
GPT: A Tool for Planning with Uncertainty and Partial Information

Blai Bonet
Departamento de Computación

Universidad Simon Bolı́var
Caracas, Venezuela

bonet@ldc.usb.ve

Héctor Geffner
Departamento de Computación

Universidad Simon Bolı́var
Caracas, Venezuela

hector@ldc.usb.ve

1 Introduction
We describe the GPT system and its utilization over a num-
ber of examples. GPT (General Planning Tool) is an inte-
grated software tool for modeling, analyzing and solving a
wide range of planning problems dealing with uncertainty
and partial information, that has been used for us and others
for research and teaching. Our approach is based on differ-
ent state models that can handle various types of action dy-
namics (deterministic and probabilistic) and sensor feedback
(null, partial, and complete). The system consists mainly
of a high-level language for expressing actions, sensors, and
goals, and a bundle algorithms based on heuristic search for
solving them. The language is one of GPT’s strengths since
it presents the user a consistent and unified framework for
the planning task. These descriptions are then solved by ap-
propriate algorithms chosen from the bundle. The output for
all models is a plan that is ready for execution and analysis;
moreover, for a class of problems described below, it is an
optimal plan.

The rest of the paper is organized as follows. In next two
sections, we describe the mathematical models that formal-
ize the tasks GPT is able to solve, and the algorithms used to
solve them. In Sect. 4, we show GPT’s language with an ex-
ample and give an overview of its syntax. At the end, Sect. 6
shows results over selected examples from different classes of
problems; it contains actual input and output to GPT as cod-
ification of problems in the language and the resulting plans
generated by GPT.

2 State Models
We briefly review the mathematical models that make vari-
ous forms of planning precise according to the type of action
dynamics and sensor feedback. In each case, the models de-
termine what the planning task is and what is the form of the
solution. A formal and through-full exposition can be found
in [5].

State models are the most basic models in AI and consist
of a finite set of states

�
, a finite set of actions � , and a state

transition function that describe how actions map states into
successor states. They are used to represent the world when
building a controller whose job is to choses actions such that
certain goals can be achieved. There are two types of con-
trollers: open-loop in which a control plan or policy is cho-
sen off-line and then applied to the world without consider-
ing possible feedback, and closed-loop, a more robust one, in

which the controller choses actions based on the sequence of
past observations.

The planning problem can then be cast as a control prob-
lem in a state space where the task is to take actions that lead
an initial state into a set of goal states. Systems with com-
plex dynamics can behave stochastically when operated by a
given controller; that is, the sequence of visited states may
vary for different executions started from a common initial
state. Each such sequence has an associated cost and proba-
bility; the cost given by the cost of the actions in the sequence
and the probability determined by the dynamics. The costs
and probabilities are then combined to define a unique cost
measure associated with the controller, so that different con-
troller can be compared by comparing their costs. Thus, we
say that a controller (that we also called a plan or policy) is
optimal if it is of minimum expected cost.

We’ll consider the different classes of problems that result
from combining different dynamics and sensor feedback. For
system dynamics, we consider three possibilities

� Deterministic: in this case the dynamics is represented
by a deterministic state-transition function �����	��

������� so
that ��������
�������� stands for the unique next state that result
from doing action � in state � , for ������
���� (the set of
applicable actions in state �).

� Non-Deterministic: in these problems, actions may re-
sult in more than one successor state when applied to
certain states. They are represented by a set function
��������
���� � �"! �

that maps a state � and action � into the
set of possible next states ��������
��#�$��� .

� Probabilistic: these are models with non-deterministic
dynamics extended with probability distributions%
���&'������� over �����	��
(�#�$��� for all � and � . They are used
when a more precise description of the dynamics is
needed.

Although, in principle, a non-deterministic model is equiva-
lent to a probabilistic one in which all distributions are uni-
form, we introduce a distinction that makes them different.
Namely, that the user in the non-deterministic case is inter-
ested in minimizing the cost of the worst-possible trajectory
no matter how probable it is. Thus, both models are different
since it is not hard to build examples in which the optimal
policies differ for the cases mentioned before.

