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Abstract

The formulation of planning as heuristic search with
heuristics derived from problem representations has
turned out to be a fruitful approach for classical plan-
ning. In this paper, we pursue a similar idea in the
context planning with incomplete information. Plan-
ning with incomplete information can be formulated as
a problem of search in belief space, where belief states
can be either sets of states or more generally probability
distribution over states. While the formulation (as the
formulation of classical planning as heuristic search)
is not particularly novel, the contribution of this pa-
per is to make it explicit, to test it over a number of
domains, and to extend it to tasks like planning with
sensing where the standard search algorithms do not
apply. The resulting planner appears to be competi-
tive with the most recent conformant and contingent
planners (e.g., cGP, SGP, and cMBP) while at the same
time is more general as it can handle probabilistic ac-
tions and sensing, different action costs, and epistemic
goals.

Introduction

The formulation of classical planning as heuristic search
has turned out to be a fruitful approach leading to pow-
erful planners and a perspective on planning where the
extraction of good heuristics is a key issue (McDermott
1996; Bonet, Loerincs, & Geffner 1997; Refanidis & Vla-
havas 1999). In this paper, we take this idea into the
domain of planning with incomplete information. Plan-
ning with incomplete information is distinguished from
classical planning in the type and amount of informa-
tion available at planning and execution time. In clas-
sical planning, the initial state is completely known,
and no information is available from sensors. In plan-
ning with incomplete information, the initial state is
not known, but sensor information may be available at
execution time.

Conformant planning, a term coined in (Smith &
Weld 1998), refers to planning with incomplete infor-
mation but no sensor feedback. A conformant plan
is a sequence of actions that achieves the goal from
any initial state compatible with the available infor-
mation. The problem has been addressed in (Smith &
Weld 1998) with an algorithm based on the ideas of
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Graphplan (Blum & Furst 1995) that builds separate
plan graphs for each possible initial state and searches
all graphs simultaneously. The approach was tested
on a number of problems and proven to scale better
than conformant planners based on the ideas of partial-
order planning (Kushmerick, Hanks, & Weld 1995;
Peot 1998). Conformant and contingent planners based
on variations of the saT formulation (Kautz & Sel-
man 1996) are reported in (Majercik & Littman 1998;
Rintanen 1999).

From a mathematical point of view, the problem of
conformant planning can be seen as the problem of find-
ing a sequence of actions that will map an initeal belief
state into a target belief state. A belief state in this con-
text is a set of states: the initial belief by is the set of
possible initial states, and the target beliefs are the sets
that contain goal states only. Actions in this setting
map one belief state into another.

Conformant plans can be found in this belief space
by either blind or heuristic search methods. E.g., a
breadth first search will generate first all belief states
at a distance one from by, then all belief states at a
distance two, and so on, until a target belief is found.
We'll see that for many of the examples considered in
the literature this approach actually works quite well.
One reason for this is that the nodes in this type of
search can be generated very fast without the over-
head of more sophisticated searches. This is an im-
portant lesson from the recent planners such as Graph-
plan (Blum & Furst 1995), Blackbox (Kautz & Selman
1999), and HsP (Bonet & Geffner 1999): run-time op-
erations have to be fast even if that requires a suitable
amount of preprocessing.

Breadth-first search in belief space is the strategy
used by the planners based on model-checking tech-
niques (Cimatti & Roveri 1999; Giunchiglia & Traverso
1999). The model-checking part provides the data
structures and algorithms for making the operations
on beliefs (sets of states) more efficient. In our ap-
proach, the leverage does not come from the represen-
tation of beliefs but from the use of heuristics. We illus-
trate the benefits as well as the costs of using domain-
independent heuristics over a number of problems.

In the presence of sensor feedback, the problem of
planning with incomplete information is no longer a
deterministic search problem in belief space. Since the
observations cannot be predicted, the effect of actions



over belief states becomes non-deterministic, and the
selection of actions must be conditional on the obser-
vations gathered. We show that this problem can be
formulated as a search problem in belief space as well,
and that while standard heuristic search algorithms do
not apply, a generalization of Korf’s (1990) LRTA™ al-
gorithm due to Barto et al. (1995) does. The result-
ing planner appears competitive with the most recent
contingent planners and applies with little modification
to problems where actions and sensors are probabilis-
tic. Such problems are known as PoMDPs (Sondik 1971;
Kaebling, Littman, & Cassandra 1998).!

The formulation of planning with incomplete infor-
mation as heuristic search in belief space (as the for-
mulation of classical planning as heuristic search in
state space) is not particularly original, and follows
from viewing these problems as variations of the general
POMDP model (and see also (Genesereth & Nourbakhsh
1993)). The contribution of the paper is to make the
formulation explicit, to test it over a number problems,
and to extend it to tasks like contingent planning where
the standard heuristic search algorithms do not apply.
Preliminary results were presented in (Bonet & Geffner
1998a). Here we expand those results by considering
probabilistic and non-probabilistic models, and a sig-
nificantly larger set of experiments.

The paper is organized as follows. First we focus on
the mathematical models underlying the various plan-
ning tasks (Sect. 2) and the algorithms and language
needed for solving and expressing them (Sect. 3 and 4).
Then we report results over a number of experiments
(Sect. 5) and draw some conclusions (Sect. 6).

Mathematical Models

We consider first the models that make precise the se-
mantics of the different planning tasks in terms of the
type of the action dynamics, sensor feedback, and prior
information available.

