
Faster Heuristic Search Algorithms for Planning
with Uncertainty and Full Feedback

Blai Bonet
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90024, USA
bonet@cs.ucla.edu

Héctor Geffner
Departamento de Tecnologı́a

ICREA – Universitat Pompeu Fabra
Barcelona 08003, España

hector.geffner@tecn.upf.es

Abstract
Recent algorithms like RTDP and LAO* combine
the strength of Heuristic Search (HS) and Dynamic
Programming (DP) methods by exploiting knowl-
edge of the initial state and an admissible heuris-
tic function for producing optimal policies without
evaluating the entire space. In this paper, we in-
troduce and analyze three new HS/DP algorithms.
A first general algorithm schema that is a simple
loop in which ‘inconsistent’ reachable states (i.e.,
with residuals greater than a given �) are found and
updated until no such states are found, and serves
to make explicit the basic idea underlying HS/DP
algorithms, leaving other commitments aside. A
second algorithm, that builds on the first and adds
a labeling mechanism for detecting solved states
based on Tarjan’s strongly-connected components
procedure, which is very competitive with existing
approaches. And a third algorithm, that approx-
imates the latter by enforcing the consistency of
the value function over the ‘likely’ reachable states
only, and leads to great time and memory savings,
with no much apparent loss in quality, when transi-
tions have probabilities that differ greatly in value.

1 Introduction
Heuristic search algorithms have been successfully used for
computing optimal solutions to large deterministic problems
(e.g., [Korf, 1997]). In the presence of non-determinism and
feedback, however, solutions are not action sequences but
policies, and while such policies can be characterized and
computed by dynamic programming (DP) methods [Bellman,
1957; Howard, 1960], DP methods take all states into account
and thus cannot scale up to large problems [Boutilier et al.,
1999]. Recent algorithms like RTDP [Barto et al., 1995] and
LAO* [Hansen and Zilberstein, 2001], combine the strength
of Heuristic Search and Dynamic Programming methods by
exploiting knowledge of the initial state ��� and an admissi-
ble heuristic function (lower bound)

�
for computing opti-

mal policies without having to evaluate the entire space. In
this paper we aim to contribute to the theory and practice
of Heuristic Search/Dynamic Programming methods by for-
mulating and analyzing three new HS/DP algorithms. The
first algorithm, called FIND-and-REVISE is a general schema

that comprises a loop in which states reachable from ��� and
the greedy policy that have Bellman residuals greater than a
given � (we call them ‘inconsistent’ states), are found and up-
dated until no one is left. FIND-and-REVISE makes explicit
the basic idea underlying HS/DP algorithms, including RTDP
and LAO*. We prove the convergence, complexity, and op-
timality of FIND-and-REVISE, and introduce the second al-
gorithm, HDP, that builds on it, and adds a labeling mech-
anism for detecting solved states based on Tarjan’s efficient
strongly-connected components procedure [Tarjan, 1972]. A
state is solved when it reaches only ‘consistent’ states, and
solved states are skipped in all future searches. HDP termi-
nates when the initial state is solved. HDP inherits the con-
vergence and optimality properties of the general FIND-and-
REVISE schema and is strongly competitive with existing ap-
proaches. The third algorithm, HDP ���
	 , is like HDP, except
that while HDP computes a value function by enforcing its
consistency over all reachable states (i.e., reachable from ���
and the greedy policy), HDP ����	 enforces consistency over the
‘likely’ reachable states only. We show that this approxima-
tion, suitably formalized, can lead to great savings in time and
memory, with no much apparent loss in quality, when transi-
tions have probabilities that differ greatly in value.

Our motivation is twofold: to gain a better understanding
of HS/DP methods for planning with uncertainty, and to de-
velop more effective HS/DP algorithms for both optimal and
approximate planning.

2 Preliminaries
2.1 Model
We model non-deterministic planning problems with full
feedback with state models that differ from those used in the
classical setting in two ways: first, state transitions become
probabilistic; second, states are fully observable. The result-
ing models are known as Markov Decision Processes (MDPs)
and more specifically as Stochastic Shortest-Path Problems
[Bertsekas, 1995], and they are given by:1

M1. a discrete and finite state space � ,
M2. an initial state ������ ,
M3. a set ����� of goal states,
M4. actions ������	���� applicable in each state ����� ,
M5. transition probabilities ���������� ��	 for �!�"� , #$�%�&����	 ,

1For discounted and other formulations, see [Puterman, 1994].

