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Abstract

Partially Observable Markov Decision Processes (POMDPs) are gen-
eral models of sequential decision problems in which both actions and
observations may be noisy. Many problems of interest can be formu-
lated as POMDPs yet the use of POMDPs has been limited by the lack of
effective algorithms: optimal algorithms don’t scale up and heuristic
algorithms often do poorly. In this paper, a new POMDP algorithm is
introduced that combines the benefits of optimal and heuristic pro-
cedures producing good solutions quickly even in problems that are
large. Like optimal procedures, the procedure RTDP-BEL attempts to
solve the information MDP, yet like heuristic procedures, it makes de-
cisions in real time following a suitable heuristic function. RTDP-BEL
is a Real Time Dynamic Programming algorithm [1], namely, a greedy
search algorithm that learns to solve MDPs by repeatedly updating the
heuristic values of the states that are visited. As shown by Barto et
al. such updates eventually deliver an optimal behavior provided that
the state space is finite and the initial heuristic values are admissible.
Since information MDPs have infinite state spaces we discretize prob-
abilities and combine them with heuristic values obtained from the
underlying MDP. Although the resulting algorithm is not guaranteed
to be optimal, experiments over a number of benchmarks suggest that
large POMDPs are quickly and consistently solved, and that solutions,
if not optimal, tend to be very good.



1 Introduction

Partially Observable Markov Decision Processes (POMDPs) are general mod-
els of sequential decision problems in which both actions and observations
may be probabilistic [17, 12, 6]. Many problems of interest can be formulated
as POMDPs yet the use of POMDPs has been limited by the lack of effective
algorithms [7]. In this paper, we introduce a new POMDP algorithm that
combines the benefits of exact and heuristic algorithms producing good solu-
tions in a short time. The algorithm is a Real Time Dynamic Programming
(RTDP) procedure [1] and can be seen both as a learning real-time search al-
gorithm [10] or as an asynchronous form of value iteration [2]. While RTDP is
guaranteed to yield optimal solutions for a large class of finite-state MDPs, it
can only produce approximate solutions to POMDPs. Nonetheless, the results
obtained over a number of benchmark problems suggest that these solutions
are good, improve with time, and can be computed reasonably fast even in
large problems.

The paper is mostly self-contained and briefly reviews Learning Real Time
Search (Section 2), Markov Decision Problems (Section 3), Real Time Dy-
namic Programming (Section 4), and Partially Observable MDPs (Section 5).
It then presents the POMDP algorithm (Section 6) an empirical evaluation
(Section 7), and a summary of the main ideas and current work (Section 8).

2 Learning Real Time Search

Real time search algorithms are algorithms that, like chess playing programs,
perform a limited amount of local search before committing and executing
moves [10]. For example, a real time search algorithm for solving the 8-puzzle
may evaluate each of the states that can be obtained in a single move and
then move to the state with lowest value. If the 8-puzzle is simulated in
the computer, the resulting algorithm is a form of heuristic hill-climbing;
otherwise it’s a form of closed-loop control: the state is observed, an action
is selected and executed, a new state is observed, and so on.

In a real time search framework, the agent does not solve the problem
before acting; it just performs a limited lookahead, make what appears to
be the best move, and repeats this process until the goal is reached. When
there is sufficient time, the lookahead may be designed to seek global optimal
moves (by making use of algorithms such as A*), while when time is scarce,



it may just consider the value of neighbor states only. In between, many
alternatives are possible like considering the value of the states that can be
reached in a fixed number of moves [10].

In the simplest case, when there is no lookahead, the basic loop of the
heuristic real time search algorithm (RTS) is given in Fig. 1, where ¢(a,s)
stands for the positive cost of taking action a in state s, s, stands for the
state predicted after doing action a in s, and h is the heuristic function.

1. Evaluate each action a applicable in current state s as
Q(a,s) = c(a,s) + h(s,)

2. Apply action a that minimizes Q(a, s), breaking ties randomly
3. Observe resulting state s’

4. Exit if ' is a goal state, else set s to s’ and go to 1

Figure 1: Real Time Search (RTS)

RTS evaluates the actions that are applicable in the current state s, applies
the best action a, and repeats the same process until reaching a goal. If the
action model is completely accurate, Step 3 can be omitted and s’ can be
replaced by the predicted state sg. Otherwise, the use of the observed state
s’ as opposed to the predicted state s,, makes RTS a closed-loop algorithm
that is more robust to the possible presence of perturbations in the real or
simulated system.