The feedback is what the controller gets from the environ-
ment after applying the actions. It is described by observa-
tions)�
��#�$��� that are obtained when then real state produced

Transition Function
Deterministic Non-deterministic Probabilistic

Fe
ed

ba
ck Complete Classicala Non-deterministic Probabilistic

Partial Contingent Contingent Prob. Contingent
Null Conformant Conformant Prob. Contingent

aClosed-loop controller.

Table 1: The different planning tasks along three different dimensions: feedback, transition function, and initial states.

by the action is � . The different possibilities for the sensor
model are

� Complete: the controller has full information about the
state of the system at any moment. They are character-
ized by requiring)�
����������)�
�� � ����� if and only if ��� � � ;
e.g.,)�
(�#��� ��� � .

� Partial: in this case, the observations don’t identify
states uniquely since different states may incur in the
same observation. However, after obtaining)�
(�#�$��� , the
controller knows that the true state is not � � for)�
(� � �$��� ��
)�
�������� .

� Null: this extreme case of partial sensing corresponds
to a blind controller, and is characterized by letting
)�
����������)�
�� � ��� � for all ���'� � .

Another dimension to consider is given by the number of
possible initial states of the system. On one hand, as in clas-
sical planning, is to assume the system always starts at one
and the same initial state. The other possibility is to allow
for multiple possible initial states of the system, that is of-
ten used to model systems with a unique but unknown initial
state. These three features, dynamics, information, and num-
ber of initial situations, are combine to define the classes of
planning problems shown in Table 1. Each such class is a
special case of probabilistic contingent planning, yet better
algorithms can be given when they are considered separately.
We study such algorithms next.

3 Algorithms
The two main algorithms GPT uses for solving planning prob-
lems are optimal heuristic search A* and a version of Dy-
namic Programming called RTDP. The selection depends
in the class of the problem: A* for conformant planning,
and RTDP for non-deterministic, probabilistic, contingent and
probabilistic contingent planning.1 In all cases the output is
a plan that takes the controller to a goal with probability 1.
Moreover, except for probabilistic contingent planning, GPT
returns an optimal policy for the input task.

3.1 A*
The model for conformant planning can be solved by any
standard search algorithm. GPT uses the A* algorithm with
a domain-independent heuristic derived from the problem by
a general transformation. Basically, we compute the optimal
cost function �	�
�� over the states of a ‘relaxed’ problem where
full state observability is assumed (see [5] for details). That
function is then used to compute another heuristic function

1The case of classical planning is considered in a separate work
in [4].

that is plugged into the search algorithm. It is simple to show
the resulting heuristic is admissible and hence the solutions
found by A* are guaranteed to be optimal.

3.2 Real Time Dynamic Programming (RTDP)
RTDP is a generalization of Korf’s LRTA* [8] due to Barto et
al. [1]. It is a version of dynamic programming that finds
the optimal policy function for the set of relevant states; i.e.,
those states that may be visited with positive probability by
an optimal policy. This partial solution is enough for solving
the problem optimally when started in one of the initial states.
RTDP can be understood as a modification of greedy search in
which the heuristic function is updated every time an action
is taken (see [1; 5]). RTDP solves the problem by successive
trials each one starting at an initial state and ending in a goal
(or after a predefined number of moves).2 A main problem
with RTDP is that it doesn’t specify when to stop the trials
so to guarantee the result is an optimal policy. We have de-
veloped a stopping rule, parametrized in a small
���� , that
solves this problem; i.e., a rule that stops the algorithm and
guarantees an optimal policy when
 is sufficiently small (see
Appendix for a brief description of the stopping rule).

