar ones we have obtained sug-gest than heuristic search provides a feasible and fruit-ful approach to planning. In all cases, we have foundplans of reasonable quality in reasonable amounts oftime (the algorithms are not optimal in either dimen-sion). Yet, this amount of time that may be reasonablefor o�-line planning is not always reasonable for realtime planning where an agent may be interacting witha dynamic world. Moreover, as we show below, suchamounts of time devoted to making complete plans areoften not needed. Indeed, we show below that plans ofsimilar quality can be found by agents that do not planat all and spend less than a second to �gure out whataction to do next.To do that we turn to real time search algorithmsand in particular to Korf's lrta� (Korf 1990). Realtime search algorithms, as used in 2-players games suchas chess (Berliner & Ebeling 1989), interleave searchand execution performing an action after a limited lo-cal search. They don't guarantee optimality but arefast and can react to changing conditions in a way thato�-line search algorithms cannot.LRTA�A trial of Korf's lrta� algorithm involves the followingsteps until the goal is reached:1. Expand: Calculate f(x0) = k(x; x0) + h(x0) for eachneighbor x0 of the current state x, where h(x0) isthe current estimate of the actual cost from x0 tothe goal, and k(x; x0) is the edge cost from x to x0.Initially, the estimate h(x0) is the heuristic value forthe state.2. Update: Update the estimate cost of the state x asfollows: h(x) minx0 f(x0)3. Move: Move to neighbor x0 that has the minimumf(x0) value, breaking ties arbitrarily.The lrta� algorithm can be used as a method for o�-line search where it gets better after successive trials.

Indeed, if the initial heuristic values h(x) are admis-sible, the updated values h(x) after successive trialseventually converge to the true costs of reaching thegoal from x (Korf 1990). The performance of lrta�with the planning heuristic and the strips action rep-resentation is shown in columns 5 and 6 of Table 3:lrta� solves few of the hard problems and it then usesa considerable amount of time.Some of the problems we found using lrta� are thefollowing:� Instability of solution quality: lrta� tends to ex-plore unvisited states, and often moves along a farmore expensive path to the goal than one obtainedbefore (Ishida & Shimbo 1996).� Many trials are needed to converge: After each movethe heuristic value of a node is propagated to itsneighbors only, so many trials are needed for theinformation to propagate far in the search graph.A slight variation of lrta�, that we call b-lrta� (forbounded lrta�), seems to avoid these problems byenforcing a higher degree of consistency among theheuristic values of nearby nodes before making anymoves.B-LRTA�b-lrta� is a true action selection mechanism, select-ing good moves fast without requiring multiple trials.For that, b-lrta� does more work than lrta� beforeit moves. Basically it simulates n moves of lrta�, re-peats that simulation m times, and only then moves.The parameters that we have used are n = 2 andm = 40 and remain �xed for all the planning prob-lems.b-lrta� repeats the following steps until the goal isreached:1. Deep Lookahead: From the current state x, performn simulated moves using lrta�.2. Shallow Lookahead: Still without moving from x,perform Step 1 m times always starting from statex.3. Move: Execute the action that leads to the neigh-bor x0 that has minimum f(x0) value, breaking tiesrandomly.b-lrta� is thus a recursive version of lrta� that doesa bit more exploration in the local space before eachmove, and usually converges in a much smaller num-ber of trials. This local exploration, however, unlikethe local min-min exploration in the standard versionof lrta� with lookahead (see (Korf 1990)) is not ex-haustive. For that reason, we have found that b-lrta�is able to exploit the information in the local searchspace more e�ciently than lrta� with lookahead. In-deed, in almost all the planning problems that we haveconsidered (including di�erent versions of the n-puzzle)and any lookahead depth, we have found that b-lrta�achieves solutions with the same quality as lrta� butin much smaller time (we hope to report these results inthe full paper). Even more important for us, b-lrta�seems to perform very well even after a single trial. In-deed, the improvement of b-lrta� after repeated trialsdoes not appear to be signi�cant (we don't have an ad-missible heuristic).