M6. positive action costs � ��#�� ��	���� , and
M7. fully observable states.

Due to the presence of full feedback (M7) and the standard
Markovian assumptions, the solution of an MDP takes the
form of a function � mapping states � into actions # �"������	 .
Such a function is called a policy. A policy � assigns a prob-
ability to every state trajectory ���� �
	�� ���������� starting in state
��� which is given by the product of the transition probabili-
ties � ��� �������	 ���	 where #������ ���� 	 . If we further assume that
actions in goal states have no costs and produce no changes
(i.e., � ��#�� ��	���� and � � ���� �	���� if �����), the expected cost
associated with a policy � starting in state � � is given by the
weighted average of the probability of such trajectories times
their cost "!�$# � � �%� ��� � 	�� � � 	 . An optimal solution is a policy�'& that has a minimum expected cost for all possible initial
states. An optimal solution is guaranteed to exist provided the
following assumption holds [Bertsekas, 1995]:

M8. the goal is reachable from every state with non-zero
probability.

Since the initial state � � of the system is fixed, there is in
principle no need to compute a complete policy but a partial
policy prescribing the action to take in the states that can be
reached following the policy from ��� . Traditional dynamic
programming methods like value or policy iteration compute
complete policies, while recent heuristic search DP methods
like RTDP and LAO* compute partial policies. They achieve
this by means of suitable heuristic functions

� ����	 that provide
admissible estimates (lower bounds) of the expected cost to
reach the goal from any state � .
2.2 Dynamic Programming
Any heuristic or value function

�
defines a greedy policy �)(:

� (����	 def�+*�,.-�/10�23.4�5�6$387 � ��#�� ��)9;:3=<>4@? � � ��� � ��	 � ��� � 	 (1)

where the expected cost from the resulting states ��� is as-
sumed to be given by

� ����� 	 . We call �A(����	 the greedy action
in � for the value function

�
. If we denote the optimal (ex-

pected) cost from a state � to the goal by B1& ����	 , it is well
known that the greedy policy �C(is optimal when

�
is the op-

timal cost function, i.e.
� �"BD& .

While due to the possible presence of ties in (1), the greedy
policy is not unique, we will assume throughout the paper
that these ties are broken systematically using an static order-
ing on actions. As a result, every value function B defines a
unique greedy policy �)E , and the optimal cost function B1&
defines a unique optimal policy �)EGF . We define the relevant
states as the states that are reachable from ��� using this opti-
mal policy; they constitute a minimal set of states over which
the optimal value function needs to be defined.2

Value iteration (VI) is a standard dynamic programming
method for solving MDPs and is based on computing the op-
timal cost function BH& and plugging it into the greedy policy
(1). This optimal cost function is the only solution to the fixed

2This definition of ‘relevant states’ is more restricted than the
one in [Barto et al., 1995] that includes the states reachable from IKJ
by any optimal policy.

point equation:B$����	L� /10�2� 4�5�6$3=7 � ��#M� ��	�9N:38<O4@? � � ��� � ��	'B ��� � 	 (2)

also known as Bellman’s equation. For stochastic short-
est path problems like M1-M8 above, the border conditionB$����	P�Q� is also needed for goal states � � � . Value it-
eration solves (2) by plugging an initial guess for BR& in the
right-hand side of (2) and obtaining a new guess on the left-
hand side. In the form of VI known as asynchronous value
iteration [Bertsekas, 1995], this operation can be expressed
as: B$����	TSU� /10$2� 4�5�6$3=7 � ��#�� ��	�9 :3 < 4@? � � ��� � ��	�B$��� � 	 (3)