4 Language
Above control problems are useful models for making explicit
the mathematical structure of a wide class of planning prob-
lems. Often, however, they are not good languages for de-
scribing them. This is due to the number and size of the re-
lations and parameters involved. In AI, it has been common
to describe planning problems compactly in terms of modular
and high-level languages such as STRIPS. In recent years sim-
ilar languages have been defined for describing probabilistic
actions and general POMDPs (see [6] and references therein).
We illustrate the latter with a problem of planning and incom-
plete information from [9].

4.1 Example
The problem involves an agent that has a large supply of eggs
and whose goal is to get three good eggs and no bad ones into
one of two bowls. The eggs can be either good or bad, and at
any time the agent can find out whether a bowl contains a bad
egg by inspecting the bowl. In [3] this problem is encoded
by expressions such as the ones in Fig.1 which are compiled
into a probabilistic contingent planning problem and solved
by the RTDP algorithm.

2For probabilistic contingent problems in which the state space
is infinite, a version of RTDP that uses a discretization of belief states
is needed [3; 5]. That version is called RTDP-BEL.

(define (domain omelette)
(:model (:dynamics :probabilistic) (:feedback :partial))
(:types BOWL)
(:functions (ngood BOWL :integer[0,3])

(nbad BOWL :integer[0,3])
(number BOWL :integer[0,3]))

(:objects good holding - :boolean)

(:axiom set_number
:parameters ?b - BOWL
:effect (:set (number ?b) (+ (ngood ?b) (nbad ?b))))

(:action grab
:precondition (= holding false)
:effect (:probabilistic (0.5 (:set good true)

(:set holding true))
(0.5 (:set good false)

(:set holding true))))

(:action break_egg
:parameters ?b - BOWL
:precondition (:and (< (number ?b) 3)

(= holding true))
:effect (:when (= good true)

(:set holding false)
(:set (ngood ?b) (+ (ngood ?b) 1)))

(:when (= good false)
(:set holding false)
(:set (nbad ?b) (+ (nbad ?b) 1))))

(:action pour
:parameters ?b1 ?b2 - BOWL
:precondition (:and (:not (= ?b1 ?b2))

(= holding false)
(<= (+ (number ?b1) (number ?b2)) 3))

:effect (:set (ngood ?b2) (+ (ngood ?b2) (ngood ?b1)))
(:set (nbad ?b2) (+ (nbad ?b2) (nbad ?b1)))
(:set (ngood ?b1) 0)
(:set (nbad ?b1) 0))

(:action clean
:parameters ?b - BOWL
:precondition (= holding false)
:effect (:set (ngood ?b) 0)

(:set (nbad ?b) 0))

(:action inspect
:parameters ?b - BOWL
:precondition (= holding false)
:observation (= (nbad ?b) 0)))

(define (problem eggs)
(:domain omelette)
(:objects small large - BOWL)
(:init (:set (ngood small) 0)

(:set (nbad small) 0)
(:set (ngood large) 0)
(:set (nbad large) 0)
(:set holding false)
(:set good false))

(:goal (:and (= (ngood large) 3)
(= (nbad large) 0))))

Figure 1: Full description of the Omelette problem.

The language illustrated in Fig.1 extends STRIPS in several
ways: states are not associated with a set of atoms but with as-
signments to arbitrary fluents; probabilities, costs and primi-
tive operations like ‘+’ are included, and an :observation
section may be used in the actions to indicate observability.
The fluents in this problem are the number of a good and bad
eggs in each bowl (ngood and nbad), and the boolean vari-
ables holding and good that represent whether the agent
is holding an egg and whether such egg is good or bad. The
fluent holding is always observable, but the value of the
expression ‘nbad(bowl) � � ’ is observed after doing the
action inspect(bowl) only. We provide the main ideas of
the language next.

4.2 Language and States
The language is a typed logical language that involves a num-
ber of constant, function, and predicate symbols from which
atoms, terms, and formulas are defined in the standard way.
For example, ‘ngood(bowl) � nbad(bowl) ��� ’ is a for-

mula expressing that the total number of eggs in bowl is less
than or equal to 3.

