High-Level Planning and Control with
Incomplete Information Using POMDP’s

Héctor Geffner* and Blai Bonet
Departamento de Computacién
Universidad Simoén Bolivar
Aptdo. 89000, Caracas 1080-A, Venezuela
{he(:t()nb()net}@usb.ve

Abstract

We develop an approach to planning with incomplete
information that is based on three elements:

1. a high-level language for describing the effects of
actions on both the world and the agent’s beliefs
that we call POMDP theories

b

a semantics that translates such theories into actual
POMDPs

3. a real time dynamic programming algorithm that
produces controllers from such POMDPs.

We show that the resulting approach is not only clean
and general but that is practical as well. We have
implemented a shell that accepts POMDP theories and
produces controllers, and have tested it over a num-
ber of problems. In this paper we present the main
elements of the approach and report results for the
‘omelette problem’ where the resulting controller ex-
hibits a better performance than the handcrafted con-
troller.

Introduction

Consider an agent that has a large supply of eggs
and whose goal is to get three good eggs and no bad
ones into one of two bowls. The eggs can be either
good or bad, and at any time the agent can find out
whether a bowl contains a bad egg by inspecting it
(Levesque 1996). The task is to devise a controller
for achieving the goal. This is a typical problem of
planning with incomplete information, a situation that
is very common for agents that must act in the real
world (Moore 1985). In Al there have been two ap-
proaches to this problem. On the one hand, pro-
posals focused on extensions of Strips planning lan-
guages and algorithms; (e.g., (Etzioni et al. 1992;
Collins & Pryor 1995)). on the other, proposals focused
on formalizations of actions, knowledge and their in-
teraction (e.g., (Moore 1985; Levesque 1996)). In gen-
eral the two approaches haven’t come together yet, and
thus planners with incomplete information that both
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work and have a solid theoretical foundation are not
common.

In this paper we attack this problem from a dif-
ferent perspective. We view problems of planning
with incomplete information as Partially Observable
Markov Decision Problems or POMDPs (Sondik 1971;
Cassandra, Kaebling, & Littman 1994). poMDPs are
very general mathematical models of sequential deci-
sions problems that acommodate actions with uncer-
tain effects and noisy sensors. The solutions of POMDPS
are closed-loop controllers that map beliefs into ac-
tions.

While from a mathematical point of view, problems
of planning with incomplete information are POMDPs,
approaching these problems from the perspective of
POMDPs can be practical only if:

1. high-level descriptions of the effects of actions on

both the world and the agent’s beliefs can be effec-
tively translated into POMDPs, and

2. the resulting POMDPs can be effectively solved

Problem 2 has been a main impediment in the use
of poMDPs in both Engineering and Al (Cassandra,
Kaebling, & Littman 1995). Recently, however, new
methods have been proposed, and some of the heuris-
tic methods like the RTDP-BEL algorithm in (Geffner
& Bonet 1998) have been shown to produce good solu-
tions to large problems in a reasonable amount of time.
Here we use the RTDP-BEL algorithm, which is a learn-
ing search algorithm (Korf 1990) based on the ideas
of real time dynamic programming (Barto, Bradtke, &
Singh 1995).

Problem 1 is also challenging as the language of
POMDPs lacks the structure for representing interest-
ing planning problems in a convenient way. We thus
formulate a high-level language for suitably modeling
complex planning problems with incomplete informa-
tion, and a semantics for articulating the meaning of
such language in terms of POMDPs. For this we make
use of insights gained from the study of theories of
actions and change (e.g., (Gelfond & Lifschitz 1993;
Reiter 1991; Sandewal 1991)).

The result of this approach is a simple and general
modeling framework for problems of planning with in-



complete information that we believe is also practical.
We have actually implemented a shell that accepts suit-
able high level description of decision problems, com-
piles them into POMDPs and computes the resulting
controller. We have tested this shell over a number
of problems and have found that building the models
and finding the solutions can be done in a very effective
way. Here we report results for the ‘omelette problem’
(Levesque 1996) showing how the problem is modeled
and solved.