RTS, unlike systematic heuristic algorithms such as A* [14], does not yield
optimal (i.e., minimum-cost) solutions in general even when the heuristic
function h is admissible (i.e., underestimates the cost to the goal). Actually,
like most hill climbing algorithms, RTS can be trapped into loops and miss
the goal state completely. A simple variation due to Korf, however, avoids
these problems while retaining the greedy character of RTS.

Learning Real Time A*, abbreviated LRTA* [10], is a slight modification
of RTS in which the heuristic function h(s) is used to provide the initial cost
estimates only. Every time an action a is selected and applied in s, such
estimates, symbolized as V' (s), are updated as:

V(s) :=cla,s) + V(s,) (1)



where V(s,) is the estimate of the predicted state s,. These updates aim
to enforce the relation that has to hold between V(s) and V(s,) when a
is an optimal action in s, which as noted in [1] is the key idea in dynamic
programming.

For the implementation of LRTA*, the estimates V (s) are stored in a hash
table that initially contains the heuristic value of the starting state only.
Then, when the value V(s) of a state s that is not in the table is needed,
a new entry with V(s) set to h(s) is allocated. These entries are updated
following (1) when a move from s is performed.

The loop of the LRTA® algorithm extends the RTS loop with a single
additional update step as indicated Fig. 2.

1. Evaluate each action a applicable in s as
Q(a,s) = c(a,s) + V(s4)

initializing V' (s,) to h(s,) when s, is not in the table
Apply action a with minimum @(a, s) value, breaking ties randomly
Update V(s) to Q(a, s)

Observe resulting state s’

DA

Exit: if s’ is a goal, else set s to s’ and go to 1

Figure 2: Learning Real Time Search (LRTA*)

A basic property of LRTA* is that it does not get trapped into loops
and always reaches the goal if the goal is reachable. More interestingly,
when the heuristic function h(s) is admissible, consecutive trials of LRTA*
eventually yield an optimal behavior [10]." As a result, if LRTA* is given
the non-informative but admissible heuristic h(s) = 0 in the 8-puzzle, it will
eventually find the optimal heuristic values and the optimal moves. The
rate at which LRTA™ finds these moves depends in general on the quality of
h. A better heuristic function yields a more focused search, a smaller hash
table, and hence, a higher ratio of updates on the relevant states and faster
convergence.

'Both results presume that the action model is correct, the state space is finite, and
goals are reachable from every state [10].



3 MDPs

The type of MDPs that we consider are a simple generalization of the standard
search model used in Al in which actions can have probabilistic effects and fu-
ture costs may be discounted. Goal MDPs, as we call them, are characterized
by:

e a state space S

e initial and goal situations given by sets of states

e sets A(s) C A of actions applicable in each state s
e positive costs c(a, s) of performing action a in s,

e transition probabilities P,(s'|s) of ending up in state s’ after doing
action a € A(s) in s, and

e a discount factor 0 <~y <1

Since the effects of actions are no longer predictable, the solution of an MDP is
not an action sequence but a function mapping states s into actions a € A(s).
Such a function is called a policy and its effect is to assign a probability to
each state trajectory. For convenience, actions in the goal states are assumed
to have zero costs and no effects (i.e., goal are absorbing).

The expected cost of a policy from a given state is the (possibly dis-
counted) weighted average of the costs of all trajectories starting in that
state times their probability. A policy is optimal when it’s expected cost
from any state is minimized. General conditions for the existence of such
policies and algorithms for computing them can be found in [15, 2]. The key
fact underlying such algorithms is that a necessary and sufficient condition
for a policy 7* to be optimal is that the expected costs V*(s) that result from
starting in state s and then acting according to 7* must satisfy Bellman’s
equation:

VA(s) = min [ela, ) + 7 3 Puls'ls)V ()] )
acAls s'cS
Indeed, it is common to solve MDPs by obtaining the values V*(s) from this
equation and plugging the results into:

-1

™ (s) = min [e(a,s) +7 3 Pu(s']s)V"(s)] (3)

acA(s) oeS



The wvalue iteration method [15] solves (2) by successive approximations in
which at each time point i, estimates V;(s') of V*(s') are plugged into the
right hand side of (2) to yield better estimates V;.,(s) on the left hand side.
Such an operation is called an update, and for a large class of MDPs, repeated
updates eventually yield the optimal values.

