
High-Level Planning and Control withIncomplete Information Using POMDP'sH�ector Ge�ner� and Blai BonetDepartamento de Computaci�onUniversidad Sim�on Bol��varAptdo. 89000, Caracas 1080-A, Venezuelafhector,bonetg@usb.veAbstractWe develop an approach to planning with incompleteinformation that is based on three elements:1. a high-level language for describing the e�ects ofactions on both the world and the agent's beliefsthat we call pomdp theories2. a semantics that translates such theories into actualpomdps3. a real time dynamic programming algorithm thatproduces controllers from such pomdps.We show that the resulting approach is not only cleanand general but that is practical as well. We haveimplemented a shell that accepts pomdp theories andproduces controllers, and have tested it over a num-ber of problems. In this paper we present the mainelements of the approach and report results for the`omelette problem' where the resulting controller ex-hibits a better performance than the handcrafted con-troller. IntroductionConsider an agent that has a large supply of eggsand whose goal is to get three good eggs and no badones into one of two bowls. The eggs can be eithergood or bad, and at any time the agent can �nd outwhether a bowl contains a bad egg by inspecting it(Levesque 1996). The task is to devise a controllerfor achieving the goal. This is a typical problem ofplanning with incomplete information, a situation thatis very common for agents that must act in the realworld (Moore 1985). In AI there have been two ap-proaches to this problem. On the one hand, pro-posals focused on extensions of Strips planning lan-guages and algorithms; (e.g., (Etzioni et al. 1992;Collins & Pryor 1995)), on the other, proposals focusedon formalizations of actions, knowledge and their in-teraction (e.g., (Moore 1985; Levesque 1996)). In gen-eral the two approaches haven't come together yet, andthus planners with incomplete information that both�Mailing address from US and Europe: Hector Ge�ner,Bamco CCS 144-00, P.O.BOX 02-5322, Miami Florida33102-5322, USA.

work and have a solid theoretical foundation are notcommon.In this paper we attack this problem from a dif-ferent perspective. We view problems of planningwith incomplete information as Partially ObservableMarkov Decision Problems or pomdps (Sondik 1971;Cassandra, Kaebling, & Littman 1994). pomdps arevery general mathematical models of sequential deci-sions problems that acommodate actions with uncer-tain e�ects and noisy sensors. The solutions of pomdpsare closed-loop controllers that map beliefs into ac-tions.While from a mathematical point of view, problemsof planning with incomplete information are pomdps,approaching these problems from the perspective ofpomdps can be practical only if:1. high-level descriptions of the e�ects of actions onboth the world and the agent's beliefs can be e�ec-tively translated into pomdps, and2. the resulting pomdps can be e�ectively solvedProblem 2 has been a main impediment in the useof pomdps in both Engineering and AI (Cassandra,Kaebling, & Littman 1995). Recently, however, newmethods have been proposed, and some of the heuris-tic methods like the rtdp-bel algorithm in (Ge�ner& Bonet 1998) have been shown to produce good solu-tions to large problems in a reasonable amount of time.Here we use the rtdp-bel algorithm, which is a learn-ing search algorithm (Korf 1990) based on the ideasof real time dynamic programming (Barto, Bradtke, &Singh 1995).Problem 1 is also challenging as the language ofpomdps lacks the structure for representing interest-ing planning problems in a convenient way. We thusformulate a high-level language for suitably modelingcomplex planning problems with incomplete informa-tion, and a semantics for articulating the meaning ofsuch language in terms of pomdps. For this we makeuse of insights gained from the study of theories ofactions and change (e.g., (Gelfond & Lifschitz 1993;Reiter 1991; Sandewal 1991)).The result of this approach is a simple and generalmodeling framework for problems of planning with in-