Given a language with the relevant type and object dec-
larations, the states are the logical interpretations over such
language. That is, a state � assigns a denotation ��� to any
symbol � from which the denotations of all atoms, terms,
and formulas are obtained following the standard composi-
tion rules. Symbols like ‘ ��� ’, and others, have a denotation
that is fixed and is independent of the state. States thus have
to assign a denotation to fluent symbols only; symbols like
ngood, nbad, etc. Type and object declarations for these
symbols define the possible set of denotations (values) and
all together implicitly define the state space. Action precon-
ditions define the set ��
�� � of actions applicable in each state
� (the actions whose preconditions have a true denotation in
�) and action effects define the state transition functions or
transition probabilities.

Assuming that the cost of all actions is 1, such a language
can be used to define state models for probabilistic and con-
formant planning problems. For describing the other models,
it is necessary to describe also what is observable. That’s
the role of the :observation section like the one in ac-
tion inspect(bowl) in Fig.1. Not only deterministic ob-
servations are supported but also probabilistic ones that are
encoded by syntax similar to the one for probabilistic ef-
fects (e.g., in the grab action) that define the sensor model%
) &'�#�$��� . An action � that makes the expression � observ-
able for a term or formula � produces observations)	�$
 � ��
 �
for each possible denotation
 of � with different probabili-
ties that depend on the belief state where the action was done
and the sensor model [5].

The language also provides facilities for expressing deter-
ministic and probabilistic ramification rules. While action
rules express the value of a variable in terms of the value
of the variables at the previous time, ramification rules ex-
press the value of a variable as a function of variables at the
same time point. Ramification rules are useful in a number
of circumstances as when the user need to specify indirect
effect of actions and domain constraints. In Fig.1 for exam-
ple, we use a ramification to keep track of the total number of
eggs in each bowl by means of the rule number(bowl) �
ngood(bowl) � nbad(bowl).

4.3 Overview of Syntax
GPT’s language has a close syntax to the PDDL language for
STRIPS planning [10]. Since the first planning competition in
AIPS-98, PDDL has become the de-facto standard for STRIPS
planning; all major STRIPS planner read PDDL input, old a
new problems are distributed in PDDL format, etc. As in
PDDL, a problem description is made from two sections. The
first section, called domain definition, is a “general” descrip-
tion of the domain of the problem and contains definitions for
types, functions, actions and ramification rules. The second
section, called problem definition and always associated with
a domain definition, is a description of an instance of the do-
main and contains definitions for typed objects and the initial
and goal situations.

Each section needs to be a complete compilation unit; that
is, every referenced symbol has to be lexically bounded. In
Fig. 1, for example, the domain definition uses fluents good
and holding so they must be defined in it. The fluents
small and large, on the other hand, are only used in the

Figure 2: Racetrack grid. The left dark squares are starting
position and the top right ones the goal line.

instance definition so they don’t need to be defined in the do-
main. In this example, the separation between domain and
problem allows the user to easily define variations of the
problem as when there are more than two bowls and differ-
ent initial or goal situations.

A typical domain definition contains: a keyword specifying
the class of the problem (‘:model’), declarations for types
and symbols used in the unit’s logical language (‘:types’,
‘:functions’, and ‘:objects’), a (possible empty) list
of ramification rules (‘:axiom’), and one or more actions
(‘:action’). Additionally, it may contain information about
which symbols will be denoted by external functions (see
Racetrack below). A typical problem definition, on the other
hand, contains a pointer to a domain definition (‘:domain’),
declarations of extra symbols, and the initial and goal situa-
tions (‘:init’ and ‘:goal’).

