
Solving Large POMDPs using Real TimeDynamic ProgrammingH�ector Ge�ner and Blai BonetDepartamento de Computaci�onUniversidad Sim�on Bol��varAptdo. 89000, Caracas 1080-A, Venezuelafhector,bonetg@usb.veAbstractPartially Observable Markov Decision Processes (pomdps) are gen-eral models of sequential decision problems in which both actions andobservations may be noisy. Many problems of interest can be formu-lated as pomdps yet the use of pomdps has been limited by the lack ofe�ective algorithms: optimal algorithms don't scale up and heuristicalgorithms often do poorly. In this paper, a new pomdp algorithm isintroduced that combines the bene�ts of optimal and heuristic pro-cedures producing good solutions quickly even in problems that arelarge. Like optimal procedures, the procedure rtdp-bel attempts tosolve the information mdp, yet like heuristic procedures, it makes de-cisions in real time following a suitable heuristic function. rtdp-belis a Real Time Dynamic Programming algorithm [1], namely, a greedysearch algorithm that learns to solve mdps by repeatedly updating theheuristic values of the states that are visited. As shown by Barto etal. such updates eventually deliver an optimal behavior provided thatthe state space is �nite and the initial heuristic values are admissible.Since information mdps have in�nite state spaces we discretize prob-abilities and combine them with heuristic values obtained from theunderlying mdp. Although the resulting algorithm is not guaranteedto be optimal, experiments over a number of benchmarks suggest thatlarge pomdps are quickly and consistently solved, and that solutions,if not optimal, tend to be very good.1



1 IntroductionPartially Observable Markov Decision Processes (pomdps) are general mod-els of sequential decision problems in which both actions and observationsmay be probabilistic [17, 12, 6]. Many problems of interest can be formulatedas pomdps yet the use of pomdps has been limited by the lack of e�ectivealgorithms [7]. In this paper, we introduce a new pomdp algorithm thatcombines the bene�ts of exact and heuristic algorithms producing good solu-tions in a short time. The algorithm is a Real Time Dynamic Programming(rtdp) procedure [1] and can be seen both as a learning real-time search al-gorithm [10] or as an asynchronous form of value iteration [2]. While rtdp isguaranteed to yield optimal solutions for a large class of �nite-state mdps, itcan only produce approximate solutions to pomdps. Nonetheless, the resultsobtained over a number of benchmark problems suggest that these solutionsare good, improve with time, and can be computed reasonably fast even inlarge problems.The paper is mostly self-contained and brie
y reviews Learning Real TimeSearch (Section 2), Markov Decision Problems (Section 3), Real Time Dy-namic Programming (Section 4), and Partially Observable mdps (Section 5).It then presents the pomdp algorithm (Section 6) an empirical evaluation(Section 7), and a summary of the main ideas and current work (Section 8).2 Learning Real Time SearchReal time search algorithms are algorithms that, like chess playing programs,perform a limited amount of local search before committing and executingmoves [10]. For example, a real time search algorithm for solving the 8-puzzlemay evaluate each of the states that can be obtained in a single move andthen move to the state with lowest value. If the 8-puzzle is simulated inthe computer, the resulting algorithm is a form of heuristic hill-climbing;otherwise it's a form of closed-loop control: the state is observed, an actionis selected and executed, a new state is observed, and so on.In a real time search framework, the agent does not solve the problembefore acting; it just performs a limited lookahead, make what appears tobe the best move, and repeats this process until the goal is reached. Whenthere is su�cient time, the lookahead may be designed to seek global optimalmoves (by making use of algorithms such as A�), while when time is scarce,2



