
Planning with Incomplete Informationas Heuristic Search in Belief SpaceBlai Bonet and H�ector Ge�nerDepartamento de Computaci�onUniversidad Sim�on Bol��varCaracas 1080-A, Venezuelafbonet,hectorg@@ldc.usb.veAbstractThe formulation of planning as heuristic search withheuristics derived from problem representations hasturned out to be a fruitful approach for classical plan-ning. In this paper, we pursue a similar idea in thecontext planning with incomplete information. Plan-ning with incomplete information can be formulated asa problem of search in belief space, where belief statescan be either sets of states or more generally probabilitydistribution over states. While the formulation (as theformulation of classical planning as heuristic search)is not particularly novel, the contribution of this pa-per is to make it explicit, to test it over a number ofdomains, and to extend it to tasks like planning withsensing where the standard search algorithms do notapply. The resulting planner appears to be competi-tive with the most recent conformant and contingentplanners (e.g., cgp, sgp, and cmbp) while at the sametime is more general as it can handle probabilistic ac-tions and sensing, di�erent action costs, and epistemicgoals. IntroductionThe formulation of classical planning as heuristic searchhas turned out to be a fruitful approach leading to pow-erful planners and a perspective on planning where theextraction of good heuristics is a key issue (McDermott1996; Bonet, Loerincs, & Ge�ner 1997; Refanidis & Vla-havas 1999). In this paper, we take this idea into thedomain of planning with incomplete information. Plan-ning with incomplete information is distinguished fromclassical planning in the type and amount of informa-tion available at planning and execution time. In clas-sical planning, the initial state is completely known,and no information is available from sensors. In plan-ning with incomplete information, the initial state isnot known, but sensor information may be available atexecution time.Conformant planning, a term coined in (Smith &Weld 1998), refers to planning with incomplete infor-mation but no sensor feedback. A conformant planis a sequence of actions that achieves the goal fromany initial state compatible with the available infor-mation. The problem has been addressed in (Smith &Weld 1998) with an algorithm based on the ideas ofCopyright c
 2000, American Association for Arti�cial In-telligence (www.aaai.org). All rights reserved.

Graphplan (Blum & Furst 1995) that builds separateplan graphs for each possible initial state and searchesall graphs simultaneously. The approach was testedon a number of problems and proven to scale betterthan conformant planners based on the ideas of partial-order planning (Kushmerick, Hanks, & Weld 1995;Peot 1998). Conformant and contingent planners basedon variations of the sat formulation (Kautz & Sel-man 1996) are reported in (Majercik & Littman 1998;Rintanen 1999).From a mathematical point of view, the problem ofconformant planning can be seen as the problem of �nd-ing a sequence of actions that will map an initial beliefstate into a target belief state. A belief state in this con-text is a set of states: the initial belief b0 is the set ofpossible initial states, and the target beliefs are the setsthat contain goal states only. Actions in this settingmap one belief state into another.Conformant plans can be found in this belief spaceby either blind or heuristic search methods. E.g., abreadth �rst search will generate �rst all belief statesat a distance one from b0, then all belief states at adistance two, and so on, until a target belief is found.We'll see that for many of the examples considered inthe literature this approach actually works quite well.One reason for this is that the nodes in this type ofsearch can be generated very fast without the over-head of more sophisticated searches. This is an im-portant lesson from the recent planners such as Graph-plan (Blum & Furst 1995), Blackbox (Kautz & Selman1999), and hsp (Bonet & Ge�ner 1999): run-time op-erations have to be fast even if that requires a suitableamount of preprocessing.Breadth-�rst search in belief space is the strategyused by the planners based on model-checking tech-niques (Cimatti & Roveri 1999; Giunchiglia & Traverso1999). The model-checking part provides the datastructures and algorithms for making the operationson beliefs (sets of states) more e�cient. In our ap-proach, the leverage does not come from the represen-tation of beliefs but from the use of heuristics. We illus-trate the bene�ts as well as the costs of using domain-independent heuristics over a number of problems.In the presence of sensor feedback, the problem ofplanning with incomplete information is no longer adeterministic search problem in belief space. Since theobservations cannot be predicted, the e�ect of actions

over belief states becomes non-deterministic, and theselection of actions must be conditional on the obser-vations gathered. We show that this problem can beformulated as a search problem in belief space as well,and that while standard heuristic search algorithms donot apply, a generalization of Korf's (1990) lrta� al-gorithm due to Barto et al. (1995) does. The result-ing planner appears competitive with the most recentcontingent planners and applies with little modi�cationto problems where actions and sensors are probabilis-tic. Such problems are known as pomdps (Sondik 1971;Kaebling, Littman, & Cassandra 1998).1The formulation of planning with incomplete infor-mation as heuristic search in belief space (as the for-mulation of classical planning as heuristic search instate space) is not particularly original, and followsfrom viewing these problems as variations of the generalpomdp model (and see also (Genesereth & Nourbakhsh1993)). The contribution of the paper is to make theformulation explicit, to test it over a number problems,and to extend it to tasks like contingent planning wherethe standard heuristic search algorithms do not apply.Preliminary results were presented in (Bonet & Ge�ner1998a). Here we expand those results by consideringprobabilistic and non-probabilistic models, and a sig-ni�cantly larger set of experiments.The paper is organized as follows. First we focus onthe mathematical models underlying the various plan-ning tasks (Sect. 2) and the algorithms and languageneeded for solving and expressing them (Sect. 3 and 4).Then we report results over a number of experiments(Sect. 5) and draw some conclusions (Sect. 6).Mathematical ModelsWe consider �rst the models that make precise the se-mantics of the di�erent planning tasks in terms of thetype of the action dynamics, sensor feedback, and priorinformation available.Classical PlanningClassical planning can be understood in terms of a statemodel de�ned over a discrete and �nite state space,with an initial situation given by a single state s0, agoal situation given by a non-empty set of states SG,and a �nite number of actions that deterministicallymap each state into another. This is a standard modelin AI (Nilsson 1980) that for convenience we call thedeterministic control problem model (Bertsekas 1995)and is characterized byS1. A �nite state space S,S2. an initial situation given by a state s0 2 S,S3. a goal situation given by a non empty set SG � S,S4. actions A(s) � A applicable in each state s 2 S,S5. a dynamics in which every action a 2 A(s) deter-ministically maps s into the state sa = f(a; s), andS6. positive action costs c(a; s) for doing a in s.1pomdp stands for Partially Observable Markov DecisionProcess.