Classical Planning

Classical planning can be understood in terms of a state
model defined over a discrete and finite state space,
with an initial situation given by a single state sg, a
goal situation given by a non-empty set of states Sg,
and a finite number of actions that deterministically
map each state into another. This is a standard model
in AT (Nilsson 1980) that for convenience we call the
deterministic control problem model (Bertsekas 1995)
and is characterized by

S1. A finite state space .S,

S2. an initial situation given by a state sq € .5,

S3. a goal situation given by a non empty set S C .S,
S4. actions A(s) C A applicable in each state s € S,

S5. a dynamics in which every action a € A(s) deter-
ministically maps s into the state s, = f(a,s), and

S6. positive action costs ¢(a, s) for doing a in s.

!poMDP stands for Partially Observable Markov Decision
Process.

A solution to a deterministic control problem is a se-
quence of actions ag, a1, ..., a, that generates a state
trajectory so, s1 = f(so), ..., Sn41 = [f(si,a;) such
that each action a; is applicable in s; and s,41 is a goal
state, i.e., a; € A(s;) and sp41 € Sg. The solution is
optimal when the total cost Y ., ¢(s;, ;) is minimal.
In planning, it’s common to assume that all costs ¢(a, s)
are equal and focus on the plans with minimal length.
While we don’t need to make this assumption here, it
will be convenient for simplicity to assume that actions
costs do not depend on the state and thus can be writ-
ten as ¢(a). The generalization to state-dependent costs
1s straightforward.

Classical planning is a deterministic control problem
that can be solved by searching the state-space S1-55.
This is the approach taken by heuristic search plan-
ners such as HSP (Bonet & Geffner 1999). Classical
planning, however, can be formulated and solved in a
number of other ways; e.g., as a SAT problem (Kautz
& Selman 1996), as a Constraint Satisfaction Problem
(Beek & Chen 1999), as an Integer Programming prob-
lem (Vossen et al. 1999), etc. In any case, regardless
of the formulation chosen, the model S1-S5 provides a
clear description of the semantics of the task; a descrip-
tion that is also useful when we move to non-classical
planning.

Conformant Planning

Conformant planning introduces two changes: first, the
initial state is no longer assumed to be known, and sec-
ond, actions may be non-deterministic. The first change
can be modeled by defining the initial situation as a
set of states Sp, and the second by changing the de-
terministic transition function f(a,s) in Sb into a non-
deterministic function F'(a, s) that maps a and s into a
non-empty set of states. Conformant planning can also
be conveniently formulated as deterministic planning in
belief space as we show below (see also (Genesereth &
Nourbakhsh 1993)).

We use the term belief state to refer to sets of states.”
A belief state b stands for the states that the agent
executing the policy deems possible at one point. The
initial belief state by is given by the set Sy of possible
initial states, and if b expresses the belief state prior to
performing action a, the belief state b, describing the
possible states in the next situation is

bo ={s|s € F(a,s)and s € b} (1)

The set A(b) of actions that can be safely applied in
a belief state b are the actions a that can be applied in
any state that is possible according to b:

A(b) ={a | a € A(s) for all s € b} (2)

The task in conformant planning is to find a sequence
of applicable actions that maps the initial belief state
by into a final belief state containing only goal states.
That is, the set B of target beliefs is given by

Bg = {b| such that for all s €b,s € S¢} (3)
?The terminology is borrowed from the logics of knowl-

edge (Fagin et al. 1995) and poMDPs (Kaebling, Littman,
& Cassandra 1998).



Provided with these definitions, the problem of
conformant planning with deterministic and non-
deterministic actions, can be formulated as a determin-
1stic control problem over belief space given by

C1. The finite space B of belief states b over S,

C2. an initial situation given by a belief state by € B,

C3. a goal situation given by the target beliefs (3),

C4. actions A(b) C A applicable in b given by (2),

C5. a dynamics in which every action a € A(b) deter-
ministically maps b into b, as in (1), and

C6. positive action costs ¢(a).

The search methods that are used for solving determin-
istic control problems over states can then be used for
solving deterministic control problems over beliefs.

The model above can be extended to express epis-
temic goals such as finding out whether a proposition
p 1s true or not This requires a change in the definition
(3) of the target beliefs. For example if the states are
truth-valuations, the goal of knowing whether p is true
can be expressed by defining the target beliefs as the
sets of states in which the value of p 1s uniformly true,
or uniformly false.?

Contingent Planning

In the presence of sensor feedback the model for con-
formant planning needs to be extended as actions may
produce observations that affect the states of belief and
the selection of the next actions.

Sensing can be modeled by assuming that every ac-
tion @ produces an observation o(a,s) when the real
state produced by the action is s.* This observation
provides information about the state s but does not
necessarily identify it uniquely as the observation o(a, s)
may be equal to the observation o(a,s’) for a state
s' # s (this is often called ‘perceptual aliasing’; (Chris-
man 1992)). On the other hand, upon gathering the
observation o = o(a, s), it is known that the real state
of the environment is not s’ if o # o(a, ).

We call the function o(,-) the sensor model. This
model is quite general for noise-free sensing and can be
further generalized by making the observation o(a, s)
depend on the state s’ in which the action a is taken. A
generalization of this model is used for defining ‘noisy’
sensors in POMDPs (see below).

Prior to performing an action @ in a belief state b,
there is a set of possible observations that may result
from the execution of a, as the observations depend
on the (unobservable) state s that results. This set of
possible observations, that we denote as O(a, b), is given

by
O(a,b) = {o(a,s) | forseb,} (4)

1f there are actions that can change the value of p, then
a ‘dummy’ proposition p’ that does not change and is equal
to p in the initial state, must be created. Then, the tar-
get beliefs should be defined in terms of p’. This ‘trick’ is
needed because no explicit temporal information is kept in
the model, so a way to find out the truth-value of p is to set
p to a given value.