The rest of the paper is organized as follows. We
start with a brief overview of POMDPs and the algo-
rithm used to solve them (Section 2). Then we intro-
duce the language for expressing the effects of actions
on the world (Section 3), and the extensions needed
to express the effects of actions on the agent’s beliefs
(Section 4). Theories expressed in the resulting lan-
guage determine unique POMDPs. The framework is
then applied to the ‘omelette problem’ where suitable
controllers are derived (Section 5).

Background

POMDPs are a generalization of a model of sequential
decision making formulated by Bellman in the 50’s
called Markov Decision Processes or MDPs, in which
the state of the environment is assumed known (Bell-
man 1957). MDPs provide the basis for understanding
POMDPs, thus we turn to them first. For lack of space
we just consider the subclass of MDPs that we are going
to use. For general treatments, see (Puterman 1994;
Bertsekas & Tsitsiklis 1996); for an Al perspective, see
(Boutilier, Dean, & Hanks 1995; Barto, Bradtke, &
Singh 1995).

MDPsS

The type of MDPs that we consider is a simple gen-
eralization of the standard search model used in Al
in which actions can have probabilistic effects. Goal
MDPs, as we call them, are thus characterized by:

a state space §

initial and goal situations given by sets of states

.
.
e sets A(s) C A of actions applicable in each state s
e costs ¢(a, s) of performing action @ in s

e transition probabilities P,(s'|s) of ending up in state

s’ after doing action a € A(s) in state s

Since the effects of actions are observable but not pre-
dictable, the solution of an MDP is not an action se-
quence (that would ignore observations) but a func-
tion mapping states s into actions a € A(s). Such
a function is called a policy, and its effect is to as-
sign a probability to each state trajectory. The ez-
pected cost of a policy given an initial state is the
weighted average of the costs of all the state trajecto-
ries starting in that state times their probability. The
optimal policies minimize such expected costs from
any state in the initial situation. In goal MDPs, goal

states are assumed to be absorbing in the sense that
they are terminal and involve zero costs. All other
costs are assumed to be positive. General conditions
for the existence of optimal policies and algorithms
for finding them can be found in (Puterman 1994;
Bertsekas & Tsitsiklis 1996).

POMDPs

Partially Observable MDPs generalize MDPs allowing
agents to have incomplete information about the state
(Sondik 1971; Cassandra, Kaebling, & Littman 1994;
Russell & Norvig 1994). Thus besides the sets of ac-
tions and states, the initial and goal situations, and the
probability and cost functions, a POMDP also involves
prior beliefs in the form of a probability distribution
over S and an sensor model in the form of a set O of
possible observations and probabilities P,(o|s) of ob-
serving o € O in state s after having done the action

The techniques above are not directly applicable to
POMDPs because while they do not presume that the
agent can predict the next state, they do assume that
he can recognize the next state once he gets there. In
POMDPs this is no longer true, as the agent has to
estimate the state probabilities from the information
provided by the sensors.

The vector of probabilities b(s) estimated for each
of the states s € § at any one point is called the belief
or information state of the agent. Interestingly, while
the effects of actions on the states cannot be predicted,
the effects of actions on belief states can. Indeed, the
new belief state b, that results from having done ac-
tion a in the belief state b, and the new belief state by,
that results from having done @ in b and then having
observed o are given by the following equations (Cas-
sandra, Kaebling, & Littman 1994):

bo(s) = ZP(,(S|S')Z)(5') (1)

ba(o) = Zpa(0|5)ba(5) (2)
() = Palols)buls)/bulo) Ehu(0) 20 (3)

As aresult, the incompletely observable problem of go-
ing from an initial state to a goal state can be trans-
formed into the completely observable problem of going
from an initial belief state to a final belief state at a
minimumn expected cost. This problem corresponds to
a goal MDP in which states are replaced by belief states,
and the effects of actions are given by Equations 1

belaos. In such belief MDP, the cost of an action a in
bis c(a,b) = 33 cgc(s,a)b(s), the set of actions A(b)
available in b is the intersection of the sets A(s) for
b(s) > 0, and the goal situation is given by the belief
states bgp such that bp(s) = 0 for all non-goal states s.
Similarly, we assume a single initial belief state by such
that bo(s) = 0 for all states s not in the initial situa-



tion. Using the terminology of the logics of knowledge.
these last three conditions mean that