A solution to a deterministic control problem is a se-quence of actions a0, a1, : : : , an that generates a statetrajectory s0, s1 = f(s0), : : : , sn+1 = f(si; ai) suchthat each action ai is applicable in si and sn+1 is a goalstate, i.e., ai 2 A(si) and sn+1 2 SG. The solution isoptimal when the total cost Pni=0 c(si; ai) is minimal.In planning, it's common to assume that all costs c(a; s)are equal and focus on the plans with minimal length.While we don't need to make this assumption here, itwill be convenient for simplicity to assume that actionscosts do not depend on the state and thus can be writ-ten as c(a). The generalization to state-dependent costsis straightforward.Classical planning is a deterministic control problemthat can be solved by searching the state-space S1{S5.This is the approach taken by heuristic search plan-ners such as hsp (Bonet & Ge�ner 1999). Classicalplanning, however, can be formulated and solved in anumber of other ways; e.g., as a SAT problem (Kautz& Selman 1996), as a Constraint Satisfaction Problem(Beek & Chen 1999), as an Integer Programming prob-lem (Vossen et al. 1999), etc. In any case, regardlessof the formulation chosen, the model S1{S5 provides aclear description of the semantics of the task; a descrip-tion that is also useful when we move to non-classicalplanning.Conformant PlanningConformant planning introduces two changes: �rst, theinitial state is no longer assumed to be known, and sec-ond, actions may be non-deterministic. The �rst changecan be modeled by de�ning the initial situation as aset of states S0, and the second by changing the de-terministic transition function f(a; s) in S5 into a non-deterministic function F (a; s) that maps a and s into anon-empty set of states. Conformant planning can alsobe conveniently formulated as deterministic planning inbelief space as we show below (see also (Genesereth &Nourbakhsh 1993)).We use the term belief state to refer to sets of states.2A belief state b stands for the states that the agentexecuting the policy deems possible at one point. Theinitial belief state b0 is given by the set S0 of possibleinitial states, and if b expresses the belief state prior toperforming action a, the belief state ba describing thepossible states in the next situation isba = fs j s 2 F (a; s0) and s0 2 bg (1)The set A(b) of actions that can be safely applied ina belief state b are the actions a that can be applied inany state that is possible according to b:A(b) = fa j a 2 A(s) for all s 2 bg (2)The task in conformant planning is to �nd a sequenceof applicable actions that maps the initial belief stateb0 into a �nal belief state containing only goal states.That is, the set BG of target beliefs is given byBG = fb j such that for all s 2 b; s 2 SGg (3)2The terminology is borrowed from the logics of knowl-edge (Fagin et al. 1995) and pomdps (Kaebling, Littman,& Cassandra 1998).

Provided with these de�nitions, the problem ofconformant planning with deterministic and non-deterministic actions, can be formulated as a determin-istic control problem over belief space given byC1. The �nite space B of belief states b over S,C2. an initial situation given by a belief state b0 2 B,C3. a goal situation given by the target beliefs (3),C4. actions A(b) � A applicable in b given by (2),C5. a dynamics in which every action a 2 A(b) deter-ministically maps b into ba as in (1), andC6. positive action costs c(a).The search methods that are used for solving determin-istic control problems over states can then be used forsolving deterministic control problems over beliefs.The model above can be extended to express epis-temic goals such as �nding out whether a propositionp is true or not This requires a change in the de�nition(3) of the target beliefs. For example if the states aretruth-valuations, the goal of knowing whether p is truecan be expressed by de�ning the target beliefs as thesets of states in which the value of p is uniformly true,or uniformly false.3Contingent PlanningIn the presence of sensor feedback the model for con-formant planning needs to be extended as actions mayproduce observations that a�ect the states of belief andthe selection of the next actions.Sensing can be modeled by assuming that every ac-tion a produces an observation o(a; s) when the realstate produced by the action is s.4 This observationprovides information about the state s but does notnecessarily identify it uniquely as the observation o(a; s)may be equal to the observation o(a; s0) for a states0 6= s (this is often called `perceptual aliasing'; (Chris-man 1992)). On the other hand, upon gathering theobservation o = o(a; s), it is known that the real stateof the environment is not s0 if o 6= o(a; s0).We call the function o(�; �) the sensor model. Thismodel is quite general for noise-free sensing and can befurther generalized by making the observation o(a; s)depend on the state s0 in which the action a is taken. Ageneralization of this model is used for de�ning `noisy'sensors in pomdps (see below).Prior to performing an action a in a belief state b,there is a set of possible observations that may resultfrom the execution of a, as the observations dependon the (unobservable) state s that results. This set ofpossible observations, that we denote as O(a; b), is givenby O(a; b) = fo(a; s) j for s 2 bag (4)3If there are actions that can change the value of p, thena `dummy' proposition p0 that does not change and is equalto p in the initial state, must be created. Then, the tar-get beliefs should be de�ned in terms of p0. This `trick' isneeded because no explicit temporal information is kept inthe model, so a way to �nd out the truth-value of p is to setp to a given value.4Normally o(a; s) will be a collection of primitive obser-vations but this makes no di�erence in the formulation.