it may just consider the value of neighbor states only. In between, manyalternatives are possible like considering the value of the states that can bereached in a �xed number of moves [10].In the simplest case, when there is no lookahead, the basic loop of theheuristic real time search algorithm (rts) is given in Fig. 1, where c(a; s)stands for the positive cost of taking action a in state s, sa stands for thestate predicted after doing action a in s, and h is the heuristic function.1. Evaluate each action a applicable in current state s asQ(a; s) = c(a; s) + h(sa)2. Apply action a that minimizes Q(a; s), breaking ties randomly3. Observe resulting state s04. Exit if s0 is a goal state, else set s to s0 and go to 1Figure 1: Real Time Search (rts)rts evaluates the actions that are applicable in the current state s, appliesthe best action a, and repeats the same process until reaching a goal. If theaction model is completely accurate, Step 3 can be omitted and s0 can bereplaced by the predicted state sa. Otherwise, the use of the observed states0 as opposed to the predicted state sa, makes rts a closed-loop algorithmthat is more robust to the possible presence of perturbations in the real orsimulated system.rts, unlike systematic heuristic algorithms such as A� [14], does not yieldoptimal (i.e., minimum-cost) solutions in general even when the heuristicfunction h is admissible (i.e., underestimates the cost to the goal). Actually,like most hill climbing algorithms, rts can be trapped into loops and missthe goal state completely. A simple variation due to Korf, however, avoidsthese problems while retaining the greedy character of rts.Learning Real Time A�, abbreviated lrta� [10], is a slight modi�cationof rts in which the heuristic function h(s) is used to provide the initial costestimates only. Every time an action a is selected and applied in s, suchestimates, symbolized as V (s), are updated as:V (s) := c(a; s) + V (sa) (1)3



where V (sa) is the estimate of the predicted state sa. These updates aimto enforce the relation that has to hold between V (s) and V (sa) when ais an optimal action in s, which as noted in [1] is the key idea in dynamicprogramming.For the implementation of lrta�, the estimates V (s) are stored in a hashtable that initially contains the heuristic value of the starting state only.Then, when the value V (s) of a state s that is not in the table is needed,a new entry with V (s) set to h(s) is allocated. These entries are updatedfollowing (1) when a move from s is performed.The loop of the lrta� algorithm extends the rts loop with a singleadditional update step as indicated Fig. 2.1. Evaluate each action a applicable in s asQ(a; s) = c(a; s) + V (sa)initializing V (sa) to h(sa) when sa is not in the table2. Apply action a with minimum Q(a; s) value, breaking ties randomly3. Update V (s) to Q(a; s)4. Observe resulting state s05. Exit: if s0 is a goal, else set s to s0 and go to 1Figure 2: Learning Real Time Search (lrta�)A basic property of lrta� is that it does not get trapped into loopsand always reaches the goal if the goal is reachable. More interestingly,when the heuristic function h(s) is admissible, consecutive trials of lrta�eventually yield an optimal behavior [10].1 As a result, if lrta� is giventhe non-informative but admissible heuristic h(s) = 0 in the 8-puzzle, it willeventually �nd the optimal heuristic values and the optimal moves. Therate at which lrta� �nds these moves depends in general on the quality ofh. A better heuristic function yields a more focused search, a smaller hashtable, and hence, a higher ratio of updates on the relevant states and fasterconvergence.1Both results presume that the action model is correct, the state space is �nite, andgoals are reachable from every state [10]. 4



3 MDPsThe type ofmdps that we consider are a simple generalization of the standardsearch model used in AI in which actions can have probabilistic e�ects and fu-ture costs may be discounted. Goal mdps, as we call them, are characterizedby: � a state space S� initial and goal situations given by sets of states� sets A(s) � A of actions applicable in each state s� positive costs c(a; s) of performing action a in s,� transition probabilities Pa(s0js) of ending up in state s0 after doingaction a 2 A(s) in s, and� a discount factor 0 � 
 � 1Since the e�ects of actions are no longer predictable, the solution of an mdp isnot an action sequence but a function mapping states s into actions a 2 A(s).Such a function is called a policy and its e�ect is to assign a probability toeach state trajectory. For convenience, actions in the goal states are assumedto have zero costs and no e�ects (i.e., goal are absorbing).The expected cost of a policy from a given state is the (possibly dis-counted) weighted average of the costs of all trajectories starting in thatstate times their probability. A policy is optimal when it's expected costfrom any state is minimized. General conditions for the existence of suchpolicies and algorithms for computing them can be found in [15, 2]. The keyfact underlying such algorithms is that a necessary and su�cient conditionfor a policy �� to be optimal is that the expected costs V �(s) that result fromstarting in state s and then acting according to �� must satisfy Bellman'sequation: V �(s) = mina2A(s)[c(a; s) + 
 Xs02S Pa(s0js)V �(s0)] (2)Indeed, it is common to solve mdps by obtaining the values V �(s) from thisequation and plugging the results into:��(s) = �1mina2A(s)[c(a; s) + 
 Xs02S Pa(s0js)V �(s0)] (3)5