complete information that we believe is also practical.We have actually implemented a shell that accepts suit-able high level description of decision problems, com-piles them into pomdps and computes the resultingcontroller. We have tested this shell over a numberof problems and have found that building the modelsand �nding the solutions can be done in a very e�ectiveway. Here we report results for the `omelette problem'(Levesque 1996) showing how the problem is modeledand solved.The rest of the paper is organized as follows. Westart with a brief overview of pomdps and the algo-rithm used to solve them (Section 2). Then we intro-duce the language for expressing the e�ects of actionson the world (Section 3), and the extensions neededto express the e�ects of actions on the agent's beliefs(Section 4). Theories expressed in the resulting lan-guage determine unique pomdps. The framework isthen applied to the `omelette problem' where suitablecontrollers are derived (Section 5).Backgroundpomdps are a generalization of a model of sequentialdecision making formulated by Bellman in the 50'scalled Markov Decision Processes or mdps, in whichthe state of the environment is assumed known (Bell-man 1957). mdps provide the basis for understandingpomdps, thus we turn to them �rst. For lack of spacewe just consider the subclass of mdps that we are goingto use. For general treatments, see (Puterman 1994;Bertsekas & Tsitsiklis 1996); for an AI perspective, see(Boutilier, Dean, & Hanks 1995; Barto, Bradtke, &Singh 1995).mdpsThe type of mdps that we consider is a simple gen-eralization of the standard search model used in AIin which actions can have probabilistic e�ects. Goalmdps, as we call them, are thus characterized by:� a state space S� initial and goal situations given by sets of states� sets A(s) � A of actions applicable in each state s� costs c(a; s) of performing action a in s� transition probabilities Pa(s0js) of ending up in states0 after doing action a 2 A(s) in state sSince the e�ects of actions are observable but not pre-dictable, the solution of an mdp is not an action se-quence (that would ignore observations) but a func-tion mapping states s into actions a 2 A(s). Sucha function is called a policy, and its e�ect is to as-sign a probability to each state trajectory. The ex-pected cost of a policy given an initial state is theweighted average of the costs of all the state trajecto-ries starting in that state times their probability. Theoptimal policies minimize such expected costs fromany state in the initial situation. In goal mdps, goal

states are assumed to be absorbing in the sense thatthey are terminal and involve zero costs. All othercosts are assumed to be positive. General conditionsfor the existence of optimal policies and algorithmsfor �nding them can be found in (Puterman 1994;Bertsekas & Tsitsiklis 1996).pomdpsPartially Observable mdps generalize mdps allowingagents to have incomplete information about the state(Sondik 1971; Cassandra, Kaebling, & Littman 1994;Russell & Norvig 1994). Thus besides the sets of ac-tions and states, the initial and goal situations, and theprobability and cost functions, a pomdp also involvesprior beliefs in the form of a probability distributionover S and an sensor model in the form of a set O ofpossible observations and probabilities Pa(ojs) of ob-serving o 2 O in state s after having done the actiona. The techniques above are not directly applicable topomdps because while they do not presume that theagent can predict the next state, they do assume thathe can recognize the next state once he gets there. Inpomdps this is no longer true, as the agent has toestimate the state probabilities from the informationprovided by the sensors.The vector of probabilities b(s) estimated for eachof the states s 2 S at any one point is called the beliefor information state of the agent. Interestingly, whilethe e�ects of actions on the states cannot be predicted,the e�ects of actions on belief states can. Indeed, thenew belief state ba that results from having done ac-tion a in the belief state b, and the new belief state boathat results from having done a in b and then havingobserved o are given by the following equations (Cas-sandra, Kaebling, & Littman 1994):ba(s) = Xs02S Pa(sjs0)b(s0) (1)ba(o) = Xs2S Pa(ojs)ba(s) (2)boa(s) = Pa(ojs)ba(s)=ba(o) if ba(o) 6= 0 (3)As a result, the incompletely observable problem of go-ing from an initial state to a goal state can be trans-formed into the completely observable problem of goingfrom an initial belief state to a �nal belief state at aminimum expected cost. This problem corresponds toa goal mdp in which states are replaced by belief states,and the e�ects of actions are given by Equations 1{belaos. In such belief mdp, the cost of an action a inb is c(a; b) = Ps2S c(s; a)b(s), the set of actions A(b)available in b is the intersection of the sets A(s) forb(s) > 0, and the goal situation is given by the beliefstates bF such that bF (s) = 0 for all non-goal states s.Similarly, we assume a single initial belief state b0 suchthat b0(s) = 0 for all states s not in the initial situa-