We call the single trial b-lrta� algorithm withthe planning heuristic function, asp for Action Selec-tion for Planning. The performance of asp based onthe strips representation for actions is displayed incolumns 7 and 8 of Table 3. The time performance ofasp does not match the performance of satplan, butwhat is surprising is that the resulting plans, computedin a single trial by purely local decisions, are close tooptimal.In the next section we show that both the time andquality of the plans can be signi�cantly improved whenthe representation for actions is considered.RepresentationThe representation for actions in asp planning is im-portant for two reasons: it a�ects memory require-ments and the quality of the heuristic function.Consider the strips representation of an actionschema like move(x y z):P: (on x y) (clear x) (clear z)A: (on x z) (clear y)D: (on x y) (clear z)standing for all the ground actions that can be ob-tained by replacing the variables x, y, and z by in-dividual block names. In asp planning this represen-tation is problematic not only because it generates n3operators for worlds with n blocks, but mainly becauseit misleads the heuristic function by including spuriouspreconditions. Indeed, the di�culty in achieving a goallike (on x z) is a function of the di�culty in achievingthe preconditions (clear x) and (clear z), but notthe precondition (on x y). The last atom appears asa precondition only to provide a `handle' to establish(clear y). But it does and should not add to thedi�culty of achieving (on x z).The representation for actions below avoids thisproblem by replacing relational uents by functionaluents. In the functional representation, actions arerepresented by a precondition list (P) as before buta new e�ects list (E) replaces the old add and deletelists. Lists and states both remain sets of atoms, yetall atoms are now of the form t = t0 where t and t0 areterms. For example, a representation for the action(move x y z) in the new format can be:P: location(x) = y, clear(x) = trueclear(z) = trueE: location(x) = z, clear(y) = trueclear(z) = falseThis new representation, however, does not give usmuch; the parameter y is still there, causing both amultiplication in the number of ground instances andthe spurious precondition location(x) = y. Yet thefunctional representation gives us the exibility to en-code the action (move x z) in a di�erent way, usingonly two arguments x and z:P: clear(x) = true clear(z) = trueE: location(x) = z; clear(z) = false;clear(location(x)) = trueThis action schema says that after moving x on top ofz, the new location of x becomes z, the new location of

direct strips encoding functional encodinggraphplan satplan lrta� asp lrta� aspproblem steps time steps time steps time steps time steps time steps timerocket ext.a 34 268 34 0.17 | | 52 82 28 6 28 6rocket ext.b | | 30 0.15 31 459 41 58 28 20 30 6logistics.a 54 5,942 54 22 | | 61 295 54 57 34logistics.b 47 2,538 47 6 | | 47 298 42 51 29logistics.c | | 65 31 | | 65 488 52 61 53bw large.a 6 4.6 6 0.7 8 60 8 33 8 2 8 1bw large.b 9 1,119 9 17.8 11 55 11 64 11 7 12 4bw large.c | | 14 524 | | | | 19 31 18 14bw large.d | | 18 4,220 | | | | 24 92 25 51bw large.e | | | | | | | | 35 1,750 36 417Table 3: Performance of di�erent planning algorithms. Time is in seconds. A blank space indicates that lrta�didn't converge after 500 trials; best solution found is shown. A long dash (|) indicates that we were unable tocomplete the experiment due to memory limitations.x is no longer clear, while the old location of x becomesclear.We have used similar encodings for the other prob-lems and the results of lrta� and asp over such encod-ings are shown in the last four columns of Table 3. Notethat both algorithms do much better in both time andquality with functional encodings than with relationalencodings. Indeed, both seem to scale better than sat-plan over the hardest planning instances. The qualityof the solutions, however, remain somewhat inferior tosatplan's. We address this problem below by addingan exploration component to the local search that pre-cedes asp moves.The functional encodings are based on the model forrepresenting actions discussed in (Ge�ner 1997), whereboth the language and the semantics are formally de-�ned. ExecutionIn this section we illustrate two features that makesasp a convenient algorithm for real time planning: thepossibility of working with a �xed time window, andthe robustness in the presence of noise and perturba-tions.Time for ActionThere are situations that impose restrictions on thetime available to take actions. This occurs frequentlyin real time applications where decision time is criticaland there is no chance to compute optimal plans.This kind of restriction is easy to implement in aspas we just need to limit the time for `deliberation' (i.e.,lookahead search) before making a decision. When thetime expires, the algorithm has to choose the best ac-tion and move.Table 4 illustrates the results when such time limit isenforced. For each problem instance in the left column,the table lists the limit in deliberation time and thequality of the solutions found. Basically, in less thanone second all problems are solved and the solutionsfound are very close to optimal (compare with Table 3above). For times smaller than one second, the algo-rithm behaves as an anytime planning algorithm (Dean& Boddy 1988), delivering solutions whose quality getsbetter with time.