1. the truth of action preconditions must be known
2. the achievement of the goal must be known as well

3. the set of feasible initial states is known

A solution to the resulting MDP is like the solu-
tion of any MDP: a policy mapping (belief) states b
into actions a € A(b). An optimal solution is a pol-
icy that given the initial belief state by minimizes the
expected cost to the goals bp. The conditions un-
der which such policies exist and the algorithms for
finding them are complex because belief MDPs involve
infinite state-spaces. Indeed the known methods for
solving belief MDPs optimally (e.g., (Cassandra, Kae-
bling, & Littman 1994; Cassandra, Littman, & Zhang
1997)) can only solve very small instances (Cassandra,
Kaebling, & Littman 1995). Recently, however, new
methods have been proposed, and some of the heuris-
tic methods like the RTDP-BEL algorithm in (Geftner
& Bonet 1998) have been shown to produce good solu-
tions to large problems in a reasonable amount of time.
Here we use the RTDP-BEL algorithm, which is a learn-
ing search algorithm (Korf 1990) based on the ideas
of real time dynamic programming (Barto, Bradtke, &
Singh 1995).

RTDP-BEL is basically a hill-climbing algorithm that
from any state b searches for the goal states bp using
estimates V (b) of the expected costs (Figure 1). The
main difference with standard hill-climbing is that es-
timates V(b) are updated dynamically. Initially their
value is set to h(b), where h is a suitable heuristic func-
tion, and every time the state b is visited the value V' (b)
is updated to make it consistent with the values of its
successor states.

The heuristic function h,,qp, used in this paper is
obtained as the optimal value function of a relaxed
problem in which actions are assumed to yield com-
plete information. If V* is the optimal value function
of the underlying MDP, then

hmdp(b) déf Z V*(S) ’ b(S) (4)

sES

For the implementation of RTDP-BEL, the estimates
V(b) are stored in a hash table that is initially empty.
Then when the value V(b') of a state b’ that is not in
the table is needed, an entry V(b') = h(b’) is created.
Asin (Geffner & Bonet 1998), our implementation ac-
cepts an integer resolution parameter r > 0 such that
the probabilities b(s) are discretized into r discrete lev-
els before accessing the table. Best results have been
obtained for values of r in the interval [10, 100]. Higher
values often generate too many entries in the table,
while lower values often collapse the values of belief
states that should be treated differently. In the exper-
iments below we use r = 20.

1. Evaluate cach action a in b as

Q(b,a) = c(b,a) + Z ba(0)V (D7)

0€0

initializing V(b9) to h(b9) when b not in table
Select action a that minimizes Q(b,a) breaking
ties randomly

Update V(b) to Q(b.a)

Apply action a

Observe o

Compute b

Exit if goal observed, else set b to b and go to 1

DO

O oUk

Figure 1: RTDP-BEL

POMDP theories

Most problems of planning with incomplete informa-
tion can be modeled as POMDPs yet actually building
the POMDP model for a particular application may be
a very difficult task. For example, a simple ‘blocks
world’ planning problem with 10 blocks involves more
than a million states. Even if all actions are assumed
deterministic and hence all transition probabilities are
either zero or one, explicitly providing the states s’
such that P,(s'|s) # 0 for each action a and state s
is unfeasible. When the actions are probabilistic, the
situation is even more complex.

This problem has been approached in Al through
the use of convenient, high-level action description lan-
guages of which Strips (Fikes & Nilsson 1971) is the
most common example. Since the 70’s many exten-
sions and variations of the Strips language have been
developed and to a certain extent our language is no
exception. Our POMDP theories differ from Strips
mainly in their use of functional as opposed to rela-
tional fluents, and their ability to accommodate prob-
abilities. On the other hand, POMDP theories have
many features in common with logical theories of ac-
tion (Gelfond & Lifschitz 1993; Reiter 1991; Sande-
wal 1991)), probabilistic extensions of Strips (Kush-
merick, Hanks, & Weld 1995) and temporal exten-
sions of Bayesian Networks (Dean & Kanazawa 1989;
Russell & Norvig 1994). We go to the trouble of
introducing another representation language because
none of these languages is suitable for specifying rich
POMDPS. For example, in none of these languages it
is possible to express in a convenient way that the ef-
fect of an action is to increment the value of a certain
variable with certain probability, or to make the value
of certain term known. In the language below this is
simple.