*Normally o(a, s) will be a collection of primitive obser-
vations but this makes no difference in the formulation.

After a i1s done one of these observations o must obtain,
allowing the agent to exclude from b, the states that are
not compatible with o. We call the resulting belief 6¢:

bo={s€S|s€b, and o = o(a,s)} (5)

Since the observation o that will be obtained cannot
be predicted, the effect of actions on beliefs is non-
deterministic and thus action a in b can lead to any
belief ¢ for o € O(a, b).

Contingent planning can thus be modeled as a non-
deterministic control problem over belief space given

by

T1. The finite space B of belief states b over 5,
T2. an initial situation given by a belief state by,
T3. a goal situation given by the target beliefs (3),
T4. actions A(b) C A applicable in b given by (2),

T5. a dynamics in which every action a non-
deterministically maps b into b for o € O(a, b),

T6. positive action costs ¢(a), and
T7. observations o € O(a, b) after doing a in b.

One way to characterize the solutions of this model is
in terms of graphs where nodes b stand for beliefs, node
labels a(b) stand for the action in b, and every node b
has as successors the nodes b9 for the beliefs that can
result from a(b) in b. The terminal nodes are the target
beliefs. When the resulting graphs are acyclic, stan-
dard definitions can be used for characterizing the so-
lution and optimal solution graphs, and heuristic search
algorithms such as 40* (Nilsson 1980) can be used to
search for them. However, often the graph is not acyclic
as different paths may lead to the same beliefs.> A
more general approach in that case can be obtained us-
ing the ideas of dynamic programming (Puterman 1994;
Bertsekas 1995).

In a dynamic programming formulation, the focus is
on the function V*(b) that expresses the optimal cost
of reaching a target belief from any belief 4. For the
non-deterministic control problem given by T1-T7 and
assuming that we are interested in finding ‘plans’ that
minimize worst possible cost, this cost function is char-
acterized by the following Bellman equation:®

max v*(bg)) (6)

V*(b) = mi
(b) min (c(a) + B,

a€A(b)

with V*(b) = 0 for b € Bg. Provided with this value
function V*, an optimal ‘plan’ can be obtained by se-
lecting in each belief b the action a = #*(b) given by

7 (b) = argmin | ¢(a) + max V*bg) 7
()= nrgmin (<o) + _max, V°0D) (D)

®One way to get ride of cycles in the graph is by treating
different occurrences of the same belief as different nodes. In
that case, the decision graphs will be larger but algorithms
such as A0" (Nilsson 1980) can be used. A related idea is
to extend A0™ for handling cyclic graphs. This has been
proposed recently in (Hansen & Zilberstein 1998).

5For V* to be well defined for all beliefs b, it is sufficient
to assume a ‘dummy’ action with infinite cost that maps
every state into a goal state.



The function 7%, called also a policy, constitutes the
optimal solution of the contingent planning problem.
The ‘plan’ can be obtained by unfolding #*: first, the
action a = 7*(b) is taken for b = by, then upon getting
the observation o, the action ¢’ = #*(49) is taken, and
so on. The graphs discussed above can be understood as
the representation of the policy #*. A policy, however,
can also be represented by a list of condition-action
rules. The formulation above makes no commitment
about representations; it just describes the conditions
that the optimal policy must obey. We will see that
these conditions can be used for computing policies that
use a tabular representation of V*.

Probabilistic Contingent Planning

Problems of contingent planning where actions and sen-
sors are probabilistic can be modeled as PoMDPs with
transition functions replaced by transition probabilities
P,(s'|s) and the sensor model o(a, s) replaced by sen-
sor probabilities Py(ols) (Astrom 1965; Sondik 1971;
Kaebling, Littman, & Cassandra 1998). POMDPs are
partially observable problems over state space, but like
the models considered above, they can be formulated
as fully observable problems over belief space. In such
formulation, belief states are no longer sets of states
but probability distributions over states. The probabil-
ity that s is the real state given a belief b is expressed
by b(s). The effect of actions and observations on be-
liefs 1s captured by equations analogous to (1) and (5)
above that are derived from the transition and sensor
probabilities using Bayes’ rule:

ba(s) = Y Pa(sls)b(s") (8)

b(s) = Palols)ba(s)/ba(o) ; for ba(o) 0 (9)

Here by(0) stands for the probability of observing o after
doing action @ in b and is given by

ba(0) = 3 Paols)ba(s) (10)

SES

As before, the target beliefs are the ones that make
the goal G certain, while the set A(b) of applicable ac-
tions are those that are applicable in all the states that
are possible according to b.

The problem of probabilistic contingent planning
then becomes a fully observable probabilistic control
problem over belief space given by

P1. The infinite space of belief states b that are proba-
bility distributions over S,

P2. an initial belief state b,

P3. a non-empty set of target beliefs,

P4. actions A(b) C A applicable in each b,

P5. a dynamics where actions and observations map b
into b2 with probability b,(0) given by (10),

P6. positive action costs ¢(a, s), and

P7. observations o after doing action a in & with prob-
ability b4 (0).