4 Real Time Dynamic Programming

Classical techniques for solving MDPs like value iteration have wide applica-
tions in Engineering and can be used to solve problems with million of states
[15]. Yet many problems of interest, in particular in AI, have state spaces
that are significantly larger. For such problems, even a single iteration of
value iteration is unfeasible. Part of the problem is that the standard DP
methods are designed to look for optimal policies over all possible states.
In most cases this is not needed. Often when the initial and goal states are
given, only a small fraction of the states are relevant for solving the problem
and in such cases most of the effort that goes into updating all states is
wasted. Real Time Dynamic Programming is a family of methods for solving
MDPs that tries to avoid such wasteful updates by performing the updates
concurrently with the problem solving [1]. The idea, like in Korf’s LRTA*, is
to update while searching, focusing only on the states that are encountered
in the search.

More precisely, while an iteration of value iteration uses Bellman’s equa-
tion to update the values of all states s in the form:

ria(s) = min [c(a, )+ Z Pa(s'5)V(s)] (4)

an iteration of RTDP uses the same expression to update the value of the
current state only. Moreover, after such an update, the best action according
to the current estimates is applied and the same process is repeated on the
state that results. The basic loop of the RTDP algorithm is shown in Figure 3.

By comparing the algorithms in Figures 2 and 3, it’s clear that the
main difference between LRTA* and RTDP is the evaluation of the ‘promise’
Q(a, s) of action a in s. Indeed as noted in [1], RTDP is nothing else but the
stochastic generalization of LRTA* and collapses to LRTA* when there is no
discounting and actions are deterministic (i.e., all probabilities are either 0
or 1).



1. Evaluate each action a applicable in s as:
Q(a,s) = c(a,s) +7 3 pa(s'|s)V(s')
s'es
initializing V' (s') to h(s") when s’ is not in the table
Apply action a with minimum @(a, s) value, breaking ties randomly
Update V (s) to Q(a, s)

Observe resulting state s’

DA

Exit if s’ is a goal, else set s to s’ and go to 1

Figure 3: Real Time Dynamic Programming (RTDP)

The heuristic values h(s) used to initialize V' (s) are crucial in both RTDP
and LRTA*: better heuristics mean a more focused search for the goal and a
more focused search means more updates on the states that matter. Like-
wise, if the heuristic function is admissible, RTDP eventually converges to an
optimal solution [1].

Good heuristic functions can make LRTA* and RTDP suitable for problems
that have huge state spaces. For example, [4] presents a LRTA* algorithm for
Strips planning that handles problems with more than 10%" states. Here
we apply RTDP to MDPs with very large spaces as well. Heuristic functions
indeed are an alternative to the function approximation methods used in
model-free RTDP methods [18, 19] for dealing with large problems.

5 Partially Observable MDPs

Partially Observable MDPs generalize MDPs allowing agents to have incom-
plete information about the state of the environment [17, 12]. Besides the
sets of actions and states, and the probability and cost functions, a POMDP
involves prior beliefs in the form of a probability distribution P(s) and an
observation model in the form of a set O of possible observations and prob-
abilities P,(o|s) of observing o € O in state s after having done action a.
The techniques considered above are not directly applicable to POMDPs
because while they do not presume that the agent can predict the next state,
they do assume that he can recognize the next state once he gets there.



The most common way to solve POMDPs is by formulating them as com-
pletely observable MDPs over the belief states of the agent [17, 6], where belief
states are probability distributions over the real states s. Indeed while the
effects of actions on states cannot be predicted, the effects of actions on belief
states can. More precisely, the belief state b, that results from having done
action a in the belief state b, and the belief state b that results from having
observed o after having done a in b, are given by the equations [6]:

ba(s) = > Pa(s]s)b(s") (5)

bue) = 32 Pafolab(s ©)
bo(s) = P,(0]s)ba(s)/bas(0) when b,(0) # 0 (7)

As aresult, the incompletely observable problem of going from an initial state
to a goal state can be transformed into the completely observable problem
of going from one initial belief state to a final belief state. The Bellman
Equation for the resulting belief MDP is

V*(b) = min [¢(a,b) +7 ) ba(0)V"(b])] (8)

aEA(b) 0€0

where ¢(a,b) is the average cost of doing action a in b

c(a,b) = Z c(a, s)b(s) (9)

sES

and A(b) is the set of actions a that are applicable in every state s possible
with respect to b, i.e., with b(s) > 0. Note that a belief MDP is nothing else
but an MDP with probability distributions as states.