tion. Using the terminology of the logics of knowledge,these last three conditions mean that1. the truth of action preconditions must be known2. the achievement of the goal must be known as well3. the set of feasible initial states is knownA solution to the resulting mdp is like the solu-tion of any mdp: a policy mapping (belief) states binto actions a 2 A(b). An optimal solution is a pol-icy that given the initial belief state b0 minimizes theexpected cost to the goals bF . The conditions un-der which such policies exist and the algorithms for�nding them are complex because belief mdps involvein�nite state-spaces. Indeed the known methods forsolving belief mdps optimally (e.g., (Cassandra, Kae-bling, & Littman 1994; Cassandra, Littman, & Zhang1997)) can only solve very small instances (Cassandra,Kaebling, & Littman 1995). Recently, however, newmethods have been proposed, and some of the heuris-tic methods like the rtdp-bel algorithm in (Ge�ner& Bonet 1998) have been shown to produce good solu-tions to large problems in a reasonable amount of time.Here we use the rtdp-bel algorithm, which is a learn-ing search algorithm (Korf 1990) based on the ideasof real time dynamic programming (Barto, Bradtke, &Singh 1995).rtdp-bel is basically a hill-climbing algorithm thatfrom any state b searches for the goal states bF usingestimates V (b) of the expected costs (Figure 1). Themain di�erence with standard hill-climbing is that es-timates V (b) are updated dynamically. Initially theirvalue is set to h(b), where h is a suitable heuristic func-tion, and every time the state b is visited the value V (b)is updated to make it consistent with the values of itssuccessor states.The heuristic function hmdp used in this paper isobtained as the optimal value function of a relaxedproblem in which actions are assumed to yield com-plete information. If V � is the optimal value functionof the underlying mdp, thenhmdp(b) def= Xs2S V �(s) � b(s) (4)For the implementation of rtdp-bel, the estimatesV (b) are stored in a hash table that is initially empty.Then when the value V (b0) of a state b0 that is not inthe table is needed, an entry V (b0) = h(b0) is created.As in (Ge�ner & Bonet 1998), our implementation ac-cepts an integer resolution parameter r > 0 such thatthe probabilities b(s) are discretized into r discrete lev-els before accessing the table. Best results have beenobtained for values of r in the interval [10; 100]. Highervalues often generate too many entries in the table,while lower values often collapse the values of beliefstates that should be treated di�erently. In the exper-iments below we use r = 20.

1. Evaluate each action a in b asQ(b; a) = c(b; a) +Xo2O ba(o)V (boa)initializing V (boa) to h(boa) when boa not in table2. Select action a that minimizes Q(b; a) breakingties randomly3. Update V (b) to Q(b;a)4. Apply action a5. Observe o6. Compute boa7. Exit if goal observed, else set b to boa and go to 1Figure 1: rtdp-belpomdp theoriesMost problems of planning with incomplete informa-tion can be modeled as pomdps yet actually buildingthe pomdp model for a particular application may bea very di�cult task. For example, a simple `blocksworld' planning problem with 10 blocks involves morethan a million states. Even if all actions are assumeddeterministic and hence all transition probabilities areeither zero or one, explicitly providing the states s0such that Pa(s0js) 6= 0 for each action a and state sis unfeasible. When the actions are probabilistic, thesituation is even more complex.This problem has been approached in AI throughthe use of convenient, high-level action description lan-guages of which Strips (Fikes & Nilsson 1971) is themost common example. Since the 70's many exten-sions and variations of the Strips language have beendeveloped and to a certain extent our language is noexception. Our pomdp theories di�er from Stripsmainly in their use of functional as opposed to rela-tional uents, and their ability to accommodate prob-abilities. On the other hand, pomdp theories havemany features in common with logical theories of ac-tion (Gelfond & Lifschitz 1993; Reiter 1991; Sande-wal 1991)), probabilistic extensions of Strips (Kush-merick, Hanks, & Weld 1995) and temporal exten-sions of Bayesian Networks (Dean & Kanazawa 1989;Russell & Norvig 1994). We go to the trouble ofintroducing another representation language becausenone of these languages is suitable for specifying richpomdps. For example, in none of these languages itis possible to express in a convenient way that the ef-fect of an action is to increment the value of a certainvariable with certain probability, or to make the valueof certain term known. In the language below this issimple.State Language: SyntaxIn order to express what is true in a state we appeal to asimpli�ed �rst-order language that involves constant,function and predicate symbols but does not involvevariables and quanti�cation. We call this language the