where B is a vector of size � initialized arbitrarily (normally
to �) and where the equality in (2) is replaced by assignment.
The use of expression (3) for updating a state value in B is
called a state update or simply an update. In standard (syn-
chronous) value iteration, all states are updated in parallel,
while in asynchronous value iteration, only a selected subset
of states is selected for update at a time. In both cases, it is
known that if all states are updated infinitely often, the value
function B converges eventually to the optimal value func-
tion. From a practical point of view, value iteration is stopped
when the Bellman error or residual defined as the difference
between left and right in (2):V ����	 def�;WWWW B$����	GXZY[/10�2� 4�5�6$3=7 � ��#M� ��	�9N:3 < 4@? � � ��� � �	\B$��� � 	=]^WWWW
over all states � is sufficiently small. In the discounted MDP
formulation, a bound on the policy loss (the difference be-
tween the expected cost of the policy and the expected cost
of the optimal policy) can be obtained as a simple expres-
sion of the discount factor and the maximum residual. In
stochastic shortest path models, no similar closed-form bound
is known, although such bound can be computed [Bertsekas,
1995]. Thus, one can execute value iteration until the max-
imum residual becomes smaller than a given � , then if the
bound on the policy loss is higher than desired, the same pro-
cess can be repeated with a smaller � (e.g., �K_�`) and so on (see
[Hansen and Zilberstein, 2001] for a similar idea). For these
reasons, we will take as our basic task below, the computa-
tion of a value function B$����	 with residuals no greater than a
given parameter � �a� .

One last definition and a few known results before we pro-
ceed. We say that cost function B is monotonic iffB$����	Tb /10�2� 4�5�6$3=7 � ��#M� ��	�9N:3 < 4@? � � ��� � ��	'B ��� � 	 (4)

for every � � � . Notice that a monotonic value function
never decreases when updated, and moreover, must increase
by more than � when updated in a state � whose residual
is greater than � . As in the deterministic setting, a non-
monotonic cost function can be made monotonic by simply
taking the value B$����	 to be the max between B$����	 and the
right-hand side of Bellman’s equation. The following results
are well known.
Theorem 1 a) The optimal values BD& ����	 of a model M1-M8
are non-negative and finite; b) the monotonicity and admis-
sibility of a value function are preserved through updates.

start with a lower bound function ��� ���
repeat

FIND a state I in the greedy graph ��� with 	�
%I�����
REVISE � at I

until no such state is found
return �

Algorithm 1: FIND-and-REVISE

3 Find-and-Revise
The FIND-and-REVISE schema is a general asynchronous VI
algorithm that exploits knowledge of the initial state and an
admissible heuristic for computing optimal or nearly optimal
policies without having to evaluate the entire space. Let us
say that a value function B is � -consistent (inconsistent) over
a state � when the residual over � is no greater (greater) than � ,
and that B itself is � -consistent when it is � -consistent over all
the states reachable from �� and the greedy policy �)E . Then
FIND-and-REVISE computes an � -consistent value function by
simply searching for inconsistent states in the greedy graph
and updating them until no such states are left; see Alg. 1.

The greedy graph �HE refers to the graph resulting from
the execution of the greedy policy �)E starting in �� ; i.e., �� is
the single root node in �HE ,and for every non-goal state � in
� E , its children are the states that may result from executing
the action � ����	 in � .

The procedures FIND and REVISE are the two parameters of
the FIND-and-REVISE procedure. For the convergence, opti-
mality, and complexity of FIND-and-REVISE, we assume that
FIND searches the graph systematically, and REVISE of B at
� updates B at � (and possibly at some other states), both
operations taking � � � 	 time.

Theorem 2 (Convergence) For a planning model M1-M8
with an initial value function

�
that is admissible and

monotonic, FIND-and-REVISE yields an � -consistent value
function in a number of loop iterations no greater than��� 	 3.4@? BD& ���	MX � ���	 , where each iteration has time com-
plexity � � � 	 .
Theorem 3 (Optimality) For a planning model M1-M8 with
an initial admissible and monotonic value function, the value
function computed by FIND-and-REVISE approaches the op-
timal value function over all relevant states as � goes to � .
4 Labeling
We consider next a particular instance of the general FIND-
and-REVISE schema in which the FIND operation is carried
out by a systematic Depth-First Search that keeps track of
the states visited. In addition, we consider a labeling scheme
on top of this search that detects, with almost no overhead,
when a state is solved, and hence, when it can be skipped
in all future searches. A state � is defined as solved when
the value function B is � -consistent over � and over all states
reachable from � and the greedy policy � E . Clearly, when this
condition holds no further updates are needed in � or the states
reachable from � . The resulting algorithm terminates when
the initial state � � is solved and hence when an � -consistent
value function has been obtained.

