1 HSP: Heuristic Search Planner

1.1 Introduction

HSP is a planner based on the ideas of heuristic search.! Heuristic search al-
gorithms perform forward search from an initial state to a goal state using an
heuristic function that provides an estimate of the distance to the goal. The
8-puzzle is the standard example of heuristic search and is treated in most Al
textbooks [9, 10]. The main difference between the 8-puzzle and our approach
to planning is in the heuristic function. While in domains specific tasks like
the 8-puzzle the heuristic function is given (e.g., as the sum of the Manhat-
tan distances); in domain independent planning, it has to be derived from the
high-level representation of the actions and goals.

1.2 Heuristic

A common way to derive an heuristic function h(s) for a problem P is by relaxing
P into a simpler problem P’ whose optimal solution can be computed efficiently.
Then, the optimal cost for solving P’ can be used as an heuristic for solving P
[10]. For example, if P is the 8-puzzle, P’ can be obtained from P by allowing
the tiles to move into any neighboring position. The optimal cost function of
the relaxed problem is precisely the Manhattan distance heuristic.

In Strips planning, we obtain the heuristic values for a planning problem P
by considering the ‘relaxed’ planning problem P’ in which all delete lists are
ignored. In other words, P’ is like P except that delete lists are assumed empty.
As a result, actions may add new atoms but not remove existing ones, and a
sequence of actions solves P’ when all goal atoms have been generated. As in
recent planners such as SATPLAN [5] and GRAPHPLAN [1] we assume that action
schemas have been replaced by all their ground instances, and we do not deal
with variables.

It is not difficult to show that for any initial state s, the optimal cost h'(s)
to reach a goal in P’ is a lower bound on the optimal cost h*(s) to reach a goal
in the original problem P. We could thus set the heuristic function A(s) to h'(s)
and hence obtain an informative and admissible (non-overestimating) heuristic.
The problem, however, is that computing »/(s) is still NP-hard.? We thus set
for an approximation: we set the heuristic values h(s) to an estimate of the
optimal values h'(s) of the relaxed problem. These estimates are computed as
follows.

Starting with sp = s and i = 0 we expand s; into a (possibly) larger set of
atoms s;4+1 by combining the atoms in s; with the atoms that can be generated
by the actions whose preconditions hold in s,. Every time we apply an action
that asserts an atom p, we update a measure gs(p) that aims to estimate the
difficulty (number of steps) involved in achieving p from s. For atoms p € s,
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this measure is initialized to 0, while for all other atoms g,(p) is initialized to
oc. Then when an action with preconditions C' = r1,7s.,..,7, that asserts p is
applied, gs(p) is updated as:

gs(p) ;= min [g(p) , 14 > g(ri) ]
i=1.n
The expansions and updates continue until these measures do not change. It
can be shown that this procedure computes the function
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where C' — p stands for the actions that assert p and have preconditions C' =

T1,....7n. Then, if G stands for the goal atoms, the heuristic function h(s) is
defined as:
h(s) =" gulp)
peEG

All these definitions assume, like decompositional planners. that subgoals are
independent. The added value of the heuristic approach is that subgoals are
weighted by a ‘difficulty’ measure that allows to regard certain decompositions
as better than others. A result of this assumption, is that the heuristic function
h(s) is not admissible. On the other hand, it is often very informative and can
be computed reasonably fast.

1.3 Algorithm

The heuristic function defined above allows us to deal with any Strips planning
problem as a problem of heuristic search. This means we could do planning using
algorithms such as A*. The problems with A*, however, are well known [7]. On
the one hand it may take exponential space; on the other, it may proceed too
slowly towards the goal. An alternative that avoids these problems is weighted
A* where the evaluation function is modified to f(s) = (1 —w) - g(s) + w - h(s),
where w is a real parameter, normally between 1/2 and 1 (see also [4]). An
even simpler alternative is greedy or hill-climbing search, where the best node
is expanded and all other nodes are discarded (ties are broken randomly). The
greedy search works well in the majority of the planning problems we have
considered, and in most cases yields solutions of high-quality (optimal or near
optimal) very fast (in a few seconds), even in problems that are very large (such
the logistic problems). Sometimes, however, it gets stuck in local minima. In
such cases, it’s often convenient to proceed with the search until a number of
such impasses has been encountered, restarting the search if needed a given
number of times. The algorithm used in the competition is a variation of this
idea.



1.4 Implementation

HSP is implemented in C. Likewise, a preprocessor converts any Strips problem
in PDDL into a C program that is then compiled, linked, assembled and ran.
This usually means a time overhead in the order of a second or two in small
planning problems but pays off in larger ones.

1.5 Results

In the competition, HSP did best in the number of problems solved. It solved
91 problems of out of a total of 165: almost 20 problems more than the other
planners. On the other hand, HSP did worst in terms of time. While on average it
took less than 10 seconds to solve each problem, it was considerably slower than
the other planners. At the same time, while the other planners produce plans
that are guaranteed to be optimal in terms of the number of time slices, HSP
offers no such guarantees. In some cases, however, HSP generated the shortest
sequential plans, and in most other cases, the generated plans were close (10%)
to the shortest plans found.

1.6 Related Work

HSP is based on the planner reported in [2]. Such a planner, called ASP, uses the
same heuristic function but a different search algorithm based on Korf’s LRTA™
[6]. It was focused on closed-loop planning and the use of a more expressive
action language that speeds up the algorithm.

An independent proposal that also formulates planning as heuristic search is
McDermott’s [8]. The proposed system, UNPOP, uses a more efficient method for
obtaining heuristic estimates (the bulk of the computation is shared by all the
children of the same node) and does not require action schemas to be grounded.
Yet the resulting heuristic estimates are not as informative, and the range of
problems that can be solved and the quality of the solutions that are found do
not, appear to be as good as those obtained by HSP.

1.7 Current Work

Since the competition, we have reimplemented the code for computing the
heuristic values. The resulting version of HSP runs several times faster and
is available at http://www.ldc.usb.ve/~hector. We have also extended the
ideas in [2] for planning in domains with probabilistic actions and noisy sensors
as reported in [3].
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