We define the goal belief states as the probability distributions bg such
that bg(s) = 0 for all non-goal states s, i.e., s € G. While in goal MDPs
we are interested in policies over S that minimize the expected cost to the
goals G C S, in goal POMDPs we are interested in policies over Bel(S) —
the probability distributions over S — that minimize the expected cost to the
beliefs states bg. Finding such policies however is not simple. Belief MDPs
involve state spaces that are infinite and continuous. For this reason, exact
algorithms exploit a finite representation of the value function V*(b) due to
Sondik [17], who showed that the optimal value function V; that results when
the next ¢ time points are considered (the so-called optimal ¢-horizon value



function) is piecewise linear and convex, and can be represented by a finite
set of real vectors A, as:

Vi(b) = maxa - b (10)

aCAy
The optimal infinite horizon value function, V* = lim;_, ., V;, can be approx-
imated arbitrarily close by taking ¢ sufficiently large. The Witness algorithm
[6] approximates V* in this way and is based on an efficient method for
finding the set of vectors A; in terms of the set of vectors A; ;.

POMDP algorithms based on Sondik’s representation have been success-
fully used to solve small problems but have difficulties for scaling up. This is
because the vector sets A; can grow exponentially in size [7]. These difficul-
ties have led to a number of fast approximation methods that often perform
well when the degree of uncertainty is low but tend to do poorly in other
cases. One such method, is the Qy\pp method [7] that is based on the simpli-
fying assumption that all future states will be completely observable. In such
case, the value Q(a,b) of an action a given a belief state b can be computed
from

= >_b(s) Qupp(s, a) (11)

s€S
where Qypp (s, a) is the optimal value of action a in s in the underlying MDP.
Since the simplifying assumption is usually false, the Q(a,b) values are just
heuristic estimates of the optimal Q*(b, a) values. Moreover, the estimates
are admissible as they represent the optimal cost of a simpler problem in
which the agent has more information that it actually has. Indeed, the
Qmpp method is a real-time search algorithm (Fig. 1) operating in belief
space with an heuristic function hypp

havpp (b defzb ) Varpp (5) (12)

s€eS

where Vyipp(s) = min, Qypp(a, s). Given this correspondence, the limita-
tions of Qmpp [7] — loops and poor performance in large problems — are not
surprising. Following Korf’s [10], these problems can be eliminated by con-
verting the Qypp algorithm into a learning algorithm in the style of LRTA*
(Figure 2). This only requires cost estimates V' (b) initialized to hypp(b) and
updated to

V(b) := c(a,b) + V(ba) (13)

every time action a is performed in b. The resulting LRTA* algorithm is as
greedy as the Qypp method but avoids cycles and improves with time.



1. Evaluate each action a applicable in b as

Q(a,b) = c(a,b) + 3 _ bu(0)V(b7)

0€0
initializing V' (b2) to h(b°) when b° not in table
Apply action a that minimizes @(a,b) breaking ties randomly
Update V (b) to Q(a,b)
Observe o
Compute b
Exit if b° is a goal (belief) state, else set b to b2 and go to 1

ARl B

Figure 4: RTDP-BEL: the RTDP algorithm for POMDPs

Still neither the Qypp method nor its LRTA* version deal with observa-
tions. In the presence of observations the result of an action a is no longer
a unique belief state b, but a collection of belief states b each with proba-
bility b,(0). As a result, the update captured by expression (13) needs to be
modified into:

V(b) := c(a,b) + > ba(o)V(b3) (14)

00

6 Solving POMDPs by RTDP

The algorithm that results from extending the Qypp method with obser-
vations and updates is the RTDP algorithm shown in Fig. 4 that we call
RTDP-BEL.

The main computational effort in the inner loop of RTDP-BEL lies in
the computation of Q(a,b) in Step 1 whose complexity is |S|> x |O] in the
worst case (computing b,(0) and b2 from Equations 6 and 7 is |S|?). The
duration of each trial and the number of trials needed until the performance
of RTDP-BEL stabilizes depends on the quality of the heuristic function hypp
for the POMDP at hand. In most of the examples reported in the literature
[7] (see below), the hypp heuristic is good and delivers good solutions after
few trials. The same is not true for non-informative heuristics such as h = 0
(see Section 7.1) or for information-gathering problems (see Section 7.4).
Yet before analyzing the performance of RTDP-BEL, we introduce a simple
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approximation scheme that is needed for handling large and noisy POMDPs.

