
1 HSP: Heuristic Search Planner1.1 Introductionhsp is a planner based on the ideas of heuristic search.1 Heuristic search al-gorithms perform forward search from an initial state to a goal state using anheuristic function that provides an estimate of the distance to the goal. The8-puzzle is the standard example of heuristic search and is treated in most AItextbooks [9, 10]. The main di�erence between the 8-puzzle and our approachto planning is in the heuristic function. While in domains speci�c tasks likethe 8-puzzle the heuristic function is given (e.g., as the sum of the Manhat-tan distances); in domain independent planning, it has to be derived from thehigh-level representation of the actions and goals.1.2 HeuristicA commonway to derive an heuristic function h(s) for a problemP is by relaxingP into a simpler problem P 0 whose optimal solution can be computed e�ciently.Then, the optimal cost for solving P 0 can be used as an heuristic for solving P[10]. For example, if P is the 8-puzzle, P 0 can be obtained from P by allowingthe tiles to move into any neighboring position. The optimal cost function ofthe relaxed problem is precisely the Manhattan distance heuristic.In Strips planning, we obtain the heuristic values for a planning problem Pby considering the `relaxed' planning problem P 0 in which all delete lists areignored. In other words, P 0 is like P except that delete lists are assumed empty.As a result, actions may add new atoms but not remove existing ones, and asequence of actions solves P 0 when all goal atoms have been generated. As inrecent planners such as satplan [5] and graphplan [1], we assume that actionschemas have been replaced by all their ground instances, and we do not dealwith variables.It is not di�cult to show that for any initial state s, the optimal cost h0(s)to reach a goal in P 0 is a lower bound on the optimal cost h�(s) to reach a goalin the original problem P . We could thus set the heuristic function h(s) to h0(s)and hence obtain an informative and admissible (non-overestimating) heuristic.The problem, however, is that computing h0(s) is still NP-hard.2 We thus setfor an approximation: we set the heuristic values h(s) to an estimate of theoptimal values h0(s) of the relaxed problem. These estimates are computed asfollows.Starting with s0 = s and i = 0 we expand si into a (possibly) larger set ofatoms si+1 by combining the atoms in si with the atoms that can be generatedby the actions whose preconditions hold in si. Every time we apply an actionthat asserts an atom p, we update a measure gs(p) that aims to estimate thedi�culty (number of steps) involved in achieving p from s. For atoms p 2 s,1Blai Bonet and H�ector Ge�ner, Depto. de Computaci�on, Universidad Sim�on Bol��var,Aptdo. 89000, Caracas 1080-A, Venezuela. Email: fbonet,hectorg@usb.ve.2This was �rst pointed out by Bernhard Nebel.1



this measure is initialized to 0, while for all other atoms gs(p) is initialized to1. Then when an action with preconditions C = r1; r2; ::; rn that asserts p isapplied, gs(p) is updated as:gs(p) := min [ g(p) ; 1 + Xi=1;n gs(ri) ]The expansions and updates continue until these measures do not change. Itcan be shown that this procedure computes the functiongs(p) def= 8<: 0 if p 2 si if [minC!p Pri2C gs(ri)] = i � 11 otherwise (1)where C ! p stands for the actions that assert p and have preconditions C =r1; : : : ; rn. Then, if G stands for the goal atoms, the heuristic function h(s) isde�ned as: h(s) def= Xp2G gs(p)All these de�nitions assume, like decompositional planners, that subgoals areindependent. The added value of the heuristic approach is that subgoals areweighted by a `di�culty' measure that allows to regard certain decompositionsas better than others. A result of this assumption, is that the heuristic functionh(s) is not admissible. On the other hand, it is often very informative and canbe computed reasonably fast.1.3 AlgorithmThe heuristic function de�ned above allows us to deal with any Strips planningproblem as a problem of heuristic search. This means we could do planning usingalgorithms such as a�. The problems with a�, however, are well known [7]. Onthe one hand it may take exponential space; on the other, it may proceed tooslowly towards the goal. An alternative that avoids these problems is weighteda� where the evaluation function is modi�ed to f(s) = (1�w) � g(s) +w � h(s),where w is a real parameter, normally between 1=2 and 1 (see also [4]). Aneven simpler alternative is greedy or hill-climbing search, where the best nodeis expanded and all other nodes are discarded (ties are broken randomly). Thegreedy search works well in the majority of the planning problems we haveconsidered, and in most cases yields solutions of high-quality (optimal or nearoptimal) very fast (in a few seconds), even in problems that are very large (suchthe logistic problems). Sometimes, however, it gets stuck in local minima. Insuch cases, it's often convenient to proceed with the search until a number ofsuch impasses has been encountered, restarting the search if needed a givennumber of times. The algorithm used in the competition is a variation of thisidea. 2



1.4 Implementationhsp is implemented in C. Likewise, a preprocessor converts any Strips problemin pddl into a C program that is then compiled, linked, assembled and ran.This usually means a time overhead in the order of a second or two in smallplanning problems but pays o� in larger ones.1.5 ResultsIn the competition, hsp did best in the number of problems solved. It solved91 problems of out of a total of 165: almost 20 problems more than the otherplanners. On the other hand, hsp did worst in terms of time. While on average ittook less than 10 seconds to solve each problem, it was considerably slower thanthe other planners. At the same time, while the other planners produce plansthat are guaranteed to be optimal in terms of the number of time slices, hspo�ers no such guarantees. In some cases, however, hsp generated the shortestsequential plans, and in most other cases, the generated plans were close (10%)to the shortest plans found.1.6 Related Workhsp is based on the planner reported in [2]. Such a planner, called asp, uses thesame heuristic function but a di�erent search algorithm based on Korf's lrta�[6]. It was focused on closed-loop planning and the use of a more expressiveaction language that speeds up the algorithm.An independent proposal that also formulates planning as heuristic search isMcDermott's [8]. The proposed system, unpop, uses a more e�cient method forobtaining heuristic estimates (the bulk of the computation is shared by all thechildren of the same node) and does not require action schemas to be grounded.Yet the resulting heuristic estimates are not as informative, and the range ofproblems that can be solved and the quality of the solutions that are found donot appear to be as good as those obtained by hsp.1.7 Current WorkSince the competition, we have reimplemented the code for computing theheuristic values. The resulting version of hsp runs several times faster andis available at http://www.ldc.usb.ve/�hector. We have also extended theideas in [2] for planning in domains with probabilistic actions and noisy sensorsas reported in [3].References[1] A. Blum and M. Furst. Fast planning through planning graph analysis. InProceedings of IJCAI-95, Montreal, Canada, 1995.3
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