state language and denote it by L. All symbols inL have types and the way symbols get combined intoterms, atoms and formulas is standard except that, asin any strongly typed language, the types of the sym-bols are taken into account. That is, if f�� is a func-tion symbol with type ��, meaning that f�� denotesa function that takes objects from a domain D� andmaps them into objects in the domain D� , then f��(t)is a legal term when t is a term of type �. The typeof f��(t) is �. Similarly, p�(t) is an atom when p isa predicate symbol of type � and t is a term of thesame type. For simplicity, we assume in the presen-tation that the arity of function and predicate symbolsis one unless otherwise stated. All de�nitions carry tothe general case by interpreting t, � and D� as tuplesof terms, types and domains. For uniformity we alsotreat constant symbols as function symbols of arity 0.So unless otherwise stated, terms of the form f(t) in-clude the constant symbols.Types and domains can be either primitive or de-�ned. When � is a primitive type, we assume that thedomain of interpretation D� is known. On the otherhand, for non-primitive types �, the domain D� has tobe speci�ed. Such domains are speci�ed by providingthe unique names of the objects in D�. It is thus as-sumed that such de�ned domains contain a �nite num-ber of objects, each with its own name. For examplein a block planning scenario, the domain DBLOCK canbe de�ned as the set fblock1; block2; : : : ; blockng.Symbols are also divided into those that have a �xedand known denotation in all interpretations (e.g., sym-bols like `3', `+', `=', . . . , and names) and those thatdon't. We call the �rst, �xed symbols,1 and the seconduent symbols.2 The uent symbols are the symbolswhose denotation (value) can be modi�ed by the e�ectof actions and which persist otherwise. For the sake ofsimplicity, we assume that all uent symbols are func-tion symbols. Constant symbols like temperature canbe captured by uent symbols of 0-arity, while rela-tional uents can be captured by means of uent sym-bols of type �� where � is the boolean type.Finally for reasons that will be apparent later weassume that all uent symbols of arity greater than 0take arguments of de�ned types only. This will guar-antee that states can be �nitely represented.Example 1 The �rst component of a pomdp theoryare the domain and type declarations where all de�nedsymbols, domains, and types are introduced. Theyare used to represent the objects of the target appli-cation, their attributes, their possible values, etc. Forthe `omelette problem' the declarations are:1They are like the rigid designators in modal logic(Kripke 1971).2From a computational point of view, the denotation of�xed symbols will be normally provided by the underlyingprogramming language. On the other hand, the denotationof uent symbols will result from the actions and rules inthe theory.

Domain: BOWL : small; largeTypes: ngood : BOWL 7! Intnbad : BOWL 7! Intholding : Boolgood? : Boolmeaning the there are two de�ned objects (bowls) withnames small and large, and that each one has twoassociated integer attributes: the number of good eggsit contains and the number of bad eggs. In addition,there are two boolean features (function symbols ofarity 0) representing whether the agent is holding anegg, and whether such an egg is good or not.State Language: SemanticsFor a given pomdp theory, a state s is a logical in-terpretation over the symbols in the theory in whicheach symbol x of type � gets a denotation xs 2 D�.The denotation ts and F s of terms t and formulas Fis obtained from the interpretations of the constant,function and predicate symbols in the standard way;e.g., [f(t)]s = fs(ts) for terms f(t), etc.Variables and State Representation Fixed sym-bols x have a �xed denotation x� that is independent ofs. For this reason, states s can be represented entirelyby the interpretation of the non-�xed symbols, whichunder the assumptions above, are the uent symbols.Furthermore, since uent symbols f take arguments ofde�ned types only in which each object has a uniquename id with a �xed denotation, s can be representedby a �nite table of entries of the form f(id) 7! [f(id)]s.A useful way to understand the terms f(id) for a uentsymbol f and named arguments id is as state variables.From this perspective, the (representation of a) stateis nothing else than an assignment of values to vari-ables. For example, the state of the theory that con-tains the declarations in Example 1 will be an assign-ment of integers to the four `variables' ngood(small),nbad(small), ngood(large), and nbad(large), and ofbooleans to the two `variables' holding and good?. Thestate space is the space of all such assignments to thesix variables.It's worth emphasizing the distinction between termsand variables: all variables are terms, but not allterms are variables. Otherwise, the expressive powerof the language would be lost. For example, in a`block' domain, `loc(block1)' may be a term denotingthe block (or table) on which block1 is sitting, and`clear(loc(block1))' may be a term representing the`clear' status of such block (normally false, as block1is sitting on top). According to the de�nition above,the �rst term is a variable but the second term is not.The values of all terms, however, can be recovered fromthe values of the variables. Indeed, for any term f(t),[f(t)]s = [f(id)]s for the name id of the object ts.Transition Language: SyntaxWhile the state language allows us to say what is truein a particular state, the transition language allows us