A ‘plan’ in this setting must map the initial belief
by into a target belief. The optimal ‘plan’ is the one

that achieves this with minimum ezpected cost. Such
plans can be formalized with a dynamic programming
formulation similar to the one above (Sondik 1971;
Kaebling, Littman, & Cassandra 1998). The Bellman
equation for the optimal cost function V* is

V*(b) = min (c(a)—l—ZV*(bg)ba(o)) (11)

a€A(b) eyt

with V*(b) = 0 for b € Bg, while the optimal policy =*
is

7*(b) = argmin (c(a) + VR ba(o)) (12)

a€A(b) 0eO

The computation of the optimal cost function and
policy is more difficult than before because the belief-
space in P1-P7 is infinite and continuous. As a result,
only small problems can usually be solved to optimal-
ity (Kaebling, Littman, & Cassandra 1998). A common
way to compute approzimate solutions is by introducing
a suitable discretization over the belief space (Lovejoy
1991; Hauskrecht 1997). Below we’ll follow this ap-
proach.

Algorithms

We have shown that the problems of conformant and
contingent planning can be formulated as deterministic,
non-deterministic, and probabelistic control problems in
a suitably defined belief space. These formulations are
not particularly novel, and all can be considered as spe-
cial cases of the belief-space formulation of POMDPs (As-
trom 1965; Sondik 1971). Our goal in this paper is to
use these formulations for solving planning problems
and for comparing the results with the best available
planners. In this section we turn to the algorithms for
solving these models, and in the next section we discuss
an action language for expressing them conveniently.

A

The model C1-C6 for conformant planning can be
solved by any standard search algorithm. In the exper-
iments below we use the o™ algorithm (Nilsson 1980)
with two domain-independent heuristics. The first 1s
the trivial heuristic A = 0. In that case, A™ is just
uniform-cost search or breadth-first search if all costs
are equal. The second is an heuristic derived from the
problem by a general transformation. Basically, we
compute the optimal cost function Vg, over the states
of the ‘relaxed’ problem where full state observability
is assumed. Such function can be computed by solving
the Bellman equation:

Vi = min (cl+ max Vi) ()

with V;p(s) =0 for s € S¢, where S¢ denotes the goal

states and F'(a, s) denotes the set of states that may
follow a in s. This computation is polynomial in |S],
and can be computed reasonably fast if |S]| is not too
large (e.g., |:S| < 10°) (Puterman 1994; Bertsekas 1995).



With the function Vj, available, the heuristic hap(b)

for estimating the cost of reaching a target belief from
any belief b is defined as

hap(b) = max Vi (s) (14)
It is simple to show that this heuristic is admissible and

hence the solutions found by A* are guaranteed to be
optimal (Nilsson 1980).

Greedy Policy

A* and the standard search algorithms do not apply
to contingent planning problems where solutions are
not sequences of actions. Algorithms like A0* (Nilsson
1980) can be applied to problems that do not involve
cycles, and extensions of A0* for cyclic graphs have
been recently proposed (Hansen & Zilberstein 1998).
The benefit of these algorithms is they are optimal, the
problem is that may need a long time and lot of memory
for finding a solution. These limitations are even more
pronounced among the optimal algorithms for POMDPs
(e.g., (Kaebling, Littman, & Cassandra 1998)). We
have thus been exploring the use of an anytime algo-
rithm that can solve planning problems reasonably fast
and can also improve with time. A convenient way for
introducing such algorithm is as a variation of the sim-
ple greedy policy.

The greedy policy #p takes an heuristic function A
over belief states as input, and in each state b selects
the action

7n(b) = argmin (c(a) + maxh(bg)) (15)
a€A(b) 0€0

or

71(b) = argmin (c(a) +> h(bg)ba(o)) (16)

a€A(b) o€

according to whether we are minimizing worst possi-
ble cost (non-deterministic contingent planning) or ez-
pected cost (probabilistic contingent planning). In both
cases, if the heuristic function A is equal to the optimal
cost function V*, the greedy policy is optimal. Other-
wise, 1t may not be optimal or may even fail to solve
the problem.

Real Time Dynamic Programming

The problems with the greedy policy are two: it may
lead to the goal through very long paths, or it may get
trapped into loops and not lead to the goal at all. A
simple modification due to Korf (1990) and generalized
by Barto et al (1995) solves these two problems when
the heuristic h is admissible and the space is finite. The
resulting algorithm s called real-time dynamic program-
ming as it combines a real-time (greedy) search with
dynamic programming updates (see also (Bertsekas &
Tsitsiklis 1996)).

The RTDP algorithm is obtained from the greedy pol-
icy by regarding the heuristic h as the initial estimate
of a cost function V that is used to guide the search.

1. Evaluate each action a applicable in b as

Q(a,b) = c(a) + maxeeo V(b3) (non-det)
Qa,b) = c(a) + 3,0 ba(0)V(bG)  (prob)

2. Apply action a that minimizes Q(a, b) breaking

ties randomly

Update V(b) to Q(a,b)

Generate observation o randomly from O(a, b)

(non-det), or with probability b4(0) (prob)

5. Exit if 0% is target belief, else set & to 62 and go
to 1

e

Figure 1: RTDP over beliefs (probabilistic and non-
deterministic versions)

Then, every time an action a is selected in b, the value
of the cost function V for b is updated to

v = min (c0+myven)  a9)

or

V(b) := min (c(a)—l— Zh(bg)ba(o)) (18)

a€A(b) et

according to whether we are minimizing worst possi-
ble cost (non-deterministic contingent planning) or ez-
pected cost (probabilistic contingent planning). The
greedy policy 7y and the updates are then applied to a
successor state b, and the cycle repeats until a target
belief is reached. Since V is initially equal to h, the
policy my behaves initially like the greedy policy mp,
vet the two policies get apart as a result of the updates
on V.