0

2

5 6 7

31

4C1

C2 C3

C4

Figure 1: A graph and its strongly-connected components.

Due to the presence of cycles in the greedy graph, bottom-
up algorithms common in AO* implementations cannot be
used. Indeed, if � is reachable (in the greedy graph) from
a descendant ��� of � , then bottom-up approaches will be un-
able to label either state as solved. A labeling mechanism that
works in the presence of cycles is presented in [Bonet and
Geffner, 2003] for improving the convergence of RTDP. Basi-
cally, after each RTDP trial, an attempt is made to label the last
unsolved state � in the trial by triggering a systematic search
for inconsistent states from � . If one such state is found, it
is updated, and a new trial is executed. Otherwise, the state
� and all its unsolved descendants are labeled as solved, and
a new cycle of RTDP trials and labeling checks is triggered.
Here we take this idea and improve it by removing the need
of an extra search for label checking. The label checking will
be done as part of the FIND (DFS) search with almost no over-
head, exploiting Tarjan’s linear algorithm for detecting the
strongly-connected components of a directed graph [Tarjan,
1972], and a correspondence between the strongly-connected
components of the greedy graph and the minimal collections
of states that can be labeled at the same time.

Consider the (directed) greedy graph � E and the relation
‘ � ’ between pairs of states � and ��� that holds when � � ��
or when � is reachable from � � and � � is reachable from �
in � E . The strongly-connected components of �DE are the
equivalence classes defined by this relation and form a parti-
tion of the set of states in �HE . For example, for the greedy
graph in Fig. 1, where ` and � are terminal (goal) states, the
components are � 	 ������� , � � ���@����� � , �"! ��� ` � , and
�$# ����\�&%\�&' �)(*� . Tarjan’s algorithm detects the strongly-
connected components of a directed graph in time � �,+P9.-�	
while traversing the graph depth-first, where + stands for the
number of states (+ b � in �HE) and - for the number of
edges.

The relationship between labeling and strongly-connected
components in �HE is quite direct. Let us say first that a
component � is � -consistent when all states � �/� are � -
consistent, and that a component � is solved when every state
� �0� is solved. Let’s then define �21 E as the graph whose
nodes are the components of � E and whose directed edges
are �435��� when some state in ��� is reachable from some
state in � . Clearly, �21 E is an acyclic graph as two compo-
nents which are reachable from each other will be collapsed
into the same equivalence class. In addition,

1. a state � is solved iff its component � is solved, and
furthermore,

2. a component � is solved iff � is consistent and all com-
ponents � � , � 3 � � , are solved.

The problem of labeling states in the cyclic graph �DE can
thus be mapped into the problem of labeling the components
in the acyclic graph �21 E , which can be done in bottom up
fashion.

From Fig. 1 is easy to visualize the component graph asso-
ciated to the greedy graph. Thus, if ` is the only inconsistent
state, for example, we can label the components � 	 and � �
as solved, while leaving � ! and � # unsolved.

The code that simultaneously checks in depth-first fashion
the consistency of the states and the possibility of labeling
them is shown in Alg. 2. We call the resulting algorithm,
HDP. HDP inherits its convergence and optimality properties
from the FIND-and-REVISE schema and the correctness of the
labeling mechanism.

We do not have space to explain HDP code in detail, yet it
should be clear to those familiar with Tarjan’s algorithm; in
particular, the use of the state visit number, S.IDX, and the
‘low-link’ number, S.LOW, for detecting when a new compo-
nent has been found. The flag

��� #�� and the (normal) propa-
gation of the visit numbers prevent a component from being
labeled as solved when it is inconsistent or can reach an in-
consistent component.

Theorem 4 (Correctness) The value function computed by
HDP for a planning model M1-M8, given an initial admissible
and monotonic value function, is � -consistent.