After a is done one of these observations o must obtain,allowing the agent to exclude from ba the states that arenot compatible with o. We call the resulting belief boa:boa = fs 2 S j s 2 ba and o = o(a; s)g (5)Since the observation o that will be obtained cannotbe predicted, the e�ect of actions on beliefs is non-deterministic and thus action a in b can lead to anybelief boa for o 2 O(a; b).Contingent planning can thus be modeled as a non-deterministic control problem over belief space givenbyT1. The �nite space B of belief states b over S,T2. an initial situation given by a belief state b0,T3. a goal situation given by the target beliefs (3),T4. actions A(b) � A applicable in b given by (2),T5. a dynamics in which every action a non-deterministically maps b into boa for o 2 O(a; b),T6. positive action costs c(a), andT7. observations o 2 O(a; b) after doing a in b.One way to characterize the solutions of this model isin terms of graphs where nodes b stand for beliefs, nodelabels a(b) stand for the action in b, and every node bhas as successors the nodes boa for the beliefs that canresult from a(b) in b. The terminal nodes are the targetbeliefs. When the resulting graphs are acyclic, stan-dard de�nitions can be used for characterizing the so-lution and optimal solution graphs, and heuristic searchalgorithms such as ao� (Nilsson 1980) can be used tosearch for them. However, often the graph is not acyclicas di�erent paths may lead to the same beliefs.5 Amore general approach in that case can be obtained us-ing the ideas of dynamic programming (Puterman 1994;Bertsekas 1995).In a dynamic programming formulation, the focus ison the function V �(b) that expresses the optimal costof reaching a target belief from any belief b. For thenon-deterministic control problem given by T1{T7 andassuming that we are interested in �nding `plans' thatminimize worst possible cost, this cost function is char-acterized by the following Bellman equation:6V �(b) = mina2A(b)�c(a) + maxo2O(a;b)V �(boa)� (6)with V �(b) = 0 for b 2 BG. Provided with this valuefunction V �, an optimal `plan' can be obtained by se-lecting in each belief b the action a = ��(b) given by��(b) = argmina2A(b) �c(a) + maxo2O(a;b) V �(boa)� (7)5One way to get ride of cycles in the graph is by treatingdi�erent occurrences of the same belief as di�erent nodes. Inthat case, the decision graphs will be larger but algorithmssuch as ao� (Nilsson 1980) can be used. A related idea isto extend ao� for handling cyclic graphs. This has beenproposed recently in (Hansen & Zilberstein 1998).6For V � to be well de�ned for all beliefs b, it is su�cientto assume a `dummy' action with in�nite cost that mapsevery state into a goal state.

The function ��, called also a policy, constitutes theoptimal solution of the contingent planning problem.The `plan' can be obtained by unfolding ��: �rst, theaction a = ��(b) is taken for b = b0, then upon gettingthe observation o, the action a0 = ��(boa) is taken, andso on. The graphs discussed above can be understood asthe representation of the policy ��. A policy, however,can also be represented by a list of condition-actionrules. The formulation above makes no commitmentabout representations; it just describes the conditionsthat the optimal policy must obey. We will see thatthese conditions can be used for computing policies thatuse a tabular representation of V �.Probabilistic Contingent PlanningProblems of contingent planning where actions and sen-sors are probabilistic can be modeled as pomdps withtransition functions replaced by transition probabilitiesPa(s0js) and the sensor model o(a; s) replaced by sen-sor probabilities Pa(ojs) (Astrom 1965; Sondik 1971;Kaebling, Littman, & Cassandra 1998). pomdps arepartially observable problems over state space, but likethe models considered above, they can be formulatedas fully observable problems over belief space. In suchformulation, belief states are no longer sets of statesbut probability distributions over states. The probabil-ity that s is the real state given a belief b is expressedby b(s). The e�ect of actions and observations on be-liefs is captured by equations analogous to (1) and (5)above that are derived from the transition and sensorprobabilities using Bayes' rule:ba(s) = Xs02S Pa(sjs0)b(s0) (8)boa(s) = Pa(ojs)ba(s)=ba(o) ; for ba(o) 6= 0 (9)Here ba(o) stands for the probability of observing o afterdoing action a in b and is given byba(o) =Xs2S Pa(ojs)ba(s) (10)As before, the target beliefs are the ones that makethe goal G certain, while the set A(b) of applicable ac-tions are those that are applicable in all the states thatare possible according to b.The problem of probabilistic contingent planningthen becomes a fully observable probabilistic controlproblem over belief space given byP1. The in�nite space of belief states b that are proba-bility distributions over S,P2. an initial belief state b0,P3. a non-empty set of target beliefs,P4. actions A(b) � A applicable in each b,P5. a dynamics where actions and observations map binto boa with probability ba(o) given by (10),P6. positive action costs c(a; s), andP7. observations o after doing action a in b with prob-ability ba(o).A `plan' in this setting must map the initial beliefb0 into a target belief. The optimal `plan' is the one

that achieves this with minimum expected cost. Suchplans can be formalized with a dynamic programmingformulation similar to the one above (Sondik 1971;Kaebling, Littman, & Cassandra 1998). The Bellmanequation for the optimal cost function V � isV �(b) = mina2A(b) c(a) +Xo2O V �(boa)ba(o)! (11)with V �(b) = 0 for b 2 BG, while the optimal policy ��is ��(b) = argmina2A(b) c(a) +Xo2O V �(boa) ba(o)! (12)The computation of the optimal cost function andpolicy is more di�cult than before because the belief-space in P1{P7 is in�nite and continuous. As a result,only small problems can usually be solved to optimal-ity (Kaebling, Littman, & Cassandra 1998). A commonway to compute approximate solutions is by introducinga suitable discretization over the belief space (Lovejoy1991; Hauskrecht 1997). Below we'll follow this ap-proach. AlgorithmsWe have shown that the problems of conformant andcontingent planning can be formulated as deterministic,non-deterministic, and probabilistic control problems ina suitably de�ned belief space. These formulations arenot particularly novel, and all can be considered as spe-cial cases of the belief-space formulationof pomdps (As-trom 1965; Sondik 1971). Our goal in this paper is touse these formulations for solving planning problemsand for comparing the results with the best availableplanners. In this section we turn to the algorithms forsolving these models, and in the next section we discussan action language for expressing them conveniently.A*The model C1{C6 for conformant planning can besolved by any standard search algorithm. In the exper-iments below we use the a� algorithm (Nilsson 1980)with two domain-independent heuristics. The �rst isthe trivial heuristic h = 0. In that case, a� is justuniform-cost search or breadth-�rst search if all costsare equal. The second is an heuristic derived from theproblem by a general transformation. Basically, wecompute the optimal cost function V �dp over the statesof the `relaxed' problem where full state observabilityis assumed. Such function can be computed by solvingthe Bellman equation:V �dp(s) = mina2A(s)�c(a) + maxs02F (a;s) V �dp(s0)� (13)with V �dp(s) = 0 for s 2 SG, where SG denotes the goalstates and F (a; s) denotes the set of states that mayfollow a in s. This computation is polynomial in jSj,and can be computed reasonably fast if jSj is not toolarge (e.g., jSj � 105) (Puterman 1994; Bertsekas 1995).