The value iteration method [15] solves (2) by successive approximations inwhich at each time point i, estimates Vi(s0) of V �(s0) are plugged into theright hand side of (2) to yield better estimates Vi+i(s) on the left hand side.Such an operation is called an update, and for a large class of mdps, repeatedupdates eventually yield the optimal values.4 Real Time Dynamic ProgrammingClassical techniques for solving mdps like value iteration have wide applica-tions in Engineering and can be used to solve problems with million of states[15]. Yet many problems of interest, in particular in AI, have state spacesthat are signi�cantly larger. For such problems, even a single iteration ofvalue iteration is unfeasible. Part of the problem is that the standard DPmethods are designed to look for optimal policies over all possible states.In most cases this is not needed. Often when the initial and goal states aregiven, only a small fraction of the states are relevant for solving the problemand in such cases most of the e�ort that goes into updating all states iswasted. Real Time Dynamic Programming is a family of methods for solvingmdps that tries to avoid such wasteful updates by performing the updatesconcurrently with the problem solving [1]. The idea, like in Korf's lrta�, isto update while searching, focusing only on the states that are encounteredin the search.More precisely, while an iteration of value iteration uses Bellman's equa-tion to update the values of all states s in the form:V �t+1(s) := mina2A(s)[c(a; s) + 
 Xs02S pa(s0js)V �t (s0)] (4)an iteration of rtdp uses the same expression to update the value of thecurrent state only. Moreover, after such an update, the best action accordingto the current estimates is applied and the same process is repeated on thestate that results. The basic loop of the rtdp algorithm is shown in Figure 3.By comparing the algorithms in Figures 2 and 3, it's clear that themain di�erence between lrta� and rtdp is the evaluation of the `promise'Q(a; s) of action a in s. Indeed as noted in [1], rtdp is nothing else but thestochastic generalization of lrta� and collapses to lrta� when there is nodiscounting and actions are deterministic (i.e., all probabilities are either 0or 1). 6



1. Evaluate each action a applicable in s as:Q(a; s) = c(a; s) + 
 Xs02S pa(s0js)V (s0)initializing V (s0) to h(s0) when s0 is not in the table2. Apply action a with minimum Q(a; s) value, breaking ties randomly3. Update V (s) to Q(a; s)4. Observe resulting state s05. Exit if s0 is a goal, else set s to s0 and go to 1Figure 3: Real Time Dynamic Programming (rtdp)The heuristic values h(s) used to initialize V (s) are crucial in both rtdpand lrta�: better heuristics mean a more focused search for the goal and amore focused search means more updates on the states that matter. Like-wise, if the heuristic function is admissible, rtdp eventually converges to anoptimal solution [1].Good heuristic functions can make lrta� and rtdp suitable for problemsthat have huge state spaces. For example, [4] presents a lrta� algorithm forStrips planning that handles problems with more than 1020 states. Herewe apply rtdp to mdps with very large spaces as well. Heuristic functionsindeed are an alternative to the function approximation methods used inmodel-free rtdp methods [18, 19] for dealing with large problems.5 Partially Observable mdpsPartially Observable mdps generalize mdps allowing agents to have incom-plete information about the state of the environment [17, 12]. Besides thesets of actions and states, and the probability and cost functions, a pomdpinvolves prior beliefs in the form of a probability distribution P (s) and anobservation model in the form of a set O of possible observations and prob-abilities Pa(ojs) of observing o 2 O in state s after having done action a.The techniques considered above are not directly applicable to pomdpsbecause while they do not presume that the agent can predict the next state,they do assume that he can recognize the next state once he gets there.7