5 Experimental Results
We now evaluate the performance of HDP in comparison with
other recent Heuristic Search/DP algorithms such as the sec-
ond code for LAO* in [Hansen and Zilberstein, 2001], that we
call Improved LAO* (ILAO*), and Labeled RTDP (LRTDP), a
recent improvement of RTDP that accelerates its convergence
[Bonet and Geffner, 2003]. We use parallel Value Iteration as
the baseline. We’ve implemented all these algorithms in C++
and the experiments have been run on a Sun Fire–280R with
750 MHz and 1Gb of RAM.

The domain that we use for the experiments is the racetrack
from [Barto et al., 1995]. The states are tuples �����	�A��
��'�
�� 	
that represent the position and speed of the car in the ����
dimensions. The actions are pairs #�� ��#��'� #�� 	 of instan-
taneous accelerations where #��'� #�� � �@X �@� �\��� � . Uncer-
tainty in this domain comes from assuming that the road is
‘slippery’ and as a result, the car may fail to accelerate or
desaccelerate. More precisely, an action #�� ��#���� #�� 	 has
its intended effect with probability � X�� , while with prob-
ability � the action effects correspond to those of the action
# � ��� � �.� 	 . Also, when the car hits a wall, its velocity is set
to zero and its position is left intact (this is different than in
[Barto et al., 1995] where for some reason the car is moved
to the start position).

We consider the track large-b from [Barto et al., 1995],
h-track from [Hansen and Zilberstein, 2001],3 and five
other tracks (squares and rings of different size). Informa-
tion about these instances can be found in the first three rows

3Taken from the source code of LAO*.

HDP 6$3���3�� � ���=7
begin

while � 3�� SOLVED do
// perform DFS����� ����� # �
DFS 6$3=7
[reset IDX to ! for visited states]
[clean 3�� � ��! and " � 3 � ��� �]

end

DFS 6 3���3�� � ���=7
begin

// base case
if 3�� SOLVED # 3�� GOAL then3�� SOLVED � # �%$&'�

return (��) 3*�
// check residual
if 3�� RESIDUAL +-, then3�� UPDATE 6�7

return �%$�&'�
// mark state as active" � 3 � ��� � � PUSH 6$3873�� �.��! � PUSH 6$3=73�� IDX � # 3�� LOW � #1�/��� ����/��� ���0� #R�/��� ��� �H	
// recursive call() ��1 � # (��) 3*�
for 3 < 4 3�� SUCCESSORS do

if 3 < � IDX # ! then() �21 � # () ��1 # DFS
6 3 < 73��

LOW
� #4365 798 3�� LOW : 3 < � LOW ;

else if 3 < 4 3�� � ��! then3��
LOW

� #4365 798 3�� LOW : 3 < � IDX ;
// update if necessary
if () ��1 then3�� UPDATE 6�7

return �%$�&'�
// try to label
else if 3�� IDX # 3�� LOW then

while 3�� � ��! � TOP <# 3 do3 < � # 3�� � ��! � POP 6�73 < � SOLVED � # �%$&'�3�� � ��! � POP
6�73��

SOLVED
� # �%$&'�

return () ��1
end

Algorithm 2: HDP.

of Table 1, including number of states, optimal cost, and per-
centage of states that are relevant.

As heuristic, we follow [Bonet and Geffner, 2003], and use
the domain independent admissible and monotonic heuristic�>= �/� , obtained by replacing the expected cost in Bellman
equation by the best possible cost. The total time spent com-
puting heuristic values is roughly the same for the different
algorithms (except VI), and is shown separately in the fifth
row in the table, along with its value for �� . The experiments
are carried with three heuristics:

� � � = ��� ,
� � � = ��� _�` ,

and
� ��� .