With the function V �dp available, the heuristic hdp(b)for estimating the cost of reaching a target belief fromany belief b is de�ned ashdp(b) def= maxs2b V �dp(s) (14)It is simple to show that this heuristic is admissible andhence the solutions found by a� are guaranteed to beoptimal (Nilsson 1980).Greedy Policya� and the standard search algorithms do not applyto contingent planning problems where solutions arenot sequences of actions. Algorithms like ao� (Nilsson1980) can be applied to problems that do not involvecycles, and extensions of ao� for cyclic graphs havebeen recently proposed (Hansen & Zilberstein 1998).The bene�t of these algorithms is they are optimal, theproblem is that may need a long time and lot of memoryfor �nding a solution. These limitations are even morepronounced among the optimal algorithms for pomdps(e.g., (Kaebling, Littman, & Cassandra 1998)). Wehave thus been exploring the use of an anytime algo-rithm that can solve planning problems reasonably fastand can also improve with time. A convenient way forintroducing such algorithm is as a variation of the sim-ple greedy policy.The greedy policy �h takes an heuristic function hover belief states as input, and in each state b selectsthe action�h(b) = argmina2A(b) �c(a) + maxo2O h(boa)� (15)or �h(b) = argmina2A(b) c(a) +Xo2O h(boa)ba(o)! (16)according to whether we are minimizing worst possi-ble cost (non-deterministic contingent planning) or ex-pected cost (probabilistic contingent planning). In bothcases, if the heuristic function h is equal to the optimalcost function V �, the greedy policy is optimal. Other-wise, it may not be optimal or may even fail to solvethe problem.Real Time Dynamic ProgrammingThe problems with the greedy policy are two: it maylead to the goal through very long paths, or it may gettrapped into loops and not lead to the goal at all. Asimple modi�cation due to Korf (1990) and generalizedby Barto et al (1995) solves these two problems whenthe heuristic h is admissible and the space is �nite. Theresulting algorithm is called real-time dynamic program-ming as it combines a real-time (greedy) search withdynamic programming updates (see also (Bertsekas &Tsitsiklis 1996)).The rtdp algorithm is obtained from the greedy pol-icy by regarding the heuristic h as the initial estimateof a cost function V that is used to guide the search.

1. Evaluate each action a applicable in b asQ(a; b) = c(a) + maxo2O V (boa) (non-det)Q(a; b) = c(a) +Po2O ba(o)V (boa) (prob)2. Apply action a that minimizesQ(a; b) breakingties randomly3. Update V (b) to Q(a; b)4. Generate observation o randomly from O(a; b)(non-det), or with probability ba(o) (prob)5. Exit if boa is target belief, else set b to boa and goto 1Figure 1: rtdp over beliefs (probabilistic and non-deterministic versions)Then, every time an action a is selected in b, the valueof the cost function V for b is updated toV (b) := mina2A(b)�c(a) + maxo2O V (boa)� (17)or V (b) := mina2A(b) c(a) +Xo2O h(boa)ba(o)! (18)according to whether we are minimizing worst possi-ble cost (non-deterministic contingent planning) or ex-pected cost (probabilistic contingent planning). Thegreedy policy �V and the updates are then applied to asuccessor state boa, and the cycle repeats until a targetbelief is reached. Since V is initially equal to h, thepolicy �V behaves initially like the greedy policy �h,yet the two policies get apart as a result of the updateson V .When the belief space is �nite, it follows from theresults in (Korf 1990; Barto, Bradtke, & Singh 1995;Bertsekas & Tsitsiklis 1996) that rtdp will not betrapped into loops and will eventually reach the goal.This is what's called a single rtdp trial . In addition,after consecutive trials, the greedy policy �V can beshown to eventually approach the optimal policy ��.For this it is necessary that the heuristic h be admissi-ble (non-overestimating). We note that the belief spacein non-deterministic contingent planning is �nite, whilethe belief space in probabilistic contingent planning canbe made �nite by a suitable discretization. In that case,the convergence rtdp does not guarantee the optimal-ity of the resulting policy, but if the discretization is�ne enough, the resulting policy will approach the op-timal policy. The advantage of rtdp over other pomdpalgorithms (e.g., (Lovejoy 1991), is that it can solve �nediscretizations by using a suitable heuristic function forfocusing the updates on the states that are most rele-vant.In the experiments below, we use the hdp heuristicde�ned above for non-deterministic problems, and asimilar heuristic hmdp for probabilistic problems. Theheuristic hmdp is obtained by solving a `relaxed' prob-lem similar to the one considered in Sect. 3.1 but with