State Language: Syntax

In order to express what is true in a state we appeal to a
simplified first-order language that involves constant,
function and predicate symbols but does not involve
variables and quantification. We call this language the



state language and denote it by L. All symbols in
L have types and the way symbols get combined into
terms, atoms and formulas is standard except that, as
in any strongly typed language, the types of the sym-
bols are taken into account. That is, if f,g is a func-
tion symbol with type o3, meaning that f,s denotes
a function that takes objects from a domain D, and
maps them into objects in the domain Dg, then fug(%)
is a legal term when ¢ is a term of type a. The type
of fop(t) is . Similarly, p.(t) is an atom when p is
a predicate symbol of type a and t is a term of the
same type. For simplicity, we assume in the presen-
tation that the arity of function and predicate symbols
is one unless otherwise stated. All definitions carry to
the general case by interpreting ¢, a and D, as tuples
of terms, types and domains. For uniformity we also
treat constant symbols as function symbols of arity 0.
So unless otherwise stated, terms of the form f(#) in-
clude the constant symbols.

Types and domains can be either primitive or de-
fined. When « is a primitive type, we assume that the
domain of interpretation D,, is known. On the other
hand, for non-primitive types 3, the domain Dg has to
be specified. Such domains are specified by providing
the unique names of the objects in Dg. It is thus as-
sumed that such defined domains contain a finite num-
ber of objects, each with its own name. For example
in a block planning scenario. the domain Dprocg can
be defined as the set {blocky,blocks, ... blocky,}.

Symbols are also divided into those that have a fixed
and known denotation in all interpretations (e.g., sym-
bols like *3’, ‘4, *=", ..., and names) and those that
don’t. We call the first, fized symbols,' and the second
fluent symbols.2 The fluent symbols are the symbols
whose denotation (value) can be modified by the effect
of actions and which persist otherwise. For the sake of
simplicity, we assume that all fluent symbols are func-
tion symbols. Constant symbols like temperature can
be captured by fluent symbols of 0-arity, while rela-
tional fluents can be captured by means of fluent sym-
bols of type a8 where (3 is the boolean type.

Finally for reasons that will be apparent later we
assume that all fluent symbols of arity greater than 0
take arguments of defined types only. This will guar-
antee that states can be finitely represented.

Example 1 The first component of a POMDP theory
are the domain and type declarations where all defined
symbols, domains, and types are introduced. They
are used to represent the objects of the target appli-
cation, their attributes, their possible values, etc. For
the ‘omelette problem’ the declarations are:

'They are like the rigid designators in modal logic
(Kripke 1971).

?From a computational point of view, the denotation of
fixed symbols will be normally provided by the underlying
programming language. On the other hand, the denotation
of fluent symbols will result from the actions and rules in
the theory.

Domain: BOWL: small,large

Types: ngood : BOWL — Int
nbad : BOWL w— Int
holding :  Bool
good? : Bool

meaning the there are two defined objects (bowls) with
names small and large, and that each one has two
associated integer attributes: the number of good eggs
it contains and the number of bad eggs. In addition,
there are two boolean features (function symbols of
arity 0) representing whether the agent is holding an
egg, and whether such an egg is good or not.

State Language: Semantics

For a given POMDP theory, a state s is a logical in-
terpretation over the symbols in the theory in which
each symbol z of type a gets a denotation z* € D,,.
The denotation t* and F'* of terms ¢ and formulas F
is obtained from the interpretations of the constant,
function and predicate symbols in the standard way;
e.g., [f(#)]® = f*(#7) for terms f(t), etc.

Variables and State Representation Fixed sym-
bols  have a fixed denotation z* that is independent of
s. For this reason, states s can be represented entirely
by the interpretation of the non-fixed symbols, which
under the assumptions above, are the fluent symbols.
Furthermore, since fluent symbols f take arguments of
defined types only in which each object has a unique
name +d with a fixed denotation, s can be represented
by a finite table of entries of the form f(id) — [f(id)]".
A useful way to understand the terms f(id) for a fluent
symbol f and named arguments +d is as state variables.
From this perspective, the (representation of a) state
is nothing else than an assignment of values to vari-
ables. For example, the state of the theory that con-
tains the declarations in Example 1 will be an assign-
ment of integers to the four ‘variables’ ngood(small),
nbad(small), ngood(large), and nbad(large), and of
booleans to the two ‘variables’ holding and good?. The
state space is the space of all such assignments to the
six variables.