The results are shown in Table 1. HDP dominates the other
algorithms over all the instances for

� � � = �/� , while LRTDP
is best (with one or two exceptions) when the weaker heuris-
tics

�?= �/� _�` and � are used. Thus, while HDP seems best for
exploiting good heuristic information over these instances,
LRTDP bootstraps more quickly (i.e., it quickly computes a
good value function). We hope to understand the reasons for

algorithm large-b h-track square-1 square-2 ring-1 ring-2 ring-3 ring-4� ���
23880 53597 42071 383950 5895 33068 94369 353991

����
%I J � 18.73356 41.89504 8.07350 11.13041 11.04923 16.09833 22.04798 27.78572
% relevant 18.58 17.12 1.79 0.25 10.70 11.10 10.91 9.98
�����
	
%IKJ�� 16.0 36.0 7.0 10.0 10.0 14.0 19.0 24.0

time for � ����	 3.157 13.422 4.509 72.853 0.555 4.558 16.745 85.766

VI
,� ����	 � 4.039 12.620 5.873 81.270 0.614 5.287 19.466 90.895
ILAO "
,� ����	 � 3.776 13.062 0.389 0.942 0.332 6.095 24.422 145.047
LRTDP
,������	 � 3.230 7.618 0.179 0.363 0.143 1.301 4.928 37.992

HDP
,������	 � 1.888 7.547 0.148 0.275 0.121 1.101 4.145 30.511
VI
,�����
	������ 4.069 14.275 6.147 89.248 0.636 5.704 24.385 100.130

ILAO
,� ���
	 ����� 6.346 26.057 2.106 68.028 0.765 9.801 32.415 174.089
LRTDP
,� ���
	 ����� 4.744 12.987 0.813 7.736 0.302 2.480 12.687 152.200

HDP
,�����
	������ 6.402 26.663 1.255 20.952 0.331 3.536 15.982 98.033
VI
,�2��� � 5.785 21.021 8.445 89.152 0.675 5.809 20.979 101.616

ILAO
,�2����� 9.522 46.754 11.230 187.463 1.290 9.894 45.989 310.876
LRTDP
,�2����� 6.435 15.276 3.286 45.514 0.431 3.682 19.424 261.286

HDP
,�2��� � 9.752 42.601 3.579 79.171 0.994 6.173 25.992 157.646

Table 1: Problem data and convergence time in seconds for the different algorithms with different heuristics. Results for� ����� � ! and probability � ���\� ` . Faster times are shown in bold.

these differences in the future.

6 Approximation
HDP, like FIND-and-REVISE, computes a value function B by
enforcing its consistency over the states reachable from ���
and the greedy policy �CE . The final variation we consider,
that we call HDP � �
	 , works in the same way, yet it enforces
the consistency of the value function B only over the states
that are reachable from � � and the greedy policy with some
minimum likelihood.

For efficiency, we formalize this notion of likelihood, using
a non-negative integer scale, where � refers to a normal out-
come, � refers to a somewhat surprising outcome, ` to a still
more surprising outcome, and so on. We call these measures
plausibilities, although it should be kept in mind, that � refers
to the most plausible outcomes, thus ‘plausibility greater than
� ’, means ‘a plausibility measure smaller than or equal to � .’

We obtain the transition plausibilities � � ����� ��	 from the
corresponding transition probabilities by the following dis-
cretization:

� ����� � ��	 def���8X��
�@- � ��� ����� � ��	 _ /R*��3=< < � ����� � � ��	 	�� (5)

with � ������� �	P��� when � ������� �	P�Q� . Plausibilities are
thus ‘normalized’: the most plausible next states have always
plausibility � . These transition plausibilities are then com-
bined by the rules of the � calculus [Spohn, 1988] which is
a calculus isomorphic to the probability calculus (e.g. [Gold-
szmidt and Pearl, 1996]). The plausibility of a state trajectory
given the initial state, is given by the sum of the transition
plausibilities in the trajectory, and the plausibility of reach-
ing a state, is given by the plausibility of the most plausible
trajectory reaching the state.

The HDP ���
	 algorithm, for a non-negative integer � , com-
putes a value function B by enforcing its (� -)consistency over
the states reachable from � � with plausibility greater than
or equal to � . HDP ���
	 produces approximate policies fast by
pruning certain paths in the search. The simplest case results

from �G�"� , as the code for HDP �%� 	 corresponds exactly to the
code for HDP, except that the possible successors of a state �
in the greedy graph are replaced by the plausible successors.