`max' values replaced by expected values (Bonet &Ge�ner 1998b).The rtdp algorithm is shown in Fig. 1. For the im-plementation of rtdp, the values V (b) are stored in ahash table and when a value V (b) that is not in tableis needed, an entry for V (b) set to h(b) is allocated.LanguageWe have considered a number of models and some al-gorithms for solving them. Planning problems how-ever are not expressed in the language of these modelsbut in suitable action languages such as Strips (Fikes& Nilsson 1971). The mapping of a classical planningproblem expressed in Strips to the state model S1{S5is straightforward: the states s are collection of atoms,the applicable actions A(s) are the actions a for whichPrec(a) � s, the state transition function is such thatf(a; s) = s�Del(a) +Add(a), etc. We have developeda language that extends Strips in a number of waysfor expressing all the models considered in Sect. 2 in acompact form. The main extensions are� function symbols, disjunction, and negation� non-deterministic and probabilistic actions with con-ditional e�ects� logical and probabilistic rami�cation rules� observation-gathering rules� cost rulesWe have developed a planner that supports these exten-sions, and maps descriptions of conformant or contin-gent planning problems, with or without probabilities,into the corresponding models.7 The models are thensolved by the algorithms discussed in Sect. 3. The log-ical aspects of this language are presented in (Ge�ner1999), while some of the other extensions are discussedin (Bonet & Ge�ner 1998a; Ge�ner & Wainer 1998).All the experiments reported below have been modeledand solved using this tool that for convenience we willcall gpt. Resultsgpt accepts problem descriptions in a syntax based onpddl (McDermott 1998) and converts these descrip-tions into C++ code. This translation together with thetranslation of C++ into native code takes in the orderof 2 seconds. The experiments were run on a Sun Ultrawith 128M RAM running at 333Mhz. We take a num-ber of examples from (Smith & Weld 1998), (Cimatti& Roveri 1999), and (Weld, Anderson, & Smith 1998)where the conformant planners cgp and cmbp, and thecontingent planner sgp are presented. cgp and sgp7The observation-gathering rules are all deterministicand cannot by themselves represent `noisy' sensing. Noisysensing is represented by the combination of observation-gathering rules and rami�cation rules; e.g., if action a makesthe value of a variable x known with probability p, then wewrite that a makes the value of a `dummy' variable y knownwith certainty, and use rami�cation rules to express x andy are equal with probability p. This is a general transfor-mation: noisy sensing is mapped into noise-free sensing of acorrelated variable.

problem sequential parallelname jSj jP j cmbp gpt(h) gpt(0) jLj cgpbt(2) 4 2 0.000 0.047 0.059 1 0.000bt(4) 8 4 0.000 0.050 0.048 1 0.000bt(6) 12 6 0.020 0.064 0.068 1 0.010bt(8) 16 8 0.150 0.139 0.157 1 0.020bt(10) 20 10 1.330 0.610 0.683 1 1.020btc(6) 24 11 0.160 0.064 0.087 11 0.860btc(7) 28 13 0.520 0.107 0.122 13 2.980btc(8) 32 15 1.850 0.179 0.186 15 13.690btc(9) 36 17 6.020 0.415 0.359 17 41.010btc(10) 40 19 16.020 0.796 0.765 19 157.590Table 1: Results for bt and btc problemsare parallel planners based on the ideas of Graphplan(Blum & Furst 1995), while cmbp is an optimal se-quential planner based on model checking techniques.We take the results for cgp and cmbp from (Cimatti& Roveri 1999) where an extensive comparison is pre-sented. Those results were obtained on a Pentium-IIwith 512M of RAM running at 300Mhz. cmbp is im-plemented in C while cgp and sgp are implementedin Lisp. We also include a number of problems of ourown to illustrate the capabilities of our planner andcontribute to the set of benchmarks used in the area.Conformant PlanningWe consider three types of conformant planning prob-lems. The results are shown in Tables 1 to 3. Thecolumn jSj refers to the size of the state space, whilejP j (jLj) refers to the length of the sequential (parallel)plans found. gpt solves these problems by using the a�algorithm. The column gpt(h) refers to the results ob-tained by running a� with the hdp heuristic, while thecolumn gpt(0) refers to the results with the heuristich = 0. Long dashes (|) in the tables indicate that theplanner exhausted memory or time (2 hours).BT Problems. The �rst problems are variations ofthe `bomb in the toilet' problem. Following (Cimatti& Roveri 1999), the problems are called bt(p), btc(p),btuc(p), and bmtc(p; t). bt(p) is the standard prob-lem where the bomb can be in any of p packages andthe bomb is disarmed by dunking it into the toilet. Inparallel planners, this problem can be solved in one stepby dunking all packages in parallel. btc(p) is the se-quential variation where dunking a package clogs thetoilet and dunking does not disarm the bomb until thetoilet is
ushed. btuc(p) is a non-deterministic vari-ation where dunking may or may not clog the toilet.Finally, bmtc(p; t) involves p packages and t toilets. Inthe `low uncertainty' case, the location of the bomb isnot known and toilets are known to be not clogged; inthe `high uncertainty' case, none of these conditions areknown. The results for these problems are in Tables 1,2, and 5 (last page). gpt appears to scale better thancgp and cmbp in all problems except the bt(p) prob-lems that are trivial for a parallel planner like cgp. Theheuristic, however, does not help in these examples, butdoes not hurt either (the heuristic may hurt when it'sexpensive to compute and does not improve the search).Navigation. The second class of problems square(n)

name jSj jP j cmbp gpt(h) gpt(0)btuc(6) 24 11 0.170 0.091 0.090btuc(7) 28 13 0.530 0.118 0.126btuc(8) 32 15 1.830 0.247 0.241btuc(9) 36 17 6.020 0.497 0.483btuc(10) 40 19 17.730 1.095 1.063Table 2: Results for btuc problemsname jSj jP j gpt(h) gpt(0)square(12) 144 22 0.118 2.995square(14) 196 26 0.159 7.103square(16) 256 30 0.219 14.909square(18) 324 34 0.290 29.580square(20) 400 38 0.386 53.851cube(6) 216 15 0.165 6.022cube(7) 343 18 0.266 20.347cube(8) 512 21 0.450 66.539cube(9) 729 24 0.654 |cube(10) 1000 27 0.991sortn(3) 6 3 0.061 0.061sortn(4) 24 5 0.060 0.065sortn(5) 120 9 0.688 0.653sortn(6) 720 12 119.544 164.482sortn(7) 5040 | |Table 3: Results for square, cube, and sortn prob-lemsand cube(n) deals with a navigation problem in asquare or cube with side n. The goal is to reach a givencorner given that the initial location is completely un-known. There are 4 actions in square(n) and 6 actionsin cube(n) that correspond to the possible directions.Moves against a boundary leave the agent in the sameposition. The optimal solution is given by n � 1 move-ments along each axis in the direction of the goal. Theworst possible cost of this plan is 2(n�1) for square(n)and 3(n�1) for cube(n). This is a problem taken from(Parr & Russell 1995). The results in Table 3 show thatthe heuristic hdp makes a substantial di�erence in thiscase.Sorting Networks. A sorting network refers to asorting algorithm in which comparisons and swaps aremerged into a single operation that takes two entries iand j and swaps them if and only if they are not or-dered. A conformant plan is given by the sequence ofpairs i and j on which to apply this operation. Thenumber of states in the problem is given by the pos-sible ways in which the entries can be ordered; this isn! for sortn(n). The optimal cost of these problemsis known for small values of n only (n � 8 accordingto (Knuth 1973)). The heuristic does not help muchin this type of problems, still both gpt(h) and gpt(0)�nd optimal solutions in a couple of minutes for n's upto 6 (Table 3).Planning with SensingWe consider now problems that involve sensing. Someof these problems are non-deterministic and others areprobabilistic. The results were obtained with the prob-abilistic version of rtdp assuming uniform probability