The most common way to solve pomdps is by formulating them as com-pletely observable mdps over the belief states of the agent [17, 6], where beliefstates are probability distributions over the real states s. Indeed while thee�ects of actions on states cannot be predicted, the e�ects of actions on beliefstates can. More precisely, the belief state ba that results from having doneaction a in the belief state b, and the belief state boa that results from havingobserved o after having done a in b, are given by the equations [6]:ba(s) = Xs02S Pa(sjs0)b(s0) (5)ba(o) = Xs2S Pa(ojs)ba(s) (6)boa(s) = Pa(ojs)ba(s)=ba(o) when ba(o) 6= 0 (7)As a result, the incompletely observable problem of going from an initial stateto a goal state can be transformed into the completely observable problemof going from one initial belief state to a �nal belief state. The BellmanEquation for the resulting belief mdp isV �(b) = mina2A(b)[c(a; b) + 
Xo2O ba(o)V �(boa)] (8)where c(a; b) is the average cost of doing action a in bc(a; b) =Xs2S c(a; s)b(s) (9)and A(b) is the set of actions a that are applicable in every state s possiblewith respect to b, i.e., with b(s) > 0. Note that a belief mdp is nothing elsebut an mdp with probability distributions as states.We de�ne the goal belief states as the probability distributions bG suchthat bG(s) = 0 for all non-goal states s, i.e., s 62 G. While in goal mdpswe are interested in policies over S that minimize the expected cost to thegoals G � S, in goal pomdps we are interested in policies over Bel(S) {the probability distributions over S { that minimize the expected cost to thebeliefs states bG. Finding such policies however is not simple. Belief mdpsinvolve state spaces that are in�nite and continuous. For this reason, exactalgorithms exploit a �nite representation of the value function V �(b) due toSondik [17], who showed that the optimal value function Vt that results whenthe next t time points are considered (the so-called optimal t-horizon value8



function) is piecewise linear and convex, and can be represented by a �niteset of real vectors At as: Vt(b) = max�2At � � b (10)The optimal in�nite horizon value function, V � = limt!1 Vt, can be approx-imated arbitrarily close by taking t su�ciently large. The Witness algorithm[6] approximates V � in this way and is based on an e�cient method for�nding the set of vectors At in terms of the set of vectors At�1.pomdp algorithms based on Sondik's representation have been success-fully used to solve small problems but have di�culties for scaling up. This isbecause the vector sets At can grow exponentially in size [7]. These di�cul-ties have led to a number of fast approximation methods that often performwell when the degree of uncertainty is low but tend to do poorly in othercases. One such method, is the Qmdp method [7] that is based on the simpli-fying assumption that all future states will be completely observable. In suchcase, the value Q(a; b) of an action a given a belief state b can be computedfrom Q(a; b) =Xs2S b(s)Q�mdp(s; a) (11)where Q�mdp(s; a) is the optimal value of action a in s in the underlying mdp.Since the simplifying assumption is usually false, the Q(a; b) values are justheuristic estimates of the optimal Q�(b; a) values. Moreover, the estimatesare admissible as they represent the optimal cost of a simpler problem inwhich the agent has more information that it actually has. Indeed, theQmdp method is a real-time search algorithm (Fig. 1) operating in beliefspace with an heuristic function hmdphmdp(b) def= Xs2S b(s)V �mdp(s) (12)where V �mdp(s) = minaQ�mdp(a; s). Given this correspondence, the limita-tions ofQmdp [7] | loops and poor performance in large problems | are notsurprising. Following Korf's [10], these problems can be eliminated by con-verting the Qmdp algorithm into a learning algorithm in the style of lrta�(Figure 2). This only requires cost estimates V (b) initialized to hmdp(b) andupdated to V (b) := c(a; b) + V (ba) (13)every time action a is performed in b. The resulting lrta� algorithm is asgreedy as the Qmdp method but avoids cycles and improves with time.9



1. Evaluate each action a applicable in b asQ(a; b) = c(a; b) +Xo2O ba(o)V (boa)initializing V (boa) to h(boa) when boa not in table2. Apply action a that minimizes Q(a; b) breaking ties randomly3. Update V (b) to Q(a; b)4. Observe o5. Compute boa6. Exit if boa is a goal (belief) state, else set b to boa and go to 1Figure 4: rtdp-bel: the rtdp algorithm for pomdpsStill neither the Qmdp method nor its lrta� version deal with observa-tions. In the presence of observations the result of an action a is no longera unique belief state ba but a collection of belief states boa each with proba-bility ba(o). As a result, the update captured by expression (13) needs to bemodi�ed into: V (b) := c(a; b) +Xo2O ba(o)V (boa) (14)6 Solving pomdps by rtdpThe algorithm that results from extending the Qmdp method with obser-vations and updates is the rtdp algorithm shown in Fig. 4 that we callrtdp-bel.The main computational e�ort in the inner loop of rtdp-bel lies inthe computation of Q(a; b) in Step 1 whose complexity is jSj2 � jOj in theworst case (computing ba(o) and boa from Equations 6 and 7 is jSj2). Theduration of each trial and the number of trials needed until the performanceof rtdp-bel stabilizes depends on the quality of the heuristic function hmdpfor the pomdp at hand. In most of the examples reported in the literature[7] (see below), the hmdp heuristic is good and delivers good solutions afterfew trials. The same is not true for non-informative heuristics such as h = 0(see Section 7.1) or for information-gathering problems (see Section 7.4).Yet before analyzing the performance of rtdp-bel, we introduce a simple10