6.1 Belief Discretization

The approximation scheme is a standard state aggregation technique that
reduces space requirements and allows some form of generalization by repre-
senting the value of many states by a single entry in the hash table. Basically,
given an integer resolution parameter r > 0, the probabilities b(s) are dis-
cretized into r discrete levels before accessing the table. More precisely, for
reading and writing the table, and only for this, the vector b of probabilities
b(s) for all s is replaced by the vector of discretized probabilities b, (s), where
b,(s) is the element in the set 0, 1/r, 2/r, ..., 1 closest to b(s). This is
computed by setting b,(s) to round(p * r)/r. The result of this approxima-
tion is that a single value V' (b,) approximates the infinite values V' (b) of all
belief states that discretize into b,. The consequence is that the hash table
grows smaller, the values in the table are updated more often, and RTDP-BEL
learns faster. Best results have been obtained for values of 7 in the interval
[10,100]. Higher values often generate too many entries in the table, while
lower values often collapse the values of belief states that should be treated
differently. It should be noted that while the number of discretized belief
states b, is finite it is still quite large.

6.2 Implementation

We mention two points about the implementation of RTDP-BEL that are
important. First, we use a cutoff parameter MAX, set to 250, such that any
trial with more than MAX steps is terminated. Such cutoff parameter is
not strictly needed in finite state stochastic-shortest path MDPs as in such
problems RTDP is bound to reach the goal in every trial after a finite number
of steps [1, 2]. Yet even in such cases, and with more reason in belief MDPs,
the cutoff parameter is useful as long searches for the goal usually produce
updates in areas of the state space that are not relevant. In addition, we
use an sparse representation for the belief states b so that the complexity of
computing the next belief state b from b grows with |S|? only in states of
complete uncertainty but is significantly faster in other cases.
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7 Experimental Results

7.1 Small Problems

For the first set of experiments with RTDP-BEL we considered the three prob-
lems from [11, 16, 13] called ‘Cheese’, 4x3 and 4x4. These are all small nav-
igation problems involving in the order of 11 — 16 states, 2 — 7 observations,
and 4 actions, formulated here as goal POMDPs with positive action costs.
For reasons of space we omit the details about the formulations (which follow
the above references) and the resulting performance curves, and focus on the
most relevant results.

The ‘Cheese’ and ‘4x4’ problems can both be solved optimally with value
iteration as the set of belief states b that are reachable from the initial belief
state is finite and small (this is due to the absence of noise in the actions
and observations). The average costs to the goal® for the resulting optimal
policies are 4.813 and 4.154 respectively, which are quite close to the measures
4.799 and 4.150 obtained by RTDP-BEL for the resolution values considered
in the interval 10...100. The curves showing the average cost to the goal as
a function of the number of trials is almost flat meaning that the behavior
of RTDP-BEL is nearly optimal from the the first trial. The average cost
to the goal obtained for the ‘4x3’ problem was 5.9 but this result cannot
be validated by value iteration as the set of reachable belief states for this
problem is infinite. In all cases the average time per trial (i.e., time to reach
the goal or the cutoff) is in the order of a few thousandths of second, ® and the
size of the hash table is below 69, 97, and 112 respectively for the resolution
values r = 20, » = 100 and r = cc.

The comparison with other POMDP methods over these problems is subtle
because they use a different cost/reward structure. In [7] the optimal average
reward per step reported for the ‘Cheese’ and ‘4x3’ problems is 0.186 and
0.192 respectively. Due to the simple structure of these problems, the average
reward per step should correspond to 1/(1+ ACG), where ACG is the average
cost to the goal. Plugging the values 4.799 and 4.150 into this equation, we
obtain that the average reward per step obtained by RTDP-BEL for these two
problems would be 0.172 and 0.194 respectively. While the second value is

2The average cost to the goal in all these problems is the average number of steps to
either reach the goal or exceed the cutoff.
3The experiments were run on a Pentium Pro running at 200 Mhz. The code is written

in C.
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Figure 5: The grids corresponding to the problems Brown57 and Brown89

almost identical to the one reported in [7], the first one is not. We haven’t
been able to figure out the reason for this difference.