When the belief space is finite, it follows from the
results in (Korf 1990; Barto, Bradtke, & Singh 1995;
Bertsekas & Tsitsiklis 1996) that rRTDP will not be
trapped into loops and will eventually reach the goal.
This is what’s called a single RTDP #riel. In addition,
after consecutive trials, the greedy policy my can be
shown to eventually approach the optimal policy 7*.
For this it is necessary that the heuristic 2 be admissi-
ble (non-overestimating). We note that the belief space
in non-deterministic contingent planning is finite, while
the belief space in probabilistic contingent planning can
be made finite by a suitable discretization. In that case,
the convergence RTDP does not guarantee the optimal-
ity of the resulting policy, but if the discretization is
fine enough, the resulting policy will approach the op-
timal policy. The advantage of RTDP over other POMDP
algorithms (e.g., (Lovejoy 1991), is that it can solve fine
discretizations by using a suitable heuristic function for
focusing the updates on the states that are most rele-
vant.

In the experiments below, we use the hg, heuristic
defined above for non-deterministic problems, and a
similar heuristic h,,q, for probabilistic problems. The
heuristic A4, is obtained by solving a ‘relaxed’ prob-
lem similar to the one considered in Sect. 3.1 but with



‘max’ values replaced by expected values (Bonet &
Geffner 1998b).

The RTDP algorithm is shown in Fig. 1. For the im-
plementation of RTDP, the values V(b) are stored in a
hash table and when a value V() that is not in table
is needed, an entry for V(b) set to h(b) is allocated.

Language

We have considered a number of models and some al-
gorithms for solving them. Planning problems how-
ever are not expressed in the language of these models
but in suitable action languages such as Strips (Fikes
& Nilsson 1971). The mapping of a classical planning
problem expressed in Strips to the state model S1-S5
is straightforward: the states s are collection of atoms,
the applicable actions A(s) are the actions a for which
Prec(a) C s, the state transition function is such that
fla,s) = s — Del(a) + Add(a), etc. We have developed
a language that extends Strips in a number of ways
for expressing all the models considered in Sect. 2 in a
compact form. The main extensions are

e function symbols, disjunction, and negation

e non-deterministic and probabilistic actions with con-
ditional effects

e logical and probabilistic ramification rules
e observation-gathering rules
e cost rules

We have developed a planner that supports these exten-
sions, and maps descriptions of conformant or contin-
gent planning problems, with or without probabilities,
into the corresponding models.” The models are then
solved by the algorithms discussed in Sect. 3. The log-
ical aspects of this language are presented in (Geffner
1999), while some of the other extensions are discussed
in (Bonet & Geffner 1998a; Geffner & Wainer 1998).
All the experiments reported below have been modeled
and solved using this tool that for convenience we will
call GPT.

Results

GPT accepts problem descriptions in a syntax based on
PDDL (McDermott 1998) and converts these descrip-
tions into C4++ code. This translation together with the
translation of C++ into native code takes in the order
of 2 seconds. The experiments were run on a Sun Ultra
with 128M RAM running at 333Mhz. We take a num-
ber of examples from (Smith & Weld 1998), (Cimatti
& Roveri 1999), and (Weld, Anderson, & Smith 1998)
where the conformant planners cGP and ¢cMBP, and the
contingent planner SGP are presented. CGP and SGP

"The observation-gathering rules are all deterministic
and cannot by themselves represent ‘noisy’ sensing. Noisy
sensing is represented by the combination of observation-
gathering rules and ramification rules; e.g., if action ¢ makes
the value of a variable x known with probability p, then we
write that ¢ makes the value of a ‘dummy’ variable y known
with certainty, and use ramification rules to express x and
y are equal with probability p. This is a general transfor-
mation: noisy sensing is mapped into noise-free sensing of a
correlated variable.

problem sequential parallel
name |1S] | IP] CMBP gPT(h) | @pT(0) | |L| OGP
BT(2) 4 2 0.000 0.047 0.059 1 0.000
BT(4) 8 4 0.000 0.050 0.048 1 0.000
BT(6) 12 6 0.020 0.064 0.068 1 0.010
BT(8) 16 8 0.150 0.139 0.157 1 0.020
BT(10) 20 10 1.330 0.610 0.683 1 1.020
BTC(6) 24 11 0.160 0.064 0.087 11 0.860
BTC(7) 28 13 0.520 0.107 0.122 13 2.980
BTC(8) 32 15 1.850 0.179 0.186 15 13.690
BTC(9) 36 17 6.020 0.415 0.359 17 41.010
BTC(10) 40 19 | 16.020 0.796 0.765 19 | 157.590

Table 1: Results for BT and BTC problems

are parallel planners based on the ideas of Graphplan
(Blum & Furst 1995), while cMBP is an optimal se-
quential planner based on model checking techniques.
We take the results for cGP and c¢MBP from (Cimatti
& Roveri 1999) where an extensive comparison is pre-
sented. Those results were obtained on a Pentium-II
with 512M of RAM running at 300Mhz. CMBP is im-
plemented in C while ¢GP and sGP are implemented
in Lisp. We also include a number of problems of our
own to illustrate the capabilities of our planner and
contribute to the set of benchmarks used in the area.