approximation scheme that is needed for handling large and noisy pomdps.6.1 Belief DiscretizationThe approximation scheme is a standard state aggregation technique thatreduces space requirements and allows some form of generalization by repre-senting the value of many states by a single entry in the hash table. Basically,given an integer resolution parameter r > 0, the probabilities b(s) are dis-cretized into r discrete levels before accessing the table. More precisely, forreading and writing the table, and only for this, the vector b of probabilitiesb(s) for all s is replaced by the vector of discretized probabilities br(s), wherebr(s) is the element in the set 0, 1=r, 2=r, . . . , 1 closest to b(s). This iscomputed by setting br(s) to round(p � r)=r. The result of this approxima-tion is that a single value V (br) approximates the in�nite values V (b) of allbelief states that discretize into br. The consequence is that the hash tablegrows smaller, the values in the table are updated more often, and rtdp-bellearns faster. Best results have been obtained for values of r in the interval[10; 100]. Higher values often generate too many entries in the table, whilelower values often collapse the values of belief states that should be treateddi�erently. It should be noted that while the number of discretized beliefstates br is �nite it is still quite large.6.2 ImplementationWe mention two points about the implementation of rtdp-bel that areimportant. First, we use a cuto� parameter max, set to 250, such that anytrial with more than max steps is terminated. Such cuto� parameter isnot strictly needed in �nite state stochastic-shortest path mdps as in suchproblems rtdp is bound to reach the goal in every trial after a �nite numberof steps [1, 2]. Yet even in such cases, and with more reason in belief mdps,the cuto� parameter is useful as long searches for the goal usually produceupdates in areas of the state space that are not relevant. In addition, weuse an sparse representation for the belief states b so that the complexity ofcomputing the next belief state boa from b grows with jSj2 only in states ofcomplete uncertainty but is signi�cantly faster in other cases.11



7 Experimental Results7.1 Small ProblemsFor the �rst set of experiments with rtdp-bel we considered the three prob-lems from [11, 16, 13] called `Cheese', 4x3 and 4x4. These are all small nav-igation problems involving in the order of 11� 16 states, 2� 7 observations,and 4 actions, formulated here as goal pomdps with positive action costs.For reasons of space we omit the details about the formulations (which followthe above references) and the resulting performance curves, and focus on themost relevant results.The `Cheese' and `4x4' problems can both be solved optimally with valueiteration as the set of belief states b that are reachable from the initial beliefstate is �nite and small (this is due to the absence of noise in the actionsand observations). The average costs to the goal2 for the resulting optimalpolicies are 4:813 and 4:154 respectively, which are quite close to the measures4:799 and 4:150 obtained by rtdp-bel for the resolution values consideredin the interval 10 : : : 100. The curves showing the average cost to the goal asa function of the number of trials is almost 
at meaning that the behaviorof rtdp-bel is nearly optimal from the the �rst trial. The average costto the goal obtained for the `4x3' problem was 5:9 but this result cannotbe validated by value iteration as the set of reachable belief states for thisproblem is in�nite. In all cases the average time per trial (i.e., time to reachthe goal or the cuto�) is in the order of a few thousandths of second, 3 and thesize of the hash table is below 69, 97, and 112 respectively for the resolutionvalues r = 20, r = 100 and r =1.The comparison with other pomdp methods over these problems is subtlebecause they use a di�erent cost/reward structure. In [7] the optimal averagereward per step reported for the `Cheese' and `4x3' problems is 0:186 and0:192 respectively. Due to the simple structure of these problems, the averagereward per step should correspond to 1=(1+acg), where acg is the averagecost to the goal. Plugging the values 4:799 and 4:150 into this equation, weobtain that the average reward per step obtained by rtdp-bel for these twoproblems would be 0:172 and 0:194 respectively. While the second value is2The average cost to the goal in all these problems is the average number of steps toeither reach the goal or exceed the cuto�.3The experiments were run on a Pentium Pro running at 200 Mhz. The code is writtenin C. 12