We also used these problems to evaluate the importance of the heuristic
function hypp used by RTDP-BEL by setting it to 0. In such case, RTDP-BEL
eventually produces the same behavior but the convergence takes longer and
the size of the hash table grows larger (many more belief states are visited).
For the larger problems considered below, the size of the table grows so large
that the use of heuristic A~ = 0 is not even feasible.

7.2 Medium Sized Problems

We consider now the two medium sized navigation problems depicted Fig. 5
and taken from [7], where a robot starting at a random non-goal location
(with a uniform belief state over all such locations) has to find its way to the
goal (marked as G). The first problem involves 57 states (14 rooms with 4
possible orientations plus a goal), 21 observations (all combinations of walls
in each of the four directions, a ‘star’ and three visible landmarks when the
robot faces south in three particular locations), and 5 actions (stay in place,
more forward, turn right, turn left, turn around), and both observations and
actions are noisy (accuracies in the order of 70%).

In this problem, RTDP-BEL yields an average cost to the goal of 15.94 for
the two resolutions » = 20 and r = 100 after a few trials, and even the very
first trial yields good results; namely 16.59 and 17.10 respectively (Figure 6).
The resolution r = 5 is too coarse for this problem, producing an inferior
ACG value close to 19.84.

RTDP-BEL solves this problem in real-time with an average time per move
that is less than 0.025 seconds. The average time for the first trial is nearly

13



Brown 57 -- 10 trials, 1000 runs Brown 57 -- 5000 trials, 1 run
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Figure 6: Average cost to goal in Brown57. (a) Short term behavior: Average
over 1000 runs shown. (b) Long term behavior: Average over last 1000 trials
of single run shown

0.56 seconds which decreases slightly for successive trials. The average size
of the hash table after a single run of 5000 trials is 1434, 8399 and 19123 for
the resolutions r = 5, » = 20 and r = 100 respectively.

The comparison with the results reported in the literature is not simple
at they are focused on the median number of steps to the goal rather than
the average. The median has a tendency to ignore the size of ‘peaks’ and
therefore tends to be below the average in these type of problems. The best
algorithm in [7] is reported a median of 14 steps with a success rate of 99.2%.4
The median of RTDP-BEL for this problem is 18, 14 and 14 for the resolutions
r =5, r =20 and r = 100 with a 100% success rate in all cases, from the
first trial.

The second problem, Brown89, is larger involving 89 states (4 orientations
in 22 rooms plus a goal), 17 observations (all combinations of walls plus
‘star’) and the same five actions (Fig. 5.b). Convergence for this problem
takes longer (Fig. 7), and indeed after 10000 trials and approximately 19105
seconds for r = 20 (16926 seconds for » = 5) is not entirely clear RTDP-BEL
has converged. At that point the average cost to the goal is 32.360 (34.214
for » = 5); roughly a 52% improvement over the ACG that results after the

4The success rate is the percentage of runs that the algorithm reaches the goal state in
less than 251 steps.
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Brown 89 -- 20 trials, 1000 runs Brown 89 -- 1000 trials, 1 run
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Figure 7: Average cost per trial in Brown89. (a) Short term behavior: Aver-

age over 1000 runs shown. (b) Long term behavior: Average over last 1000

trials of single run shown

first trial: 61.157 for » = 20 (63.146 for » = 5). The average time per move
in the first trial is 0.057 seconds (0.052 seconds for » = 5), while the average
time to reach the goal is 3.673 seconds (3.293 seconds for r = 5).

In large, noisy problems such as this, RTDP-BEL behaves like an ‘anytime
algorithm’ [8]: more deliberation time usually means a better execution. Yet
it’s worth noting that even after only 20 trials, that take less than a minute
on average, RTDP-BEL yields an average cost of 42.7 (for » = 5), which is a
32% improvement over the average cost in the first trial, and 30% off from
the cost after 10000 trials.