Name jSj V �(b0) Trial Avg(jP j) Timemedical(2) 20 3.000 20 3.000 0.720medical(3) 32 4.333 25 4.333 1.173medical(4) 36 5.000 25 5.000 1.315medical(5) 20 4.600 25 4.600 1.759Table 4: Results for medical problemsdistributions for the non-deterministic problems.8 Theresults for these problems are shown in Table 4, 6 and 7,and Fig. 4 (last page). rtdp is a stochastic algorithmthat may produce di�erent policies in di�erent runs,and at the same time, in non-deterministic or proba-bilistic domains, the same policies may produce di�er-ent results. We thus assess the performance of rtdp,by taking averages and standard deviations over manyruns. The measures of interest that are displayed in thetables are� the average cost to reach the goal in a given trial,denoted as avg(jP j),� the average time accumulated up to and includingthat trial,� the success rate in that trial (percent of simulationsin which the goal was reached within a given numberof steps)9, and� the changing cost estimate V (b0) of the initial state.The measure V (b0) is important because it's a lowerbound on the optimal expected cost of the problemV �(b0). Since V (b0) � V �(b0) and V �(b0) � avg(jP j),V (b0) � avg(jP j) normally indicates convergence to theoptimal policy. The subtlety though is that as we runrtdp on a discretized belief space10 the updates do notguarantee that V (b0) remains always a lower bound onV �(b0). Nonetheless, this is often true, and in the ex-amples below this can be veri�ed since the optimal ex-pected costs V �(b0) can be computed analytically.BTCS Problems. The �rst set of problems is from(Weld, Anderson, & Smith 1998) and involve a sens-ing variant of the `bomb in the clogged toilet' prob-lems btc(p) where there are a number of sensors fordetecting whether a package contains the bomb. Weldet al. note that the time for sgp to solve these prob-lems scales linearly with number of sensors, and for �vepackages and four sensors it is 0:5 seconds. The resultsfor rtdp are in Table 6 (last page). For this problem,the optimal expected cost V �(b0) is given by the for-mula (p2 + 3p � 2)=2p which for p = 4; 6; 8 results in3:250, 4:333 and 5:375. As it can be seen from the table,these values are closely approximated by avg(jP j) whenavg(jP j) and V (b0) converge. Also, the average costsof the policies derived in the �rst trial are never more8Minimizing expected costs assuming uniform probabili-ties, however, is not equivalent to minimizing worst-possiblecost. We use this formulation as it applies to all problems,probabilistic or not.9For all the experiments, the cuto� used was 250; i.e.,trials taking more than 250 steps to reach the goal wereaborted and counted as failures.10In the experiments, probability values are discretizedinto 10 intervals.

0 1

2

34

5 6 7 8 9Figure 2: Map for grid problemthan 3 steps away from the optimal cost. The �rst trialtakes less than 0:6 seconds in most cases. The curvesfor avg(jP j) and V (b0) as a function of the number oftrials for p = 8, is shown in Fig. 4 (last page).Medical. The medical(n) problem is also from (Weld,Anderson, & Smith 1998) This is a problem that in-volves a patient that can be heathly or may have ndiseases. The medication cures the patient if he hasthe right disease but kills the patient otherwise. sgpsolves these problems for n = 2; 3; 4; 5 in :020, :040,:230, and 2:6 seconds. The results for rtdp are in Ta-ble 4. rtdp takes more time in the smaller problemsbut scales more smoothly and solves the larger problemsfaster. The optimal policy is derived in less than 30 tri-als and 1:75 seconds. The success rate for medical(n)and btcs(n) is 100% from the �rst trial.Grid. This is a navigation problem over the gridshowed in Fig. 2 due to S. Thrun. An agent startsin position 6 in the grid and has to reach a goal that isat position 0 or 4. The position that is not the goal is ahigh penalty state. At position 9 there is a sensor thatreports the true position of the goal with probability p.When p = 1, the optimal solution is to go to position 9,`read' the sensor once, and head up for the goal. Whenp < 1, the agent has to stay longer in 9 accumulat-ing information from the sensor before heading for thegoal. Successive readings of the sensor are assumed tobe independent. Fig. 3 shows the average cost to thegoal as a function of the number of trials for p = 0:75.Table 7 shows results for this and other values of p. Forp = 0:75 the average cost of the policy obtained after asingle trial is 35:675 while after 400 trials is 17:265. Inall cases convergence is achieved in less than 2 seconds.Also all trials reach the goal.Omelette. The �nal problem is from (Levesque 1996)and was modeled and solved in (Bonet & Ge�ner1998a). The goal is to have 3 good eggs and no bad onesin one of two bowls. There is a large pile of eggs, andeggs can be grabbed and broken into a bowl, while con-tents of a bowl can be discared or passed to the otherbowl, etc. There is also a sensing action for testingwhether a bowl contains a bad egg or not. We assumethat sensing is noise-free and that eggs are good with aprobability p equal to 0:25, 0:5 or 0:75. The results forthis problem are shown in Table 7 and Fig. 4 (both inlast page). As it can be seen from the table, the successrate during the �rst iteration in these problems is verylow. For p = 0:25 only 4:6% of the �rst trials reachthe goal. However, after a su�cient number of trials,a success rate of 100% is achieved in all cases, with anaverage cost that corresponds to the policy that getsa good egg in the target bowl �rst, and then uses the

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300 350 400 450 500

av
g.

 c
os

t t
o

go
al

Trial number

Grid problem for p = 0.75

controller
V(b_0)