a)
G321

b)
GFigure 5: The grids corresponding to the problems Brown57 and Brown89almost identical to the one reported in [7], the �rst one is not. We haven'tbeen able to �gure out the reason for this di�erence.We also used these problems to evaluate the importance of the heuristicfunction hmdp used by rtdp-bel by setting it to 0. In such case, rtdp-beleventually produces the same behavior but the convergence takes longer andthe size of the hash table grows larger (many more belief states are visited).For the larger problems considered below, the size of the table grows so largethat the use of heuristic h = 0 is not even feasible.7.2 Medium Sized ProblemsWe consider now the two medium sized navigation problems depicted Fig. 5and taken from [7], where a robot starting at a random non-goal location(with a uniform belief state over all such locations) has to �nd its way to thegoal (marked as G). The �rst problem involves 57 states (14 rooms with 4possible orientations plus a goal), 21 observations (all combinations of wallsin each of the four directions, a `star' and three visible landmarks when therobot faces south in three particular locations), and 5 actions (stay in place,more forward, turn right, turn left, turn around), and both observations andactions are noisy (accuracies in the order of 70%).In this problem, rtdp-bel yields an average cost to the goal of 15:94 forthe two resolutions r = 20 and r = 100 after a few trials, and even the very�rst trial yields good results; namely 16:59 and 17:10 respectively (Figure 6).The resolution r = 5 is too coarse for this problem, producing an inferioracg value close to 19:84.rtdp-bel solves this problem in real-time with an average time per movethat is less than 0:025 seconds. The average time for the �rst trial is nearly13
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Figure 6: Average cost to goal in Brown57. (a) Short term behavior: Averageover 1000 runs shown. (b) Long term behavior: Average over last 1000 trialsof single run shown0:56 seconds which decreases slightly for successive trials. The average sizeof the hash table after a single run of 5000 trials is 1434, 8399 and 19123 forthe resolutions r = 5, r = 20 and r = 100 respectively.The comparison with the results reported in the literature is not simpleat they are focused on the median number of steps to the goal rather thanthe average. The median has a tendency to ignore the size of `peaks' andtherefore tends to be below the average in these type of problems. The bestalgorithm in [7] is reported a median of 14 steps with a success rate of 99:2%.4The median of rtdp-bel for this problem is 18, 14 and 14 for the resolutionsr = 5, r = 20 and r = 100 with a 100% success rate in all cases, from the�rst trial.The second problem, Brown89, is larger involving 89 states (4 orientationsin 22 rooms plus a goal), 17 observations (all combinations of walls plus`star') and the same �ve actions (Fig. 5.b). Convergence for this problemtakes longer (Fig. 7), and indeed after 10000 trials and approximately 19105seconds for r = 20 (16926 seconds for r = 5) is not entirely clear rtdp-belhas converged. At that point the average cost to the goal is 32:360 (34:214for r = 5); roughly a 52% improvement over the acg that results after the4The success rate is the percentage of runs that the algorithm reaches the goal state inless than 251 steps. 14
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Figure 7: Average cost per trial in Brown89. (a) Short term behavior: Aver-age over 1000 runs shown. (b) Long term behavior: Average over last 1000trials of single run shown�rst trial: 61:157 for r = 20 (63:146 for r = 5). The average time per movein the �rst trial is 0:057 seconds (0:052 seconds for r = 5), while the averagetime to reach the goal is 3:673 seconds (3:293 seconds for r = 5).In large, noisy problems such as this, rtdp-bel behaves like an `anytimealgorithm' [8]: more deliberation time usually means a better execution. Yetit's worth noting that even after only 20 trials, that take less than a minuteon average, rtdp-bel yields an average cost of 42:7 (for r = 5), which is a32% improvement over the average cost in the �rst trial, and 30% o� fromthe cost after 10000 trials.For this problem, the median number of steps for the best heuristic al-gorithm reported in [7] is 33 with a 83:7% success rate, where the mediancorresponding to a `human expert' is reported as 29 with a 100% success rate.The median for rtdp-bel was found to be 30 for both r = 5 and r = 20,and in both cases the success rate was 100% from the �rst trial. The size ofthe table after a single run of 10000 trials was found to be 5220 and 52090respectively. Interestingly, [5] recently reports a median of 24 steps for thisproblem with a success rate of 98%.
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Figure 8: Grid with 989 states from Wiering and Schmidhuber7.3 A Large ProblemThe largest problem considered is the maze shown in Fig. 8 from [20]. Theproblem involves navigating a 23x26 grid to reach a goal destination markedby the letter g in the �gure. As in the problems above, the agent is initiallyat a random non-goal location with uniform probability. In order to reach thegoal the agent must get through a door, and for that he needs the key whichis initially located at the position marked k. The total number of reachablestates in the problem is 989, corresponding to the free positions in the grid,the boolean feature corresponding to whether the robot is carrying the keyor not, and the three door cells (which can be occupied only if the agent iscarrying the key). There are four actions corresponding to the four directionsand they all have deterministic e�ects. Observations are also noiseless andreveal the occupancy of the nearby cells. The agent does not know its positionnor whether it's carrying a key.The average cost to the goal obtained in the �rst trial for this problemwas 68:44 with a 100% success rate (average taken over 1000 runs). The�rst trial takes 4:8 seconds on average. The resolution parameter used wasr = 20 and the discount factor 
 = 0:95. The average cost to the goaldoes not improve much after thousands of trials, and the average value after10; 000 trials (taken over the preceding 2000 trials) was around 67.16