It’s worth emphasizing the distinction between terms
and variables: all variables are terms, but not all
terms are variables. Otherwise, the expressive power
of the language would be lost. For example, in a
‘block’ domain, ‘loc(block;)’ may be a term denoting
the block (()r table) on which block; is sitting, and
‘clear(loc(block;))” may be a term representing the
‘clear’ status of such block (normally false, as block;
is sitting on top). According to the definition above,
the first term is a variable but the second term is not.
The values of all terms, however, can be recovered from
the values of the variables. Indeed, for any term f(t),
[f(t)]® = [f(id)]® for the name id of the object ¢*.

Transition Language: Syntax

While the state language allows us to say what is true
in a particular state, the transition language allows us



to say how states change. This is specified by means
of action descriptions.

An action is an expression of the form p(id) where
p is an uninterpreted action symbol disjoint from the
symbols in L, and id is a (tuple) of name(s). Each
action symbol has a type & which indicates the required
type of its arguments+d. For the ‘omelette problem’ for
example, pour(small,large) will be an action taking a
pair of arguments of type BOW L.

The action description associated with an action o
specifies its costs, its preconditions, its effects on the
world, and its effects on the agent’s beliefs. In this
section we focus on the syntax and semantics of the
first three components.

The preconditions of an action a are represented by a
set of formulas P, meaning that a is applicable only in
the states that satisfy the formulas in Pg; i.e. a € A(s)
iff s satisfies P,,.

The costs c(a,s) associated with a are represented
by a sequence C, of rules of the form C' — w, where
C is a state formula and w is a positive real number.
The cost ¢(a, s) is the value of of the consequent of the
first rule whose antecedent C' is true in s. If there is
no such rule, as in the model below of the ‘omelette
problem’, then c¢(a, s) is assumed to be 1.

The effects of an action a are specified by means of a
sequence of action rules R,,. Deterministic action rules
have the form

C— f(f) =1 (5)
where C'is a formula, f(#) and ¢; are terms of the same
type and f is a fluent symbol. The intuitive meaning
of such rule, is that an effect of @ in states s that satisfy
the condition C' is to set the variable f(id) to t5, where
1d 18 the name of the object 7.

Probabilistic action rules differ from deterministic
action rules in that the term #; in (5) is replaced by a
finite list L = (t1 p1it2 p2;...,tn Pn) of terms ¢; and
probabilities p; that add up to one. We call such a
list a lottery and its type is the type of the terms £,
which must all coincide. For a lottery L. the form of a
probabilistic rule is:

(o= f(f) =L (6)

where C' is a formula, f(¢) is a term of the same type
as L, and f is a fluent symbol. In principle, the mean-
ing of such rule is that an effect of a in states s that
satisfy the condition C' is to set the probability of the
variable f(id) taking the value t3 as p;, where id is the
name of the object t°. This interpretation, however,
while basically correct misses the fact that two differ-
ent terms ¢; and 7; may have identical values 1§ and
t7, and hence that their probabilities must be added
up. The precise meaning of probabilistic rules is pro-
vided below. For simplicity, since a deterministic rule
C — f(t) := t1 can be expressed as a probabilistic rule
of the form C' — f(t) := (#1 1), we'll take the former
as an abbreviation of the latter. We also abbreviate
rules true — f(t):=... as f(t):=....

As a further abbreviation, we often define the pre-
condition and effects over action schemas. An action
schema is an expression of the form p(z), where p is
an action symbol and xz is a meta-variable. The pre-
conditions and effects of action schemas can involve
the meta-variable x and other meta-variables as well.
Such descriptions are abbreviations for the finite set
of actions a, preconditions P, and rules R, that re-
sult from the action, precondition and effect schemas,
by consistently replacing the meta-variables by all the
names of the corresponding types.