HDP ���
	 computes lower bounds that tend to be quite tight
over the states that can be reached with plausibility no smaller
than � . At run time, however, executions may contain ‘sur-
prising’ outcomes, taking the system ‘out’ of this envelope,
into states where the quality of the value function and its cor-
responding policy, are poor. To deal with those situations,
we define a version of HDP � �
	 , called HDP ��� �! �	 , that inter-
leaves planning and execution as follows. HDP ���.�" �	 plans
from � � ��� by means of the HDP ���
	 algorithm, then exe-
cutes this policy until a state trajectory with plausibility mea-
sure greater than or equal to , and leading to a (non-goal)
state �� is obtained. At that point, the algorithm replans from
�� with HDP ���
	 , and the same execution and replanning cycle
is followed until reaching the goal. Clearly, for sufficiently
large , HDP ���.�" �	 reduces to HDP ����	 , and for large � , HDP ���
	
reduces to HDP.

Table 2 shows the average cost for HDP ��� �! �	 for � � �
(i.e., most plausible transitions considered only), and several
values for (replanning thresholds). Each entry in the ta-
ble correspond to an average over 100 independent execu-
tions. We also include the average cost for the greedy policy
with respect to

� = �/� as a bottom-line reference for the fig-
ures. Memory in the table refers to the number of evaluated
states. As these results show, there is a smooth tradeoff be-
tween quality (average cost to the goal) and time (spent in
initial planning and posterior replannings) as the parameter
 vary. We also see that in this class of problems the

��= �/�
heuristic delivers a very good greedy policy. Thus, further
research is necessary to assess the goodness of HDP � � �! �	 and
the

� = ��� heuristic.

7 Related Work
We have built on [Barto et al., 1995] and [Bertsekas, 1995],
and more recently on [Hansen and Zilberstein, 2001] and
[Bonet and Geffner, 2003]. The crucial difference between

h-track square-2 ring-3 ring-4
algorithm time quality memory time quality memory time quality memory time quality memory
HDP
,� ����	 � 7.547 41.894 35835 0.275 11.130 7245 4.145 22.047 43358 30.511 27.785 152750

HDP
 � � ��� 0.853 42.950 7132 0.021 11.250 819 0.311 22.000 7145 1.758 28.500 24195
HDP
 � � � � 0.826 44.000 7034 0.022 11.500 650 0.327 23.300 6882 1.821 28.400 23857

HDP
 � ����� � 0.701 46.800 6100 0.017 11.500 556 0.284 23.600 6331 1.580 30.800 21823
HDP
 � ��� � � 0.698 46.800 5899 0.014 11.610 564 0.264 25.500 6322 1.518 32.400 21823

greedy
,� ����	 � N/A 47.150 356 N/A 12.450 104 N/A 25.390 192 N/A 31.600 241

Table 2: Results of HDP �%�\�! �	 for H� ` �&�\����' � ' � and greedy policy with respect to
� = �/� for � � �� � ! and � ��� � ` . Each value

is the average over 100 executions. N/A in time for the greedy policy means “Not Applicable” since there is no planning.

FIND-and-REVISE and general asynchronous value iteration
is the focus of the former on the states that are reachable from
the initial state ��� and the greedy policy. In RTDP, the FIND
procedure is not systematic and is carried out by a stochas-
tic simulation that may take time greater than � � � 	 when
the inconsistent states are reachable with low probability (this
explains why RTDP final convergence is slow; see [Bonet and
Geffner, 2003]). LAO*, on the other hand, keeps track of a
subset of states, which initially contains � � only, and over
which it incrementally maintains an optimal policy through
a somewhat expensive REVISE (full DP) procedure. This is
then relaxed in the second algorithm in [Hansen and Zilber-
stein, 2001], called Improved LAO* here. The use of an ex-
plicit envelope that is gradually expanded is present also in
[Dean et al., 1993] and [Tash and Russell, 1994]. Interest-
ingly, these envelopes are expanded by including the most
‘likely’ reachable states not yet in the envelope. The algo-
rithm HDP ���
	 exploits a similar idea but formulates it in a dif-
ferent form and has a crisp termination condition.