Figure 3: Curve for an instance of grid problem.other bowl as the bu�er where eggs are inspected andpassed to the target bowl if good, and are discardedotherwise. It can be shown that this policy has an ex-pected cost given by the expression 11 + 12(1 � p)=pwhich for p = 0:75, 0:5 and 0:25 yields 15, 23, and47 steps respectively. These values are closely approxi-mated by the asymptotic values of avg(jP j) and V (b0)in Table 7 in less than 76:33 seconds.DiscussionWe have shown that planning with incomplete informa-tion can be formulated as a problem of heuristic searchin belief space. When there is no sensor feedback, theplans can be obtained by standard search algorithmssuch as a� and the results are competitive with thebest conformant planners. In the presence of sensorfeedback, the standard search algorithms do not ap-ply, but algorithms like rtdp, that combines heuris-tic search with dynamic programming updates, can beused and yield competitive results as well. An addi-tional bene�t of this approach is that it is quite
exibleas it can accommodate probabilistic actions and sens-ing, actions of di�erent costs, and epistemic goals. Thelimitations, on the other hand, are mainly two. First,rtdp is not an optimal search algorithm like a�; it'sguaranteed to yield optimal policies only asymptoti-cally, and if the (belief) space is �nite. In non-�nitespaces such as those arising from probabilistic beliefs,this is not guaranteed. The second limitation is thatthe complexity of a number of preprocessing and run-time operations in gpt scale with the size of the statespace. So if the state space is su�ciently large, our ap-proach does not even get o� the ground. In spite ofthese limitations, the approach appears to o�er a per-formance and a
exibility that few other approachescurrently provide. In the near future we would like toexplore the issues that must be addressed for modelingand solving a number of challenging problems such asMastermind, Minesweeper, the Counterfeit Coin prob-lem, and others. Many of these problems are purely in-formation gathering problems for which the heuristicswe have considered are useless. Other general heuris-

tics, however, can be devised. Indeed, if all actionsare purely information gathering actions, and none pro-duces more than joj observations, the cost of �nding thetrue state s in an initial belief state b can be bounded bythe function logjoj(jbj). This function is an admissibleheuristic that can be used for solving a wide range ofstate-identi�cation problems like the Counterfeit Coinproblem in (Pearl 1983).AcknowledgmentsThis work has been partially supported by grant S1-96001365 from Conicit, Venezuela and by the Wallen-berg Foundation, Sweden. Blai Bonet is currently atUCLA with an USB-Conicit fellowship.ReferencesAstrom, K. 1965. Optimal control of markov decisionprocesses with incomplete state estimation. J. Math. Anal.Appl. 10:174{205.Barto, A.; Bradtke, S.; and Singh, S. 1995. Learningto act using real-time dynamic programming. Arti�cialIntelligence 72:81{138.Beek, P. V., and Chen, X. 1999. CPlan: a constraintprogramming approach to planning. In Proc. AAAI-99.Bertsekas, D., and Tsitsiklis, J. 1996. Neuro-DynamicProgramming. Athena Scienti�c.Bertsekas, D. 1995. Dynamic Programming and OptimalControl, Vols 1 and 2. Athena Scienti�c.Blum, A., and Furst, M. 1995. Fast planning throughplanning graph analysis. In Proceedings of IJCAI-95.Bonet, B., and Ge�ner, H. 1998a. High-level planning andcontrol with incomplete information using POMDPs. InProceedings AAAI Fall Symp. on Cognitive Robotics.Bonet, B., and Ge�ner, H. 1998b. Solving large POMDPsusing real time dynamic programming. In Proc. AAAI FallSymp. on POMDPs.Bonet, B., and Ge�ner, H. 1999. Planning as heuristicsearch: New results. In Proceedings of ECP-99. Springer.Bonet, B.; Loerincs, G.; and Ge�ner, H. 1997. A robustand fast action selection mechanism for planning. In Pro-ceedings of AAAI-97, 714{719. MIT Press.Chrisman, L. 1992. Reinforcement learning with percep-tual aliasing. In Proceedings AAAI-92.Cimatti, A., and Roveri, M. 1999. Conformant planningvia model checking. In Proceedings of ECP-99. Springer.Fagin, R.; Halpern, J.; Moses, Y.; and Vardi, M. 1995.Reasoning about Knowledge. MIT Press.Fikes, R., and Nilsson, N. 1971. STRIPS: A new approachto the application of theorem proving to problem solving.Arti�cial Intelligence 1:27{120.Ge�ner, H., and Wainer, J. 1998. Modeling action, knowl-edge and control. In Proceedings ECAI-98. Wiley.Ge�ner, H. 1999. Functional strips: a more general lan-guage for planning and problem solving. Logic-based AIWorkshop, Washington D.C.Genesereth, M., and Nourbakhsh, I. 1993. Time-Savingtips for problem solving with incomplete information. InProceedings of AAAI-93.Giunchiglia, F., and Traverso, P. 1999. Planning as modelchecking. In Proceedings of ECP-99. Springer.Hansen, E., and Zilberstein, S. 1998. Heuristic search incyclic AND/OR graphs. In Proc. AAAI-98, 412{418.