Conformant Planning

We consider three types of conformant planning prob-
lems. The results are shown in Tables 1 to 3. The
column |S| refers to the size of the state space, while
|P| (|L]) refers to the length of the sequential (parallel)
plans found. GPT solves these problems by using the A*
algorithm. The column GPT(h) refers to the results ob-
tained by running A* with the hg, heuristic, while the
column GPT(0) refers to the results with the heuristic
h = 0. Long dashes (—) in the tables indicate that the
planner exhausted memory or time (2 hours).

BT Problems. The first problems are variations of
the ‘bomb in the toilet’ problem. Following (Cimatti
& Roveri 1999), the problems are called BT(p), BTC(p),
BTUC(p), and BMTC(p,t). BT(p) is the standard prob-
lem where the bomb can be in any of p packages and
the bomb is disarmed by dunking it into the toilet. In
parallel planners, this problem can be solved in one step
by dunking all packages in parallel. BTc(p) is the se-
quential variation where dunking a package clogs the
toilet and dunking does not disarm the bomb until the
toilet is flushed. BTUC(p) is a non-deterministic vari-
ation where dunking may or may not clog the toilet.
Finally, BMTC(p, t) involves p packages and ¢ toilets. In
the ‘low uncertainty’ case, the location of the bomb is
not known and toilets are known to be not clogged; in
the ‘high uncertainty’ case, none of these conditions are
known. The results for these problems are in Tables 1,
2, and 5 (last page). GPT appears to scale better than
cGP and ¢MBP in all problems except the BT(p) prob-
lems that are trivial for a parallel planner like cGp. The
heuristic, however, does not help in these examples, but
does not hurt either (the heuristic may hurt when it’s
expensive to compute and does not improve the search).

Navigation. The second class of problems SQUARE(n)



name [STTIP] | emBP | gpr(h) | gPT(0)
BTUC(6) 24 11 0.170 0.091 0.090
BTUC(7) 28 13 0.530 0.118 0.126
BTUC(8) 32 15 1.830 0.247 0.241
BTUC(9) 36 17 6.020 0.497 0.483
BTUC(10) | 40 19 | 17.730 1.095 1.063

Table 2: Results for BTUC problems

name [ST [ TP] | epr(h) | apT(0)
SQUARE(12) 144 | 22 0.118 2.995
SQUARE(14) 196 | 26 0.159 7.103
SQUARE(16) 256 30 0.219 14.909
SQUARE(18) 324 34 0.290 29.580
SQUARE(20) 400 38 0.386 53.851
CUBE(6) 216 15 0.165 6.022
CUBE(T) 343 18 0.266 20.347
CUBE(8) 512 21 0.450 66.539
CUBE(9) 729 | 24 0.654 —
cUBE(10) 1000 | 27 0.991
SORTN(3) 6 3 0.061 0.061
SORTN(4) 24 5 0.060 0.065
SORTN(5) 120 9 0.688 0.653
SORTN(6) 720 12 | 119.544 | 164.482
SORTN(7) 5040 — —

Table 3: Results for SQUARE, CUBE, and SORTN prob-
lems

and CUBE(n) deals with a navigation problem in a
square or cube with side n. The goal is to reach a given
corner given that the initial location is completely un-
known. There are 4 actions in SQUARE(n) and 6 actions
in CUBE(n) that correspond to the possible directions.
Moves against a boundary leave the agent in the same
position. The optimal solution is given by n — 1 move-
ments along each axis in the direction of the goal. The
worst possible cost of this plan is 2(n—1) for SQUARE(n)
and 3(n— 1) for cUBE(n). This is a problem taken from
(Parr & Russell 1995). The results in Table 3 show that
the heuristic hg, makes a substantial difference in this
case.

Sorting Networks. A sorting network refers to a
sorting algorithm in which comparisons and swaps are
merged into a single operation that takes two entries ¢
and j and swaps them if and only if they are not or-
dered. A conformant plan i1s given by the sequence of
pairs ¢ and j on which to apply this operation. The
number of states in the problem is given by the pos-
sible ways in which the entries can be ordered; this 1s
n! for sORTN(n). The optimal cost of these problems
is known for small values of n only (n < 8 according
to (Knuth 1973)). The heuristic does not help much
in this type of problems, still both GpT(h) and GpT(0)
find optimal solutions in a couple of minutes for n’s up

to 6 (Table 3).

Planning with Sensing

We consider now problems that involve sensing. Some
of these problems are non-deterministic and others are
probabilistic. The results were obtained with the prob-
abilistic version of RTDP assuming uniform probability

Name [ST | V™ (bo) | Trial | Avg(JP]) | Time
MEDICAL(2) | 20 3.000 20 3.000 | 0.720
MEDICAL(3) | 32 4.333 25 4.333 | 1.173
MEDICAL(4) | 36 5.000 25 5.000 | 1.315
MEDICAL(5) | 20 4.600 25 4.600 | 1.759

Table 4: Results for MEDICAL problems

distributions for the non-deterministic problems.®? The
results for these problems are shown in Table 4, 6 and 7,
and Fig. 4 (last page). RTDP is a stochastic algorithm
that may produce different policies in different runs,
and at the same time, in non-deterministic or proba-
bilistic domains, the same policies may produce differ-
ent results. We thus assess the performance of RTDP,
by taking averages and standard deviations over many
runs. The measures of interest that are displayed in the
tables are

e the average cost to reach the goal in a given trial,
denoted as avg(|P]),

e the average time accumulated up to and including
that trial,

e the success rate in that trial (percent of simulations
in which the goal was reached within a given number
of steps)?, and

e the changing cost estimate V(bg) of the initial state.