5 General Planning Tool

The GPT system integrates above models and algorithms into
a single tool for problem modeling, solving and analysis. It
is is written in C++ and consists about 20k lines of codes
and 100 files. The utilization of GPT consists of a design �
compile � solve � analyze cycle. The first step refers to the
modeling of the problem in GPT’s language. This description
is then compiled into machine code by a parser, that trans-
late it into C++, and by g++ that generates the object code.
This phase is designed to offer the user the possibility to link
external functions into the description of the problem and to
provide alternate heuristic functions. In the solve phase, GPT
calls the appropriate solver depending in the input problem.
The output can then be analyzed qualitatively and quantita-
tively. The former by inspection of the resulting policy and
the latter by analysis of ‘extra’ data; i.e., data generated by
user request as the expected cost of solution, last value func-
tion, etc. The first three phases take place inside a shell-like
environment under user commands. The output consist of a
standard graph representation of the policy plus possibly few
files with the quantitative information.3

6 Examples

In this section we show selected examples of actual GPT’s
input and output for different planning problem classes. We
also show a transcript of GPT use for the Omelette problem.

3A formal definition of the policy graph is in [5]. Some intuitive
examples are in Sect. 6.

(define (domain racetrack)
(:model (:dynamics :probabilistic) (:feedback :complete))
(:types STATE)
(:functions (x STATE :integer[0,34])

(y STATE :integer[0,11])
(dx STATE :integer[-5,5])
(dy STATE :integer[-5,5])
(valid STATE :boolean))

(:external valid)
(:objects state lastState - STATE)

(:axiom constraints
:effect (:when (= (valid state) false)

(:set state lastState)
(:set (dx state) 0)
(:set (dy state) 0)))

(:action control
:parameters ?ax ?ay - :integer[-1,1]
:effect
(:probabilistic

(0.9 (:set lastState state)
(:set (x state) (+ (x state) (+ (dx state) ?ax)))
(:set (y state) (+ (y state) (+ (dy state) ?ay)))
(:set (dx state) (+ (dx state) ?ax))
(:set (dy state) (+ (dy state) ?ay)))

(0.1 (:set lastState state)
(:set (x state) (+ (x state) (dx state)))
(:set (y state) (+ (y state) (dy state)))))))

(define (problem race)
(:domain racetrack)
(:init (:set (dx state) 0)

(:set (dy state) 0)
(:set (x state) 0)
(:set (y state) :in { 5 6 7 8 })
(:set lastState state))

(:goal (:and (= (y state) 0)
(:in (x state) { 32 33 34 }))))

Figure 3: Full description of the Racetrack problem.

6.1 Probabilistic Planning

Racetrack. The problem is to drive a car starting in a set
of possible initial states to a set of goal states. This prob-
lem is a variation of the small racetrack in [1] so that when
the car hit a wall it remains at that position with zero speed.
The racetrack, shown in Fig. 2, is a grid of ��������� posi-
tions (only the squares belonging to the racetrack are drawn);
the
 � � � � position (not shown) corresponds to the upper-left
corner and the
 �
	�������� the bottom-right corner of the race-
track. The possible start positions are the dark squares to
the left and the goals are in the top-right. The state space
consists of 4-tuples
 � �
� ����� �
��� � where the first two com-
ponents are the coordinates of the car and the last two the
car’s speed with respect to each dimension. The possible ac-
tions are pairs
 � � ������� of instantaneous accelerations where
� � ����� ��������� � ���
� . We also assume that the pavement is
wet so the actions have probability 0.9 (resp. 0.1) of suc-
cess (resp. failure). To give the transition function, we use a
projection operator that maps states and actions to states by���)��
(�#��� ���
 � ���#� ��� � �
� ���
� � ��� ����� � � � �
��� � ����� .
Then, the result of action � into state � is defined as: (i) �
if the action fails, (ii) ���)��
(�#�$��� if the action succeed and���)��
(�#��� � is a valid racetrack position, or (iii)
 � �
� � � � �#� oth-
erwise. Fig. 3 shows an encoding of this problem into GPT’s
language. In it, the effects (i) and (ii) are modeled in the effect
for the unique action control(ax,ay), and (iii) is mod-
eled by using the ramification rule constraints and the
variable lastState; other encodings that don’t use ramifi-
cation rules are also possible. Also, note how the information
about the ‘shape’ of the racetrack is hooked into the descrip-
tion by using the ‘external’ function valid.