Hauskrecht, M. 1997. Planning and Control in StochasticDomains with Incomplete Information. Ph.D. Dissertation,MIT.Kaebling, L.; Littman, M.; and Cassandra, T. 1998. Plan-ning and acting in partially observable stochastic domains.Arti�cial Intelligence 101(1{2):99{134.Kautz, H., and Selman, B. 1996. Pushing the envelope:Planning, propositional logic, and stochastic search. InProceedings of AAAI-96, 1194{1201.Kautz, H., and Selman, B. 1999. Unifying SAT-based andGraph-based planning. In Proceedings IJCAI-99.Knuth, D. 1973. The Art of Computer Programming, Vol.III: Sorting and Searching. Addison-Wesley.Korf, R. 1990. Real-time heuristic search. Arti�cial Intel-ligence 42:189{211.Kushmerick, N.; Hanks, S.; and Weld, D. 1995. An al-gorithm for probabilistic planning. Arti�cial Intelligence76:239{286.Levesque, H. 1996. What is planning in the presence ofsensing. In Proceedings AAAI-96, 1139{1146. Portland,Oregon: MIT Press.Lovejoy, W. 1991. Computationally feasible bounds forpartially observed markov decision processes. OperationsResearch 162{175.Majercik, S., and Littman, M. 1998. Maxplan: A newapproach to probabilistic planning. In Proc. AIPS-98, 86{93.McDermott, D. 1996. A heuristic estimator for means-ends analysis in planning. In Proc. Third Int. Conf. on AIPlanning Systems (AIPS-96).McDermott, D. 1998. PDDL { the plan-ning domain de�nition language. Available athttp://ftp.cs.yale.edu/pub/mcdermott.Nilsson, N. 1980. Principles of Arti�cial Intelligence.Tioga.Parr, R., and Russell, S. 1995. Approximating optimalpolicies for partially observable stochastic domains. In Pro-ceedings IJCAI-95.Pearl, J. 1983. Heuristics. Morgan Kaufmann.Peot, M. 1998. Decision-Theoretic Planning. Ph.D. Dis-sertation, Dept. Engineering-Economic Systems, StanfordUniversity.Puterman, M. 1994. Markov Decision Processes: DiscreteDynamic Stochastic Programming. John Wiley.Refanidis, I., and Vlahavas, I. 1999. GRT: A domainindependent heuristic for Strips worlds based on greedyregression tables. In Proceedings of ECP-99. Springer.Rintanen, J. 1999. Constructing conditional plans by atheorem prover. J. of AI Research 10:323{352.Smith, D., and Weld, D. 1998. Conformant graphplan. InProceedings AAAI-98, 889{896. AAAI Press.Sondik, E. 1971. The Optimal Control of Partially Ob-servable Markov Processes. Ph.D. Dissertation, StanfordUniversity.Vossen, T.; Ball, M.; Lotem, A.; and Nau, D. 1999. Onthe use of integer programming models in ai planning. InProceedings IJCAI-99.Weld, D.; Anderson, C.; and Smith, D. 1998. ExtendingGraphplan to handle uncertainty and sensing actions. InProc. AAAI-98, 897{904. AAAI Press.

problem low uncertainty high uncertaintyname jSj jP j cmbp gpt(h) gpt(0) jLj cgp jP j cmbp gpt(h) gpt(0)bmtc(7,2) 56 12 2.100 0.266 0.284 7 508.510 14 3.390 0.500 0.513bmtc(8,2) 64 14 7.960 0.590 0.589 7 918.960 16 12.330 1.138 1.139bmtc(9,2) 72 16 22.826 1.326 1.268 | 18 35.510 2.614 2.654bmtc(10,2) 80 18 72.730 2.975 2.964 20 121.740 6.095 6.061bmtc(7,4) 224 10 14.210 1.847 1.920 3 2.410 14 40.410 14.669 15.420bmtc(8,4) 256 12 77.420 4.648 4.707 3 8.540 16 932.820 38.720 39.773bmtc(9,4) 288 14 | 11.715 11.695 | 18 | 98.067 99.745bmtc(10,4) 320 16 29.999 30.158 20 240.010 243.976bmtc(5,6) 640 5 3.080 1.653 2.120 1 0.060 10 40.770 41.917 50.285bmtc(6,6) 768 6 17.490 4.606 5.315 1 0.100 12 1819.520 136.818 151.250bmtc(7,6) 896 8 5939.520 13.447 14.379 3 211.720 14 | 401.947 435.495bmtc(8,6) 1024 10 | 37.868 39.392 3 1015.160 | |bmtc(9,6) 1152 12 106.995 110.629 3 3051.990bmtc(10,6) 1280 14 241.494 246.984 |Table 5: Results for bmtc problems with low and high uncertainty1 sense action 2 sense actions 4 sense actionsname trial V (b0) Avg(jP j) acc. time V (b0) Avg(jP j) acc. time V (b0) Avg(jP j) acc. timebtcs(4) 1 3:225 4:312� :218 0.497 3:250 4:182� :124 0.486 3:250 4:098� :151 0.502401 3:250 3:278� :071 1.324 3:250 3:306� :101 1.483 3:250 3:258� :110 2.120btcs(6) 1 3:333 6:570� :381 0.494 3:333 6:440� :440 0.512 3:333 6:166� :465 0.5231001 4:333 4:312� :262 4.435 4:333 4:386� :123 6.303 4:333 4:326� :220 11.657btcs(8) 1 3:500 8:017� :283 0.512 3:500 7:888� :317 0.542 3:500 7:458� :300 0.5875901 5:375 5:298� :223 49.550 5:375 5:307� :163 85.710 5:375 5:468� :173 161.476Table 6: Results for btcs problems.name trial V (b0) Avg(jP j) %succ. acc. timegrid(1.00) 1 10:000� :000 13:650� 0:268 100� :000 0.342401 10:000� :000 10:000� 0:000 100� :000 1.145grid(0.75) 1 14:319� :322 35:675� 3:629 100� :000 0.298401 16:464� :000 17:265� 2:882 100� :000 1.633grid(0.50) 1 30:500� :000 32:230� 5:766 100� :000 0.315401 30:500� :000 28:910� 6:021 100� :000 0.937omelette(0.25) 1 14:277� :250 3:133� 1:371 4:6� :017 0.6234001 46:999� :000 46:072� 1:575 100� :000 62.202omelette(0.50) 1 12:945� :049 9:435� 1:578 30:8� :042 0.6224001 23:000� :000 22:732� 0:700 100� :000 29.951omelette(0.75) 1 12:059� :045 13:097� 0:419 79:7� :005 0.62118401 14:999� :000 15:017� 0:285 100� :000 76.337Table 7: Results for grid and omelette problems.
1

2

3

4

5

6

7

8

9

10

11

0 1000 2000 3000 4000 5000 6000

av
g.

 c
os

t t
o

go
al

Trial number

Problem BMTCS(8)

controller
V(b_0)

6

8

10

12

14

16

18

20

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

av
g.

 c
os

t t
o

go
al

Trial number

Omelette Problem with p = 0.75

controller
V(b_0)

Figure 4: Curves for instances of btcs and omelette problems.