The measure V(by) is important because it’s a lower
bound on the optimal expected cost of the problem
V*(bg). Since V(bg) < V*(bg) and V*(bg) < avg(|P]),
V(bo) = avg(]|P]) normally indicates convergence to the
optimal policy. The subtlety though is that as we run
RTDP on a discretized belief space!® the updates do not
guarantee that V(bg) remains always a lower bound on
V*(bo). Nonetheless, this is often true, and in the ex-
amples below this can be verified since the optimal ex-
pected costs V*(by) can be computed analytically.

BTCS Problems. The first set of problems is from
(Weld, Anderson, & Smith 1998) and involve a sens-
ing variant of the ‘bomb in the clogged toilet’ prob-
lems BTC(p) where there are a number of sensors for
detecting whether a package contains the bomb. Weld
et al. note that the time for sGP to solve these prob-
lems scales linearly with number of sensors, and for five
packages and four sensors it is 0.5 seconds. The results
for RTDP are in Table 6 (last page). For this problem,
the optimal expected cost V*(bg) is given by the for-
mula (p* + 3p — 2)/2p which for p = 4,6,8 results in
3.250,4.333 and 5.375. As it can be seen from the table,
these values are closely approximated by avg(|P|) when
avg(|P]) and V(by) converge. Also, the average costs
of the policies derived in the first trial are never more

#Minimizing expected costs assuming uniform probabili-
ties, however, is not equivalent to minimizing worst-possible
cost. We use this formulation as it applies to all problems,
probabilistic or not.

°For all the experiments, the cutoff used was 250; i.e.,
trials taking more than 250 steps to reach the goal were
aborted and counted as failures.

1Ty the experiments, probability values are discretized
into 10 intervals.
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Figure 2: Map for grid problem

than 3 steps away from the optimal cost. The first trial
takes less than 0.6 seconds in most cases. The curves
for avg(|P|) and V(bg) as a function of the number of
trials for p = 8, is shown in Fig. 4 (last page).

Medical. The MEDICAL(n) problem is also from (Weld,
Anderson, & Smith 1998) This is a problem that in-
volves a patient that can be heathly or may have n
diseases. The medication cures the patient if he has
the right disease but kills the patient otherwise. sGp
solves these problems for n = 2,3,4,5 in .020, .040,
.230, and 2.6 seconds. The results for RTDP are in Ta-
ble 4. RTDP takes more time in the smaller problems
but scales more smoothly and solves the larger problems
faster. The optimal policy is derived in less than 30 tri-
als and 1.75 seconds. The success rate for MEDICAL(n)
and BTcs(n) is 100% from the first trial.

Grid. This is a navigation problem over the grid
showed in Fig. 2 due to S. Thrun. An agent starts
in position 6 in the grid and has to reach a goal that is
at position 0 or 4. The position that is not the goal is a
high penalty state. At position 9 there is a sensor that
reports the true position of the goal with probability p.
When p = 1, the optimal solution is to go to position 9,
‘read’ the sensor once, and head up for the goal. When
p < 1, the agent has to stay longer in 9 accumulat-
ing information from the sensor before heading for the
goal. Successive readings of the sensor are assumed to
be independent. Fig. 3 shows the average cost to the
goal as a function of the number of trials for p = 0.75.
Table 7 shows results for this and other values of p. For
p = 0.75 the average cost of the policy obtained after a
single trial is 35.675 while after 400 trials is 17.265. In
all cases convergence is achieved in less than 2 seconds.
Also all trials reach the goal.

Omelette. The final problem is from (Levesque 1996)
and was modeled and solved in (Bonet & Geffner
1998a). The goal is to have 3 good eggs and no bad ones
in one of two bowls. There is a large pile of eggs, and
eggs can be grabbed and broken into a bowl, while con-
tents of a bowl can be discared or passed to the other
bowl, etc. There is also a sensing action for testing
whether a bowl contains a bad egg or not. We assume
that sensing is noise-free and that eggs are good with a
probability p equal to 0.25, 0.5 or 0.75. The results for
this problem are shown in Table 7 and Fig. 4 (both in
last page). As it can be seen from the table, the success
rate during the first iteration in these problems is very
low. For p = 0.25 only 4.6% of the first trials reach
the goal. However, after a sufficient number of trials,
a success rate of 100% is achieved in all cases, with an
average cost that corresponds to the policy that gets
a good egg in the target bowl first, and then uses the

Grid problem for p=0.75
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Figure 3: Curve for an instance of GRID problem.

other bowl as the buffer where eggs are inspected and
passed to the target bowl if good, and are discarded
otherwise. It can be shown that this policy has an ex-
pected cost given by the expression 11 + 12(1 — p)/p
which for p = 0.75, 0.5 and 0.25 yields 15, 23, and
47 steps respectively. These values are closely approxi-
mated by the asymptotic values of avg(|P]) and V(bg)
in Table 7 in less than 76.33 seconds.