(define (domain sortnet)
(:model (:dynamics :deterministic) (:feedback :null))
(:objects array - :array[4] :integer[1,4])

(:axiom axiom1
:formula (:and (:not (= array[0] array[1]))

(:not (= array[0] array[2]))
(:not (= array[0] array[3]))
(:not (= array[1] array[2]))
(:not (= array[1] array[3]))
(:not (= array[2] array[3]))))

(:action cmpswap
:parameters ?i ?j - :integer[0,3]
:precondition (< ?i ?j)
:effect (:when (< array[?j] array[?i])

(:set array[?i] array[?j])
(:set array[?j] array[?i]))))

(define (problem p4)
(:domain sortnet)
(:init (:set array[0] :in :integer[1,4])

(:set array[1] :in :integer[1,4])
(:set array[2] :in :integer[1,4])
(:set array[3] :in :integer[1,4]))

(:goal (:and (< array[0] array[1])
(< array[1] array[2])
(< array[2] array[3]))))

Figure 4: Full description of the SORTN(5) problem.

6.2 Conformant Planning
Sorting Networks. A sorting network refers to a sorting al-
gorithm in which comparisons and swaps are merged into a
single operation that takes two entries � and � and swaps them
if and only if they are not ordered. A conformant plan is given
by the sequence of pairs � and � on which to apply this oper-
ation. The number of states in the problem is given by the
possible ways in which the entries can be ordered; this is ���
for SORTN(�). The optimal cost of these problems is known
for small values of � only (� ��� according to [7]). GPT find
optimal solutions, using A*, in a couple of minutes for � ’s up
to � . Fig. 4 shows the codification of sorting networks; note
how we use the axiom to prune from the initial states those
arrays with repeated integers. Instead of pruning such bad
arrays, we can just not “generate” them by using
(:init (:set array[0] :in :integer[1,4])

(:set array[1] :in :integer[1,4]
:assert (:not (= array[0] array[1])))

(:set array[2] :in :integer[1,4]
:assert (:and (:not (= array[0] array[2]))

(:not (= array[1] array[2]))))
(:set array[3] :in :integer[1,4]

:assert (:and (:not (= array[0] array[3]))
(:not (= array[1] array[3]))
(:not (= array[2] array[3])))))

6.3 Contingent Planning
Medical. This problem, taken from [11], involves a patient
that can be heathly or may have � diseases (� � �����	�
�).
The medication cures the patient if he has the right disease
but kills the patient otherwise. The version with � diseases is
denoted by MEDICAL(�). GPT solves this problems optimally
by using the RTDP algorithm with a perfect stopping rule (i.e.,

 � �). The MEDICAL(5) is solved by GPT in �
��� �

 seconds,
it consists of 48 system states and the expected cost of the
optimal policy is 	�� � steps. A codification of the problem
appears in Fig.5 while a graph representation of the optimal
policy is in Fig. 6.

6.4 Probabilistic Contingent Planning
Omelette. This problem, described before, is solved by GPT
using a stopping rule with
 � ��� � � � . The reported optimal

(define (domain medical)
(:model (:dynamics :deterministic) (:feedback :partial))
(:objects ill - :integer[0,5]

stain_result - :integer[0,3]
high_cell_count - :boolean
dead - :boolean)

(:action stain
:effect

(:when (:or (= ill 3) (= ill 4)) (:set stain_result 1))
(:when (:or (= ill 1) (= ill 2)) (:set stain_result 2))
(:when (= ill 5) (:set stain_result 3)))

(:action count_white_cells
:effect

(:when (:or (= ill 1) (= ill 3) (= ill 5))
(:set high_cell_count true)))

(:action inspect
:observation stain_result)

(:action analyze_blood
:observation high_cell_count)