to say how states change. This is speci�ed by meansof action descriptions.An action is an expression of the form p(id) wherep is an uninterpreted action symbol disjoint from thesymbols in L, and id is a (tuple) of name(s). Eachaction symbol has a type � which indicates the requiredtype of its arguments id. For the `omelette problem' forexample, pour(small; large) will be an action taking apair of arguments of type BOWL.The action description associated with an action aspeci�es its costs, its preconditions, its e�ects on theworld, and its e�ects on the agent's beliefs. In thissection we focus on the syntax and semantics of the�rst three components.The preconditions of an action a are represented by aset of formulas Pa, meaning that a is applicable only inthe states that satisfy the formulas in Pa; i.e. a 2 A(s)i� s satis�es Pa.The costs c(a; s) associated with a are representedby a sequence Ca of rules of the form C ! w, whereC is a state formula and w is a positive real number.The cost c(a; s) is the value of of the consequent of the�rst rule whose antecedent C is true in s. If there isno such rule, as in the model below of the `omeletteproblem', then c(a; s) is assumed to be 1.The e�ects of an action a are speci�ed by means of asequence of action rules Ra. Deterministic action ruleshave the form C ! f(t) := t1 (5)where C is a formula, f(t) and t1 are terms of the sametype and f is a uent symbol. The intuitive meaningof such rule, is that an e�ect of a in states s that satisfythe condition C is to set the variable f(id) to ts1, whereid is the name of the object ts.Probabilistic action rules di�er from deterministicaction rules in that the term t1 in (5) is replaced by a�nite list L = (t1 p1; t2 p2; : : : ; tn pn) of terms ti andprobabilities pi that add up to one. We call such alist a lottery and its type is the type of the terms tiwhich must all coincide. For a lottery L, the form of aprobabilistic rule is:C ! f(t) := L (6)where C is a formula, f(t) is a term of the same typeas L, and f is a uent symbol. In principle, the mean-ing of such rule is that an e�ect of a in states s thatsatisfy the condition C is to set the probability of thevariable f(id) taking the value tsi as pi, where id is thename of the object ts. This interpretation, however,while basically correct misses the fact that two di�er-ent terms ti and tj may have identical values tsi andtsj , and hence that their probabilities must be addedup. The precise meaning of probabilistic rules is pro-vided below. For simplicity, since a deterministic ruleC ! f(t) := t1 can be expressed as a probabilistic ruleof the form C ! f(t) := (t1 1), we'll take the formeras an abbreviation of the latter. We also abbreviaterules true! f(t) := : : : as f(t) := : : :.