time bw large.a bw large.b bw large.climit steps steps steps0.05 18 46 |0.10 9 18 1190.25 9 12 810.50 9 12 201.00 9 12 18Table 4: Quality of asp plans as a function of a �xedtime window for taking actions. Time is in seconds.A long dash (|) indicates that no solution was foundafter 500 steps.RobustnessMost planning algorithms assume that actions are de-terministic and are controlled by the planning agent.Stochastic actions and exogenous perturbations areusually not handled. asp, being an action selectionmechanism, turns out to be very robust in the pres-ence of such perturbations.Table 5 shows the results of running asp in thebw blocks.c problem using a very demanding type ofperturbation: each time asp selects an action, we forceasp to take a di�erent, arbitrary action with probabil-ity p. In other words, when he intends to move, say,block a to block c, he will do another randomly chosenaction instead, like putting b on the table or moving cto a, with probability p.The results show how the quality of the resultingplans depend on the probability of perturbation p. Itis remarkable that even when one action out of fourmis�res (p = 0:25), the algorithm �nds solutions thatare only twice longer that the best solutions in theabsence of perturbations (p = 0). Actually, it appearsthat asp may turn out to be a good planner in stochas-tic domains. That's something that we would like toexplore in the future.Learning and OptimalityWe have also experimented with a simple strategy thatmakes the local exploration that precedes asp movesless greedy. Basically, we added noise in the selec-tion of the simulated moves (by means of a standardBoltzmann distribution and a temperature parameter

p 0.0 0.01 0.05 0.1 0.25 0.5 0.75steps 18 18 19 24 39 64 |Table 5: Quality of plans with perturbations withprobability p (for bw large.c). A long dash (|) in-dicates that no solution was found after 500 steps.
�

��

��

��

��

��

��

� � �� �� �� �� �� �� �� ��
7ULDOV

6W
HS

V

EZ�ODUJH�E
EZ�ODUJH�F

Figure 2: Quality of plans obtained after repeated tri-als of asp with local randomized exploration.that gradually cools o� (Kaelbling, Littman, & Moore1996)) and have found that while the quality perfor-mance of asp in a single trial often decays slightly withthe randomized local search (i.e., the number of stepsto the goal), the quality performance of repeated tri-als of asp tends to improve monotonically with thenumber of trials. Figure 2 shows this improvementfor two instances of the blocks world, bw large.b andbw large.c, where optimal solutions to the goal arefound after a few trials (7 and 35 trials respectively).SummaryWe have presented a real time algorithm asp for plan-ning that is based on a variation of Korf's lrta� anda suitable heuristic function. asp is robust and fast:it performs well in the presence of noise and perturba-tions and solves hard planning at speeds that comparewell with the most powerful domain independent plan-ners known to us. We also explored issues of represen-tation and proposed an action representation scheme,di�erent from strips, that has a signi�cant impact onthe performance of asp. We also experimented withrandomized selection of the simulated moves and havefound that the quality performance of asp improvesmonotonically with the number of trials, until the op-timal `plans' are found.A number of issues that we'd like to address in thefuture are re�nements of the heuristic function and therepresentations, uses in o�-line search algorithms andstochastic domains, and variations of the basic asp al-gorithm for the solution of Markov Decision Processes(Puterman 1994). Indeed, the asp algorithm (like Ko-rf's lrta�) turns out to be a special case of Barto'set al. Real Time Dynamic Programming algorithm