(:action medicate
:parameters ?i - :integer[0,5]
:precondition (:not (= ?i 0))
:effect

(:when (= ill ?i) (:set ill 0))
(:when (:not (= ill ?i)) (:set dead true))))

(define (problem p5)
(:domain medical)
(:init (:set stain_result 0)

(:set high_cell_count false)
(:set ill :in { 1 2 3 4 5 })
(:set dead false))

(:goal (:and (= ill 0) (:not (= dead true)))))

Figure 5: Full description of the MEDICAL(5) problem.

expected cost is 23 steps which agrees with the analytical so-
lution of �
� ��� �
 � � � ��� � expected cost when the probability
of a good egg is � . Fig. 7 shows the optimal policy function
found by GPT. Observe that the solution has three cycles;
each one guaranteeing a good egg. The following transcript
shows how GPT’s shell is used to compile, solve and generate
the policy graph for it:

$ gpt
Welcome to GPT, Version 1.20
gpt> parse eggs omelette.pddl
0.129 seconds.
Successful parse.
Generated Files: eggs_omelette.h eggs_omelette-space.cc
Problem setted to "eggs_omelette".
gpt> compile
1.077 seconds.
Successful compilation.
Generated Files: egg_omelette.o
gpt> use stoprule .001
gpt> solve
184.683 seconds.
Generated Files: eggs_omelette.core
gpt> print graph > eggs_omelette.gml
gpt> bye
Good Bye.

7 Summary
We have described the GPT system for modeling, solving and
analyzing different types of planning problems. The prob-
lems, characterized by the mathematical models of proba-
bilistic, conformant, contingent and probabilistic contingent
planning problems, can be described with GPT’s high-level
language. The language integrates ideas from STRIPS, first-
order logic, and POMDPs, and is general enough for specify-
ing a wide range of planning problems dealing with uncer-
tainty and partial information. Future work on the GPT sys-
tem includes the unification of GPT with the HSP planner [4],
future improvements of the language and algorithms, and the
development of a more friendly environment.

References
[1] A. Barto, S. Bradtke, and S. Singh. Learning to act using real-

time dynamic programming. Artificial Intelligence, 72:81–
138, 1995.

[2] D. Bertsekas. Dynamic Programming and Optimal Control,
Vols 1 and 2. Athena Scientific, 1995.

[3] B. Bonet and H. Geffner. High-level planning and control with
incomplete information using POMDPs. In Proceedings AAAI
Fall Symp. on Cognitive Robotics, 1998.

[4] B. Bonet and H. Geffner. HSP: Planning as heuristic search.
http://www.ldc.usb.ve/ � hector, 1998.

[5] B. Bonet and H. Geffner. Planning with incomplete informa-
tion as heuristic search in belief space. In Proc. AIPS, 2000.

[6] H. Geffner. Functional strips: a more general language for
planning and problem solving. Logic-based AI Workshop,
Washington D.C., 1999.

[7] D. Knuth. The Art of Computer Programming, Vol. III: Sorting
and Searching. Addison-Wesley, 1973.

[8] R. Korf. Real-time heuristic search. Artificial Intelligence,
42:189–211, 1990.

[9] H. Levesque. What is planning in the presence of sensing.
In Proceedings AAAI-96, pages 1139–1146, Portland, Oregon,
1996. MIT Press.

[10] D. McDermott. PDDL – the planning domain definition lan-
guage. Available at http://www.cs.yale.edu/d̃vm,
1998.

[11] D. Weld, C. Anderson, and D. Smith. Extending Graphplan
to handle uncertainty and sensing actions. In Proc. AAAI-98,
pages 897–904. AAAI Press, 1998.

Appendix: Stopping Rule
Here, we briefly describe the stopping rule and its correctness.
It is assumed the reader has knowledge about MDPs and the
RTDP algorithm; good references are [2; 1].