Example 2 As an illustration of the language, the ef-
fects of the action move_up that moves the blank up
in the 8-puzzle can be written as:
p:=up(p) . tile(up(p)) =0, tile(p) := tile(up(p))

where p tracks the position 1,...,9 of the blank, tile(s)
tracks the identity of the tile at position ¢, and up(z) is
a fized function symbol that denotes an actual function
that given 7 € [0... 9] returns the position j € [0...9]
above it. Such function will normally be supplied by a
program.

Transition Language: Semantics
Let us define the probability distribution P} induced

by a lottery L = (¢1 p1;...;tn Pn) on a variable x in
state s as:

s L(x=1v) o Z pi  for L= (t; pi)i=i,mn  (7)

iti=w
i

The meaning of (6) can then be expressed as saying
that the effect of the action a in s on the variable x =
f(id) obtained by replacing ¢ by the name id of ¢°, is to
set its probability to P} ;. More precisely, if we denote
the probability of variable x in the states that follow
the action a in s as P, then when (6) is the first rule

in R, whose antecedent is true in s and x is the name
of t°
X def yx
Ps,a(xz”) = PS.L(X:U) (8)
On the other hand. when there is no rule in R, whose
antecedent is true in s, X persists:
. . S
def{ 1 ifv=x 9)

X —_— —
Ps.a(x =v) = 0 otherwise

Transition Probabilities

If X is the set of all the variables x = f(4d) determined
by the theory, then the transition probabilities P,(s'|s)
for the POMDP are defined as:

Pu(s']s) & ] Pratx=x") (10)

xeX

where the terms on the right hand side are defined in
(8) and (9). This decomposition assumes that variables
in ¢’ are mutually independent given the previous state
s and the action a performed. This is a reasonable
assumption in the absence of causal or ramification
rules. For such extensions, see (Bonet & Geffner 1998).



Example 3 Let us abbreviate the formulas ¢ = true
and t = false for terms ¢t of type boolean as ¢ and
=t respectively. Then the action descriptions for the
‘omelette problem’ can be written as:

Action: grab-egg()
Precond: —holding
Effects: holding := true
good? := (true 0.5 ; false 0.5)
Action: break-egg(bowl : BOWL)
Precond: holding A (ngood(bowl) + nbad(bowl)) < 4
Effects: holding := false
good? — ngood(bowl) := ngood(bowl) + 1
—good? — nbad(bowl) := nbad(bowl) + 1
Action: pour(bl : BOWL,b2: BOWL)
Precond: (b1 # b2) A —holding
ngood(bl) + nbad(bl) 4+ ngood(b2) + nbad(b2) < 4
Effects: ngood(bl) := 0 , nbad(bl) :=0
ngood(b2) 1= ngood(b2) + ngood(bl)
nbad(b2) := nbad(b2) + nbad(bl)
Action: clean(bowl:BOWL)
Precond: —holding
Effects: ngood(bowl) := 0 , nbad(bowl) := 0

There are no cost rules, thus, costs ¢(a,s) are as-
sumed to be 1. The description for the action inspect
is given below.

Initial and Goal Situations

In POMDP theories, the initial and goal situations are
given by sets of formulas. The effective state-space of
the POMDP is given by the set of states that satisty
the formulas in the initial situation or are reachable
from them with some probability. The initial situa-
tion can contain constraints such that a block cannot
sit on top of itself (e.g.. loc(block) # block) or par-
ticular observations about the problem instance (e.g.,
color(blocky) = color(blocks)).
For the omelette problem, the initial and goal situ-

ations are:

Init: ngood(small) = 0 ; nbad(srall) = 0

ngood(large) = 0,; nbad(large) = 0
Goal: ngood(large) = 3 ; nbad(large) =0

Note that for this problem the state-space is infinite
while the effective state space is finite due to the con-
straints on the initial states and transitions (the pre-
conditions preclude any bowl from containing more
than 4 eggs). We impose this condition on all prob-
lems, and expect the effective state space to be always
finite.