(Barto, Bradtke, & Singh 1995), distinguished by anheuristic function derived from an action representa-tion that is used for setting the initial state valuesAcknowledgmentsWe thank Andreas Meier of the Laboratorio de Mul-timedia of the Universidad Sim�on Bol��var and RogerBonet of Eniac, C.A. for the use of the machines inwhich the experiments were run. We also want tothank Bart Selman for many useful comments andpointers. ReferencesAgre, P., and Chapman, D. 1990. What are plans for?Robotics and Autonomous Systems 6:17{34.Barto, A.; Bradtke, S.; and Singh, S. 1995. Learningto act using real-time dynamic programming. Arti�cialIntelligence 72:81{138.Berliner, H., and Ebeling, C. 1989. Pattern knowledge andsearch: The suprem architecture. Arti�cial Intelligence38:161{198.Blum, A., and Furst, M. 1995. Fast planning throughplanning graph analysis. In Proceedings of IJCAI-95.Brooks, R. 1987. A robust layered control system for amobile robot. IEEE J. of Robotics and Automation 2:14{27.Carbonell, J.; Blythe, J.; Etzione, O.; ; Gil, Y.; Joseph,R.; Kahn, D.; Knoblock, C.; and Minton, S. 1992. Prodigy4.0: The manual and tutorial. Technical Report CMU-CS-92-150, CMU.Chapman, D. 1987. Planning for conjunctive goals. Arti-�cial Intelligence 32:333{377.Dean, T., and Boddy, M. 1988. An analysis of time de-pendent planning. In Proceedings AAAI-88, 49{54.Etzioni, O.; Hanks, S.; Draper, D.; Lesh, N.; andWilliamson, M. 1992. An approach to planning with in-complete information. In Proceedings of the Third Int.Conference on Principles of Knowledge Representationand Reasoning, 115{125. Morgan Kaufmann.Fikes, R., and Nilsson, N. 1971. STRIPS: A new approachto the application of theorem proving to problem solving.Arti�cial Intelligence 1:27{120.Ge�ner, H. and J. Wainer. 1997. A model for actions,knowledge and contingent plans. Technical report, Depto.de Computaci�on, Universidad Sim�on Bol��var, Caracas,Venezuela.Ishida, T., and Shimbo, M. 1996. Improving the learninge�ciencies of realtime search. In Proceedings of AAAI-96,305{310. Protland, Oregon: MIT Press.Kaelbling, L.; Littman, M.; and Moore, A. 1996. Rein-forcement learning: A survey. Journal of Arti�cial Intel-ligence Research 4.Kautz, H., and Selman, B. 1996. Pushing the envelope:Planning, propositional logic, and stochastic search. InProceedings of AAAI-96, 1194{1201. Protland, Oregon:MIT Press.Korf, R., and Taylor, L. 1996. Finding optimal solutionsto the twenty-four puzzle. In Proceedings of AAAI-96,1202{1207. Protland, Oregon: MIT Press.Korf, R. 1990. Real-time heuristic search. Arti�cial In-telligence 42:189{211.Maes, P. 1990. Situated agents can have goals. Roboticsand Autonomous Systems 6:49{70.McAllester, D., and Rosenblitt, D. 1991. Systematicnonlinear planning. In Proceedings of AAAI-91, 634{639.Anaheim, CA: AAAI Press.

Newell, A., and Simon, H. 1972. Human Problem Solving.Englewood Cli�s, NJ: Prentice{Hall.Nilsson, N. 1994. Teleo-reactive programs for agent con-trol. JAIR 1:139{158.Pearl, J. 1983. Heuristics. Morgan Kaufmann.Penberthy, J., and Weld, D. 1992. Ucpop: A sound,complete, partiall order planner for adl. In KR-92.Puterman, M. 1994. Markov Decision Processes: DiscreteDynamic Stochastic Programming. John Wiley.Slaney, J., and Thi�ebaux, S. 1996. Linear time near-optimal planning in the blocks world. In Proceedings ofAAAI-96, 1208{1214. Protland, Oregon: MIT Press.Tyrrell, T. 1992. De�ning the action selection problem.In Proceedings of Simulation of Adaptive Behaviour.Veloso, M. 1992. Learning by Analogical Reasoning inGeneral Problem Solving. Ph.D. Dissertation, ComputerScience Department, CMU. Tech. Report CMU-CS-92-174.