7.4 Information Gathering ProblemThe last problem is a navigation problem over the grid showed in Figure 9(a)suggested by Sebastian Thrun. The agent starts in position 6 and has to reachthe goal which may be either at position 0 or 4. Moreover, one of these twopositions | the one that is not the goal | is a high penalty state with cost50. Finally, at position 9 there is a `map' that reports the true position ofthe goal (i.e., either 0 or 4) with probability p and the other possible positionwith probability 1�p. The current position of the robot is always observable.The resulting curves for di�erent values for p are shown in Figs. 9(b).The optimal solution is to go to position 9, inspect the map for a number ofintervals that depend on p, and head up for the position believed to be thegoal. This is what the policies obtained by rtdp-bel do after a few trials.When p is one, completely accurate information about the goal is obtainedfrom the �rst reading of the `map', and then the agent heads up for the goal.When p is lower, e.g., p = 0:75, more observations about the map are neededbefore heading for the goal and learning that takes more trials. Note that thismodel presumes that the noisy observations about the map are independentof each other given the state of the agent. This assumption can be relaxedif so desired by including an additional variable in the model (e.g., `sensorstatus').It is interesting that the heuristic obtained from the underlying mdp isvery misleading in this problem as it initially leads the agent in the wrongdirection. Then when the agent gets su�ciently close to the possible locationsof the goal he `notices' the high-risk involved in getting closer and backs up.After some blind exploration it �nds the map and heads back to the goal.After a few trials the algorithm learns to go directly to the map and remainthere until it's su�ciently certain of the location of the goal.It's worth emphasizing that the search for the map is blind, namely un-like the search for the goal it is not guided by any heuristic. This meansthat in problems involving large state spaces in which the agent has to getinformation before heading for the goal, the �rst trials of rtdp-bel mayinvolve large numbers of steps, and hence the convergence of rtdp-bel willbe slow. For such type of problems, heuristic functions that take the valueof information into account would be needed.17
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Figure 9: Information gathering problem: average cost over 1000 runs shown.8 ConclusionsReal-time dynamic programming appears to provide a principled and practi-cal way for solving large pomdps. The resulting solutions are not necessarilyoptimal due to two reasons: �rst, it's not possible to prove that rtdp-belhas converged by just looking at the average cost curves or estimate values;and second, limited resolution values r may introduce errors. In practice,this limitation does not appear to be problematic, and recently we have ob-tained positive results for a number of high-level planning problems that weretranslated into pomdps and solved by rtdp-bel. Details can be found in[9, 3]. rtdp-bel is related to methods such as [13] and [5] that also pro-vide approximate solutions of the information mdp, even if the nature of theapproximations are di�erent in the three cases.As we mentioned in Section 7.4 we expect rtdp-bel not to do well intasks involving very large spaces in which the search for information mustprecede the search for the goal. In such cases, the heuristic used to initial-ize rtdp-bel may provide no guidance and rtdp-bel may end up visitingtoo many states. We are currently exploring the use of pomdps and thertdp-bel algorithm for two problems of this type. One is sorting a vector ofnumbers; the other is inferring decision trees from data. We have formulatedboth problems as pomdps and have obtained results using di�erent heuris-tic functions and di�erent representations of the belief states. We expect toreport these results elsewhere. 18
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