For this problem, the median number of steps for the best heuristic al-
gorithm reported in [7] is 33 with a 83.7% success rate, where the median
corresponding to a ‘human expert’ is reported as 29 with a 100% success rate.
The median for RTDP-BEL was found to be 30 for both » = 5 and r = 20,
and in both cases the success rate was 100% from the first trial. The size of
the table after a single run of 10000 trials was found to be 5220 and 52090
respectively. Interestingly, [5] recently reports a median of 24 steps for this
problem with a success rate of 98%.
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Figure 8: Grid with 989 states from Wiering and Schmidhuber

7.3 A Large Problem

The largest problem considered is the maze shown in Fig. 8 from [20]. The
problem involves navigating a 23x26 grid to reach a goal destination marked
by the letter G in the figure. As in the problems above, the agent is initially
at a random non-goal location with uniform probability. In order to reach the
goal the agent must get through a door, and for that he needs the key which
is initially located at the position marked K. The total number of reachable
states in the problem is 989, corresponding to the free positions in the grid,
the boolean feature corresponding to whether the robot is carrying the key
or not, and the three door cells (which can be occupied only if the agent is
carrying the key). There are four actions corresponding to the four directions
and they all have deterministic effects. Observations are also noiseless and
reveal the occupancy of the nearby cells. The agent does not know its position
nor whether it’s carrying a key.

The average cost to the goal obtained in the first trial for this problem
was 68.44 with a 100% success rate (average taken over 1000 runs). The
first trial takes 4.8 seconds on average. The resolution parameter used was
r = 20 and the discount factor v = 0.95. The average cost to the goal
does not improve much after thousands of trials, and the average value after
10,000 trials (taken over the preceding 2000 trials) was around 67.
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7.4 Information Gathering Problem

The last problem is a navigation problem over the grid showed in Figure 9(a)
suggested by Sebastian Thrun. The agent starts in position 6 and has to reach
the goal which may be either at position 0 or 4. Moreover, one of these two
positions — the one that is not the goal — is a high penalty state with cost
50. Finally, at position 9 there is a ‘map’ that reports the true position of
the goal (i.e., either 0 or 4) with probability p and the other possible position
with probability 1—p. The current position of the robot is always observable.

The resulting curves for different values for p are shown in Figs. 9(b).
The optimal solution is to go to position 9, inspect the map for a number of
intervals that depend on p, and head up for the position believed to be the
goal. This is what the policies obtained by RTDP-BEL do after a few trials.
When p is one, completely accurate information about the goal is obtained
from the first reading of the ‘map’, and then the agent heads up for the goal.
When p is lower, e.g., p = 0.75, more observations about the map are needed
before heading for the goal and learning that takes more trials. Note that this
model presumes that the noisy observations about the map are independent
of each other given the state of the agent. This assumption can be relaxed
if so desired by including an additional variable in the model (e.g., ‘sensor
status’).

It is interesting that the heuristic obtained from the underlying MDP is
very misleading in this problem as it initially leads the agent in the wrong
direction. Then when the agent gets sufficiently close to the possible locations
of the goal he ‘notices’ the high-risk involved in getting closer and backs up.
After some blind exploration it finds the map and heads back to the goal.
After a few trials the algorithm learns to go directly to the map and remain
there until it’s sufficiently certain of the location of the goal.

It’s worth emphasizing that the search for the map is blind, namely un-
like the search for the goal it is not guided by any heuristic. This means
that in problems involving large state spaces in which the agent has to get
information before heading for the goal, the first trials of RTDP-BEL may
involve large numbers of steps, and hence the convergence of RTDP-BEL will
be slow. For such type of problems, heuristic functions that take the value
of information into account would be needed.
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Figure 9: Information gathering problem: average cost over 1000 runs shown.

8 Conclusions

Real-time dynamic programming appears to provide a principled and practi-
cal way for solving large POMDPs. The resulting solutions are not necessarily
optimal due to two reasons: first, it’s not possible to prove that RTDP-BEL
has converged by just looking at the average cost curves or estimate values;
and second, limited resolution values r may introduce errors. In practice,
this limitation does not appear to be problematic, and recently we have ob-
tained positive results for a number of high-level planning problems that were
translated into POMDPs and solved by RTDP-BEL. Details can be found in
[9, 3]. RTDP-BEL is related to methods such as [13] and [5] that also pro-
vide approximate solutions of the information MDP, even if the nature of the
approximations are different in the three cases.

As we mentioned in Section 7.4 we expect RTDP-BEL not to do well in
tasks involving wvery large spaces in which the search for information must
precede the search for the goal. In such cases, the heuristic used to initial-
ize RTDP-BEL may provide no guidance and RTDP-BEL may end up visiting
too many states. We are currently exploring the use of POMDPs and the
RTDP-BEL algorithm for two problems of this type. One is sorting a vector of
numbers; the other is inferring decision trees from data. We have formulated
both problems as POMDPs and have obtained results using different heuris-
tic functions and different representations of the belief states. We expect to
report these results elsewhere.
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