As a further abbreviation, we often de�ne the pre-condition and e�ects over action schemas. An actionschema is an expression of the form p(x), where p isan action symbol and x is a meta-variable. The pre-conditions and e�ects of action schemas can involvethe meta-variable x and other meta-variables as well.Such descriptions are abbreviations for the �nite setof actions a, preconditions Pa and rules Ra that re-sult from the action, precondition and e�ect schemas,by consistently replacing the meta-variables by all thenames of the corresponding types.Example 2 As an illustration of the language, the ef-fects of the action move up that moves the blank upin the 8-puzzle can be written as:p := up(p) ; tile(up(p)) := 0 ; tile(p) := tile(up(p))where p tracks the position 1; : : : ; 9 of the blank, tile(i)tracks the identity of the tile at position i, and up(i) isa �xed function symbol that denotes an actual functionthat given i 2 [0 : : : 9] returns the position j 2 [0 : : : 9]above it. Such function will normally be supplied by aprogram.Transition Language: SemanticsLet us de�ne the probability distribution P xs;L inducedby a lottery L = (t1 p1; : : : ; tn pn) on a variable x instate s as:P xs;L(x = v) def= Xi:tsi=v pi for L = (ti pi)i=1;n (7)The meaning of (6) can then be expressed as sayingthat the e�ect of the action a in s on the variable x =f(id) obtained by replacing t by the name id of ts, is toset its probability to P xs;L. More precisely, if we denotethe probability of variable x in the states that followthe action a in s as P xs;a, then when (6) is the �rst rulein Ra whose antecedent is true in s and x is the nameof ts P xs;a(x = v) def= P xs;L(x = v) (8)On the other hand, when there is no rule in Ra whoseantecedent is true in s, x persists:P xs;a(x = v) def= � 1 if v = xs0 otherwise (9)Transition ProbabilitiesIf X is the set of all the variables x = f(id) determinedby the theory, then the transition probabilities Pa(s0js)for the pomdp are de�ned as:Pa(s0js) def= Yx2XP xs;a(x = xs0) (10)where the terms on the right hand side are de�ned in(8) and (9). This decomposition assumes that variablesin s0 are mutually independent given the previous states and the action a performed. This is a reasonableassumption in the absence of causal or rami�cationrules. For such extensions, see (Bonet & Ge�ner 1998).



Example 3 Let us abbreviate the formulas t = trueand t = false for terms t of type boolean as t and:t respectively. Then the action descriptions for the`omelette problem' can be written as:Action: grab-egg()Precond: :holdingE�ects: holding := truegood? := (true 0:5 ; false 0:5)Action: break-egg(bowl : BOWL)Precond: holding ^ (ngood(bowl) + nbad(bowl)) < 4E�ects: holding := falsegood? ! ngood(bowl) := ngood(bowl) + 1:good? ! nbad(bowl) := nbad(bowl) + 1Action: pour(b1 : BOWL; b2 : BOWL)Precond: (b1 6= b2) ^ :holdingngood(b1) + nbad(b1) + ngood(b2) + nbad(b2) < 4E�ects: ngood(b1) := 0 , nbad(b1) := 0ngood(b2) := ngood(b2) + ngood(b1)nbad(b2) := nbad(b2) + nbad(b1)Action: clean(bowl:BOWL)Precond: :holdingE�ects: ngood(bowl) := 0 , nbad(bowl) := 0There are no cost rules, thus, costs c(a; s) are as-sumed to be 1. The description for the action inspectis given below.Initial and Goal SituationsIn pomdp theories, the initial and goal situations aregiven by sets of formulas. The e�ective state-space ofthe pomdp is given by the set of states that satisfythe formulas in the initial situation or are reachablefrom them with some probability. The initial situa-tion can contain constraints such that a block cannotsit on top of itself (e.g., loc(block) 6= block) or par-ticular observations about the problem instance (e.g.,color(block1) = color(block2)).For the omelette problem, the initial and goal situ-ations are:Init: ngood(small) = 0 ; nbad(small) = 0ngood(large) = 0,; nbad(large) = 0Goal: ngood(large) = 3 ; nbad(large) = 0Note that for this problem the state-space is in�nitewhile the e�ective state space is �nite due to the con-straints on the initial states and transitions (the pre-conditions preclude any bowl from containing morethan 4 eggs). We impose this condition on all prob-lems, and expect the e�ective state space to be always�nite. ObservationsThe pomdp theories presented so far completely de-scribe the underlying mdp. For this reason we callthem mdp theories. In order to express pomdps suchtheories need to be extended to characterize a prior be-lief state P (s) and the observation model Pa(ojs). Forthis extension, we make some simpli�cations:1. We assume basically a uniform prior distribution.More precisely, the information about the initial sit-uation I is assumed to be known, and the prior be-lief state b is de�ned as b(s) = 0 if s does not satisfy