8 Summary
We have introduced and analyzed three HS/DP algorithms
that exploit knowledge of the initial state and an admissible
heuristic function for solving planning problems with uncer-
tainty and feedback: FIND-and-REVISE, HDP, and HDP � �
	 .
FIND-and-REVISE makes explicit the basic idea underlying
HS/DP algorithms: inconsistent states are found and updated,
until no one is left. We have proved its convergence, complex-
ity, and optimality. HDP adds a labeling mechanism based
on Tarjan’s SCC algorithm and is strongly competitive with
current algorithms. Finally, HDP ����	 and HDP ��� �! �	 offer great
time and memory savings, with no much apparent loss in
quality, in problems where transitions have probabilities that
differ greatly in value, by focusing the updates on the states
that are more likely to be reached.

Acknowledgements: We thank Eric Hansen and Shlomo Zil-
berstein for making the code for LAO* available to us. Blai
Bonet is supported by grants from NSF, ONR, AFOSR, DoD
MURI program, and by a USB/CONICIT fellowship from
Venezuela. Héctor Geffner is supported by grant TIC2002-
04470-C03-02 from MCyT, Spain.

References
[Barto et al., 1995] A. Barto, S. Bradtke, and S. Singh.

Learning to act using real-time dynamic programming. Ar-
tificial Intelligence, 72:81–138, 1995.

[Bellman, 1957] R. Bellman. Dynamic Programming.
Princeton University Press, 1957.

[Bertsekas, 1995] D. Bertsekas. Dynamic Programming and
Optimal Control, (2 Vols). Athena Scientific, 1995.

[Bonet and Geffner, 2003] B. Bonet and H. Geffner. Labeled
RTDP: Improving the convergence of real-time dynamic
programming. In Proc. ICAPS-03. To appear, 2003.

[Boutilier et al., 1999] C. Boutilier, T. Dean, and S. Hanks.
Decision-theoretic planning: Structural assumptions and
computational leverage. Journal of Artificial Intelligence
Research, 11:1–94, 1999.

[Dean et al., 1993] T. Dean, L. Kaelbling, J. Kirman, and
A. Nicholson. Planning with deadlines in stochastic do-
mains. In R. Fikes and W. Lehnert, editors, Proc. 11th
National Conf. on Artificial Intelligence, pages 574–579,
Washington, DC, 1993. AAAI Press / MIT Press.

[Goldszmidt and Pearl, 1996] M. Goldszmidt and J. Pearl.
Qualitative probabilities for default reasoning, belief revi-
sion, and causal modeling. Artificial Intelligence, 84:57–
112, 1996.

[Hansen and Zilberstein, 2001] E. Hansen and S. Zilber-
stein. LAO*: A heuristic search algorithm that finds solu-
tions with loops. Artificial Intelligence, 129:35–62, 2001.

[Howard, 1960] R. Howard. Dynamic Programming and
Markov Processes. MIT Press, Cambridge, MA, 1960.

[Korf, 1997] R. Korf. Finding optimal solutions to rubik’s
cube using patterns databases. In B. Kuipers and B. Web-
ber, editors, Proc. 14th National Conf. on Artificial Intelli-
gence, pages 700–705, Providence, RI, 1997. AAAI Press
/ MIT Press.

[Puterman, 1994] M. Puterman. Markov Decision Processes
– Discrete Stochastic Dynamic Programming. John Wiley
and Sons, Inc., 1994.

[Spohn, 1988] W. Spohn. A general non-probabilistic theory
of inductive reasoning. In Proc. 4th Conf. on Uncertainty
in Artificial Intelligence, pages 149–158, New York, NY,
1988. Elsevier Science Publishing Company, Inc.

[Tarjan, 1972] R. E. Tarjan. Depth first search and linear
graph algorithms. SIAM Journal on Computing, 1(2):146–
160, 1972.

[Tash and Russell, 1994] J. Tash and S. Russell. Control
strategies for a stochastic planner. In B. Hayes-Roth and
R. Korf, editors, Proc. 12th National Conf. on Artificial
Intelligence, pages 1079–1085, Seattle, WA, 1994. AAAI
Press / MIT Press.