RTDP iteratively solves the Bellman equations for the rel-
evant states for both discounted and shortest-path problems
[1]. The stopping rule is a labeling method that detects when
the � -value has converged for the relevant states. Initially,
all states except the goal states are labeled as unsolved and
the goals ones as solved. The algorithm is stopped when all
possible initial states are labeled as solved. We explain the
procedure next.

Fix a trial
��� �
���� ����� �����	� ���	� � at time � . Let � � be the

value function right after the end of trial � ; i.e., right after the
last update for � ��
�� . For � � � ������� , let ��
�! �

be the
set of unsolved states reachable from ��
 through � � -optimal
actions; i.e., ��
 is a minimal set of unsolved states such that
�
 ���
 and
���� � ���
 ��
�� � ���
 ��� %
(� � &��#��������
����$� � ���
where �����
���� is the � � -optimal action in � . Then, at the end
of each trial the algorithm labels as solved all states in set ��

in sequence from � � � to � � � , or until one of the next to
conditions fails:

i) all states in sets �� , for ! � � �	��� � � � , are solved, and
ii) for all � �"��
 ,

� �
(� ���$#
(�#��� � ��
����$� �&%
�('*),+

%
(� � &��#�$��� � �
(� � � �

obs:0

obs:0
obs:0

obs:0

obs:0

obs:0

obs:0

obs:0

obs:4 obs:4

obs:2
obs:1

obs:5
obs:5

obs:3

stain()

GOAL

GOAL

GOAL

GOAL

GOAL

count-white-cells() count-white-cells()

inspect()analyze-blood() analyze-blood()

medicate(5)

medicate(4)

medicate(3)

medicate(2)

medicate(1)

Figure 6: Optimal policy found by GPT for MEDICAL(5) us-
ing a perfect stopping rule; i.e.,
 � � . ‘obs:<n>’ refers
to the feedback received by the controller after each action as
follows: obs:0 is no feedback, obs: - is stain result= -
for � � ��� ��� � , obs:4 is high cell count=false and
obs:5 is high cell count=true.

obs:0

obs:0

obs:0

obs:0

obs:0

obs:0

obs:0

obs:0

obs:0

obs:0

obs:0

obs:0

obs:0

obs:0

obs:0

obs:0

obs:0

obs:0
obs:0

obs:0

obs:1

obs:1

obs:1

obs:1

obs:1

obs:2
obs:2

obs:2

obs:2

obs:2

grab()

grab()

grab()

grab()

grab()

GOAL

grab()

grab()

grab()

break-egg(large)

break-egg(large)

break-egg(small)

break-egg(small)break-egg(small)

pour(small,large)

pour(small,large)

clean(large)

clean(large)

clean(small)

clean(small)

clean(small)

inspect(large)

inspect(large)

inspect(small)

inspect(small)

inspect(small)

Figure 7: Optimal policy found by GPT for omelette using a
stopping rule with
 � � � � ��� . ‘obs:<n>’ refers to the feed-
back received by the controller after each action as follows:
obs:0 is no feedback, obs:1 is no-bad-egg, and obs:2 is
bad-egg.

By using induction on the trial number � and the set index � ,
it can be shown that every state � labeled as ‘solved’ at the
end of trial � satisfy � ��
(� � � � � '
�� � for � � � � . Since RTDP
converges to �	� over the relevant states, and the state space is
finite, then RTDP will label as solved all relevant states. Also,
it is not hard to show that this process finishes when all initial
states are labeled solved.

Above method is referred to the perfect stopping rule.
Since achieving (ii) could be very costly (depending on the
lengths of the cycles in the state graph), we have implemented
an
 version by relaxing the condition to

.�/�0
�1)3254

6666 � �
(� � �7#
(�#��������
����$� � %
� '),+

%
(� � &��#�$��� � �
�� � �
666698
 �

When the maximum is over all states, the quantity is known as
the Bellman residual. As in value iteration where a zero Bell-
man residual is not necessary for an optimal induced policy,
the stopping rule with above equation generates an optimal
policy for sufficiently small
 .