I and b(s) = 1=n otherwise, where n is the num-ber of states that satisfy I (that must be �nite fromour assumptions about the size of the e�ective statespace).2. We assume no noise in the observations; i.e., sen-sors may not provide the agent with complete in-formation but whatever information they provide isaccurate. Formally, Pa(ojs) is either zero or one.In addition to these simpli�cations, we add a gener-alization that is very convenient for modeling even ifstrictly speaking does not take us beyond the expres-sive power of pomdps.In pomdps it assumed that there is a single variable,that we call O, whose identity and domains are knowna priori, and whose value o at each time point is ob-served.3 Although the values o cannot be predictedin general, the variable O that is going to be observedis predictable and indeed it is always the same. Wedepart from this assumption and assume that the setof expressions O(s; a) that are going to be observablein state s after having done action a is predictable butno �xed; O(s; a) will actually be a function of both sand a. Thus, for example, we will be able to say thatif you do the action lookaround when you are neardoor1, then the color of door1 will be observable, andsimilarly, that whether the door is locked or not willbe obsevable after moving the handle.For this purpose, action descriptions are extended toinclude, besides their preconditions, e�ects and costs, afourth component in the form of a setKa of observationor knowledge gathering rules (Scherl & Levesque 1993)of the form: C ! obs(expr) (11)where C is a formula, the expression expr is either asymbol, a term or a formula, and obs is a special sym-bol. The meaning of such rule is that the denotation(value) of expr will be be observable (known) in allstates s that satisfy the condition C after having donethe action a.Thus a situation as the one described above canbe modeled by including in Ka the observation ruleschema near(door)! obs(color(door))We use the notation O(s; a) to stand for all the ex-pressions that are observable in s after doing action a;i.e.,O(s; a) def= fxjC ! obs(x) 2 Ka and Cs = trueg(12)The observations o in the states s after an actiona are thus the mappings that assign each expressionx 2 O(s; a) the denotation xo = xs. The probabili-ties Pa(ojs0) of the sensor model are then de�ned as 13In general, O can represent tuples of variables and ocorresponding tuples of values.



when xs0 = xo for all x 2 O(s0; a), and 0 otherwise.Clearly, when the observations provide only partial in-formation about the state, many states can give rise tothe same observation. That is, an agent that ends upin the state s after doing an action a may get and ob-servation o that won't allow him to distinguish s fromanother state s0 if Pa(ojs0) = Pa(ojs).Example 4 The pomdp theory for the `omeletteproblem' is completed by the following descriptions,where `�' stands for all actions:Action: inspect(bowl : BOWL)E�ect: obs(nbad(bowl) > 0)Action: �E�ect: obs(holding)Namely, inspect takes a bowl as argument and revealswhether it contains a bad egg or not, and holding isknown after any action and state.ExperimentsWe have developed a shell that accepts pomdp theo-ries, compiles them into pomdps and solves them usingthe rtdp-bel algorithm. We have modeled and solveda number of planning and control problems in this shell(Bonet & Ge�ner 1998) and here we focus on the re-sults obtained for the `omelette problem' (Levesque1996) as described above. The theory is �rst compiledinto a pomdp, an operation that is fast and takes a fewseconds. The resulting pomdp has an e�ective statespace of 356 states, 11 actions and 6 observations.The curves in Fig. 2 show the average cost to reachthe goal obtained by applying rtdp-bel controllers toa number of simulations of the `omelette world'. Actioncosts are all equal to 1 and thus the cost to the goal isthe number of actions performed. The controller is thegreedy policy that selects the best action according tothe values stored in the table.4We computed 10 runs of rtdp-bel, each involving2400 trials. In each run, we stopped rtdp-bel afteri trials, for i = 0; 50; 100; : : : ; 2400, and applied thegreedy controller with the values obtained at that pointto 200 simulations of the `omelette world'. Each pointin the curve thus represents an average taken over 2000simulations. A cuto� of 100 steps was used, meaningthat trials were stopped after that number of steps.The cost to the goal in those trials was assumed to be100. The belief resolution parameter r used was 20,meaning that all probabilities were discretized into 20discrete levels. The results are not sensitive to eitherthe value of the cuto� or r (although neither one shouldbe made too small).Figure 2(a) compares the performance of thertdp-bel controller vs. the handcrafted controller(Levesque 1996) for the case in which the probability4Actually the controller is the rtdp-bel algorithm inFig. 1 without the updates.