Observations

The poMDP theories presented so far completely de-
scribe the underlying MpDP. For this reason we call
them MDP theories. In order to express POMDPs such
theories need to be extended to characterize a prior be-
lief state P(s) and the observation model P,(o|s). For
this extension, we make some simplifications:

1. We assume basically a uniform prior distribution.
More precisely, the information about the initial sit-
uation [ is assumed to be known, and the prior be-
lief state b is defined as b(s) = 0 if s does not satisfy

I and b(s) = 1/n otherwise, where n is the num-
ber of states that satisfy I (that must be finite from
our assumptions about the size of the effective state
space).

2. We assume no noise in the observations; i.e., sen-

sors may not provide the agent with complete in-
formation but whatever information they provide is
accurate. Formally, P,(o|s) is either zero or one.

In addition to these simplifications, we add a gener-
alization that is very convenient for modeling even if
strictly speaking does not take us beyond the expres-
sive power of POMDPs.

In POMDPs it assumed that there is a single variable,
that we call O, whose identity and domains are known
a priori, and whose value o at each time point is ob-
served.> Although the values o cannot be predicted
in general, the variable O that is going to be observed
is predictable and indeed it is always the same. We
depart from this assumption and assume that the set
of expressions O(s,a) that are going to be observable
in state s after having done action a is predictable but
no fived; O(s,a) will actually be a function of both s
and a. Thus, for example, we will be able to say that
if you do the action lookaround when you are near
doory, then the color of door; will be observable, and
similarly, that whether the door is locked or not will
be obsevable after moving the handle.

For this purpose, action descriptions are extended to
include, besides their preconditions, effects and costs, a
fourth component in the form of a set K, of observation
or knowledge gathering rules (Scherl & Levesque 1993)
of the form:

C — obs(expr) (11)

where C' is a formula, the expression expr is either a
symbol, a term or a formula, and obs is a special sym-
bol. The meaning of such rule is that the denotation
(value) of expr will be be observable (known) in all
states s that satisfy the condition C' after having done
the action a.

Thus a situation as the one described above can
be modeled by including in K, the observation rule
schema

near(door) — obs(color(door))

We use the notation O(s,a) to stand for all the ex-
pressions that are observable in s after doing action a;
ie.,

def

O(s,a) = {z|C — obs(z) € K, and C° = true}
(12)
The observations o in the states s after an action
a are thus the mappings that assign each expression
z € O(s,a) the denotation z° = z°. The probabili-
ties Py(o|s’) of the sensor model are then defined as 1

*In general, O can represent tuples of variables and o
corresponding tuples of values.



when z¢' = z° for all z € O(s',a), and 0 otherwise.
Clearly, when the observations provide only partial in-
formation about the state, many states can give rise to
the same observation. That is, an agent that ends up
in the state s after doing an action @ may get and ob-
servation o that won’t allow him to distinguish s from
another state s’ if P,(o|s’) = Py(o|s).

Example 4 The roMmDP theory for the ‘omelette
problem’ is completed by the following descriptions,
where “x’ stands for all actions:

inspect(bowl : BOWL)
obs(nbad(bowl) > 0)

Action:
Effect:

Action: x
Effect:  obs(holding)

Namely, inspect takes a bowl as argument and reveals
whether it contains a bad egg or not, and holding is
known after any action and state.

Experiments

We have developed a shell that accepts POMDP theo-
ries, compiles them into POMDPs and solves them using
the RTDP-BEL algorithm. We have modeled and solved
anumber of planning and control problems in this shell
(Bonet & Geffner 1998) and here we focus on the re-
sults obtained for the ‘omelette problem’ (Levesque
1996) as described above. The theory is first compiled
into a POMDP, an operation that is fast and takes a few
seconds. The resulting POMDP has an effective state
space of 356 states, 11 actions and 6 observations.

The curves in Fig. 2 show the average cost to reach
the goal obtained by applying RTDP-BEL controllers to
anumber of simulations of the ‘omelette world’. Action
costs are all equal to 1 and thus the cost to the goal is
the number of actions performed. The controller is the
greedy policy that selects the best action according to
the values stored in the table.*

We computed 10 runs of RTDP-BEL, each involving
2400 trials. In each run, we stopped RTDP-BEL after
¢ trials, for + = 0,50,100,...,2400, and applied the
greedy controller with the values obtained at that point
to 200 simulations of the ‘omelette world’. Each point
in the curve thus represents an average taken over 2000
simulations. A cutoff of 100 steps was used, meaning
that trials were stopped after that number of steps.
The cost to the goal in those trials was assumed to be
100. The belief resolution parameter r used was 20,
meaning that all probabilities were discretized into 20
discrete levels. The results are not sensitive to either
the value of the cutoff or » (although neither one should
be made too small).