Discussion

We have shown that planning with incomplete informa-
tion can be formulated as a problem of heuristic search
in belief space. When there is no sensor feedback, the
plans can be obtained by standard search algorithms
such as A" and the results are competitive with the
best conformant planners. In the presence of sensor
feedback, the standard search algorithms do not ap-
ply, but algorithms like RTDP, that combines heuris-
tic search with dynamic programming updates, can be
used and yield competitive results as well. An addi-
tional benefit of this approach is that it is quite flexible
as 1t can accommodate probabilistic actions and sens-
ing, actions of different costs, and epistemic goals. The
limitations, on the other hand, are mainly two. First,
RTDP is not an optimal search algorithm like A*; it’s
guaranteed to yield optimal policies only asymptoti-
cally, and if the (belief) space is finite. In non-finite
spaces such as those arising from probabilistic beliefs,
this is not guaranteed. The second limitation is that
the complexity of a number of preprocessing and run-
time operations in GPT scale with the size of the state
space. So if the state space is sufficiently large, our ap-
proach does not even get off the ground. In spite of
these limitations, the approach appears to offer a per-
formance and a flexibility that few other approaches
currently provide. In the near future we would like to
explore the issues that must be addressed for modeling
and solving a number of challenging problems such as
Mastermind, Minesweeper, the Counterfeit Coin prob-
lem, and others. Many of these problems are purely in-
formation gathering problems for which the heuristics
we have considered are useless. Other general heuris-



tics, however, can be devised. Indeed, if all actions
are purely information gathering actions, and none pro-
duces more than |o| observations, the cost of finding the
true state s in an initial belief state b can be bounded by
the function log,(|b]). This function is an admissible

heuristic that can be used for solving a wide range of
state-identification problems like the Counterfeit Coin

problem in (Pearl 1983).
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problem low uncertainty high uncertainty
name S| | |P| CMBP apT(h) | apT(0) | || CGP | P| CMBP apT(h) | apT(0)
BMTC(7,2) 56 12 2.100 0.266 0.284 7 508.510 14 3.390 0.500 0.513
BMTC(8,2) 64 14 7.960 0.590 0.589 7 918.960 16 12.330 1.138 1.139
BMTC(9,2) 72 16 22.826 1.326 1.268 — 18 35.510 2.614 2.654
BMTC(10,2) 80 18 72.730 2.975 2.964 20 121.740 6.095 6.061
BMTC(7,4) 224 10 14.210 1.847 1.920 3 2.410 14 40.410 14.669 15.420
BMTC(8,4) 256 12 77.420 4.648 4.707 3 8.540 16 932.820 38.720 39.773
BMTC(9,4) 288 14 — 11.715 11.695 — 18 — 98.067 99.745
BMTC(10,4) 320 16 29.999 30.158 20 240.010 | 243.976
BMTC(5,6) 640 5 3.080 1.653 2.120 1 0.060 10 40.770 41.917 50.285
BMTC(6,6) 768 6 17.490 4.606 5.315 1 0.100 12 | 1819.520 | 136.818 | 151.250
BMTC(7,6) 896 8 | 5939.520 13.447 14.379 3 211.720 14 — | 401.947 | 435.495
BMTC(8,6) 1024 10 — 37.868 39.392 3 | 1015.160 — —
BMTC(9,6) 1152 12 106.995 | 110.629 3 | 3051.990
BMTC(10,6) | 1280 14 241.494 | 246.984 —
Table 5: Results for BMTC problems with low and high uncertainty
1 sense action 2 sense actions 4 sense actions
name trial | V(bo) Avg(|P]) acc. time | V(bo) Avg(|P]) acc. time | V(bo) Avg(|P]) acc. time
BTCs(4) 1 3.225 | 4.312 £ .218 0.497 | 3.250 | 4.182 £ .124 0.486 | 3.250 | 4.098 £ .151 0.502
401 3.250 | 3.278 £.071 1.324 | 3.250 | 3.306 £ .101 1.483 | 3.250 | 3.258 &+ .110 2.120
BTCs(6) 1 3.333 | 6.570 £ .381 0.494 | 3.333 | 6.440 £ .440 0.512 | 3.333 | 6.166 £ .465 0.523
1001 | 4.333 | 4.312 & .262 4.435 | 4.333 | 4.386 &£ .123 6.303 | 4.333 | 4.326 £ .220 11.657
BTCs(8) 1 3.500 | 8.017 £.283 0.512 3.500 | 7.888 £ .317 0.542 | 3.500 | 7.458 £ .300 0.587
5901 5.375 | 5.298 £ .223 49.550 5.375 | 5.307 £ .163 85.710 | 5.375 | 5.468 &£ .173 161.476
Table 6: Results for BTCS problems.
name trial V(bo) Avg(]P]) Y%osucc. acc. time
GRID(1.00) 1 | 10.000 £ .000 | 13.650 £ 0.268 100 % .000 0.342
401 | 10.000 £ .000 | 10.000 &£ 0.000 100 % .000 1.145
GRID(0.75) 1 | 14.319 £ .322 | 35.675 £ 3.629 100 % .000 0.298
401 | 16.464 £ .000 | 17.265 + 2.882 100 % .000 1.633
GRID(0.50) 1 | 30.500 £ .000 | 32.230 £5.766 100 % .000 0.315
401 | 30.500 £ .000 | 28.910 £ 6.021 100 % .000 0.937
OMELETTE(0.25) 1 | 14.277 £ .250 3.133 £1.371 4.6+ .017 0.623
4001 | 46.999 £ .000 | 46.072 &£ 1.575 100 % .000 62.202
OMELETTE(0.50) 1 | 12.945 £ .049 9.435 +£1.578 | 30.8 4+ .042 0.622
4001 | 23.000 £.000 | 22.732 4 0.700 100 % .000 29.951
OMELETTE(0.75) 1 | 12.059 £.045 | 13.097 £ 0.419 | 79.7 &£ .005 0.621
18401 | 14.999 £ .000 | 15.017 4+ 0.285 100 % .000 76.337
Table 7: Results for GRID and OMELETTE problems.
Problem BMTCS(8) Omelette Problem with p=0.75
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Figure 4: Curves for instances of BTCS and OMELETTE problems.