of an egg being good is 0:5. The performance of thertdp-bel controller is poor over the �rst 1000 trialsbut improves until it converges after 1500 trials. Theaverage time to compute 2000 trials is 192:4 seconds(around 3 minutes). At that point there were 2100 en-tries in the hash table on average. A reason for thepoor performance of the algorithm over the �rst thou-sand trials is that the heuristic hmdp obtained from theunderlying mdp (Section 2) assumes complete informa-tion about the next state and hence does not �nd theinspect action useful. Yet, inspect is a crucial actionin this problem, and gradually, the algorithm `learns'that. Interestingly, after the �rst 1500 trials the curvefor the rtdp-bel controller lies consistently below thecurve for the handcrafted controller, meaning that itsperformance is better.5 This di�erence in performanceis actually more pronounced when the probability ofan egg being good changes from 0:5 to a high valuesuch as 0:85 (Fig. 2(b)). While in the �rst case, thedi�erence in performance between the two controllersis 4%, in the second case, the di�erence rises to 14%.Summary and DiscussionWe have formulated a theoretical approach for mod-eling and solving planning and control problems withincomplete information in which high level descriptionsof actions are compiled into pomdps and solved by artdp algorithm. We have also implemented a shellthat supports this approach and given a pomdp the-ory produces a controller. We have shown how thisapproach applies to the `omelette problem', a problemwhose solution in more traditional approaches wouldinvolve the construction of a contingent plan with aloop. In (Bonet & Ge�ner 1998) this framework is ex-tended to accommodate rami�cation rules, and vari-ables that can take sets of values. The �rst extensionallows the representation of noisy sensors and depen-dencies among variables; the second, the representa-tion of the e�ects of actions like listing a directory.While the ingredients that make this approach pos-sible are well known, namely, pomdps (Sondik 1971;Cassandra, Kaebling, & Littman 1994), rtdp algo-rithms (Barto, Bradtke, & Singh 1995) and actionrepresentation languages (Gelfond & Lifschitz 1993;Reiter 1991; Sandewal 1991), we are not aware ofother approaches capable of modeling and solving theseproblems in an e�ective way. Some of the featuresthat distinguish this framework from related decision-theoretic approaches to planning such as (Kushmerick,Hanks, & Weld 1995; Draper, Hanks, & Weld 1994;Boutilier, Dean, & Hanks 1995) are:� a non-propositional action description language� a language for observations that allows us to say5This is because the rtdp-bel controller uses the largebowl as a `bu�er' when it's empty. In that way, half of thetime it saves a step over the handcrafted controller.



15

20

25

30

35

40

45

50

55

60

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Learning Trials

Omelette’s Problem -- p = 0.50

derived controller
handcrafted controller

10

12

14

16

18

20

22

24

26

28

30

32

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Learning Trials

Omelette’s Problem -- p = 0.85

derived controller
handcrafted controller

Figure 2: rtdp-bel vs. Handcrafted Controller: p = 0:5 (a), p = 0:85 (b)which expressions (either symbols, terms or formu-las) are going to be observable and when,� an e�ective algorithm that produces controllers fornon-trivial problems with incomplete informationA weakness of this approach lies in the complexity ofthe rtdp-bel algorithm that while being able to han-dle medium-sized problems well, does not always scaleup to similar problems of bigger size. For instance,if the goal in the `omelette problem' is changed to 50good eggs in the large bowl in place of 3, the resultingmodel becomes intractable as the e�ective state spacegrows to more than 107 states. This doesn't seem rea-sonable and it should be possible to avoid the combina-torial explosion in such cases. The ideas of �nding con-cise representation of the value and policy functions arerelevant to this problem (Boutilier, Dearden, & Gold-szmidt 1995; Boutilier, Dean, & Hanks 1995), as wellas some ideas we are working on that have to do withthe representation of belief states and the mechanismsfor belief updates. ReferencesBarto, A.; Bradtke, S.; and Singh, S. 1995. Learningto act using real-time dynamic programming. Arti�-cial Intelligence 72:81{138.Bellman, R. 1957. Dynamic Programming. PrincetonUniversity Press.Bertsekas, D., and Tsitsiklis, J. 1996. Neuro-DynamicProgramming. Athena Scienti�c.Bonet, B., and Ge�ner, H. 1998. Planning and controlwith incomplete information using POMDPs: Exper-imental results. Submitted.Boutilier, C.; Dean, T.; and Hanks, S. 1995. Plan-ning under uncertainty: structural assumptions andcomputational leverage. In Proceedings of EWSP-95.
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