Figure 2(a) compares the performance of the
RTDP-BEL controller vs. the handcrafted controller
(Levesque 1996) for the case in which the probability

*Actually the controller is the RTDP-BEL algorithm in
Fig. 1 without the updates.

of an egg being good is 0.5. The performance of the
RTDP-BEL controller is poor over the first 1000 trials
but improves until it converges after 1500 trials. The
average time to compute 2000 trials is 192.4 seconds
(around 3 minutes). At that point there were 2100 en-
tries in the hash table on average. A reason for the
poor performance of the algorithm over the first thou-
sand trials is that the heuristic h,,q4, obtained from the
underlying MDP (Section 2) assumes complete informa-
tion about the next state and hence does not find the
inspect action useful. Yet, inspect is a crucial action
in this problem, and gradually, the algorithm ‘learns’
that. Interestingly, after the first 1500 trials the curve
for the RTDP-BEL controller lies consistently below the
curve for the handcrafted controller, meaning that its
performance is better.> This difference in performance
is actually more pronounced when the probability of
an egg being good changes from 0.5 to a high value
such as 0.85 (Fig. 2(b)). While in the first case, the
difference in performance between the two controllers
is 4%, in the second case, the difference rises to 14%.

Summary and Discussion

We have formulated a theoretical approach for mod-
eling and solving planning and control problems with
incomplete information in which high level descriptions
of actions are compiled into POMDPs and solved by a
RTDP algorithm. We have also implemented a shell
that supports this approach and given a POMDP the-
ory produces a controller. We have shown how this
approach applies to the ‘omelette problem’, a problem
whose solution in more traditional approaches would
involve the construction of a contingent plan with a
loop. In (Bonet & Geffner 1998) this framework is ex-
tended to accommodate ramification rules, and vari-
ables that can take sets of values. The first extension
allows the representation of noisy sensors and depen-
dencies among variables; the second, the representa-
tion of the effects of actions like listing a directory.

While the ingredients that make this approach pos-
sible are well known, namely, PoMDPs (Sondik 1971;
Cassandra, Kaebling, & Littman 1994), RTDP algo-
rithms (Barto, Bradtke, & Singh 1995) and action
representation languages (Gelfond & Lifschitz 1993;
Reiter 1991; Sandewal 1991), we are not aware of
other approaches capable of modeling and solving these
problems in an effective way. Some of the features
that distinguish this framework from related decision-
theoretic approaches to planning such as (Kushmerick,
Hanks, & Weld 1995; Draper, Hanks, & Weld 1994;
Boutilier, Dean, & Hanks 1995) are:

e a non-propositional action description language

e a language for observations that allows us to say

®This is because the RIDP-BEL controller uses the large
bowl as a ‘buffer’ when it’s empty. In that way, half of the
time it saves a step over the handcrafted controller.
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Figure 2: RTDP-BEL vs. Handcrafted Controller: p = 0.5 (a), p = 0.85 (b)

which expressions (either symbols, terms or formu-
las) are going to be observable and when,

e an effective algorithm that produces controllers for
non-trivial problems with incomplete information

A weakness of this approach lies in the complexity of
the RTDP-BEL algorithm that while being able to han-
dle medium-sized problems well, does not always scale
up to similar problems of bigger size. For instance,
if the goal in the ‘omelette problem’ is changed to 50
good eggs in the large bowl in place of 3, the resulting
model becomes intractable as the effective state space
grows to more than 107 states. This doesn’t seem rea-
sonable and it should be possible to avoid the combina-
torial explosion in such cases. The ideas of finding con-
cise representation of the value and policy functions are
relevant to this problem (Boutilier, Dearden, & Gold-
szmidt 1995; Boutilier, Dean, & Hanks 1995), as well
as some ideas we are working on that have to do with
the representation of belief states and the mechanisms
for belief updates.
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