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Abstract

POMDPs are general models of sequential de-
cisions in which both actions and observa-
tions can be probabilistic. Many problems of
interest, including extracting decision trees
from data, can be formulated as POMDPs yet
the use of POMDPs has been limited by the
lack of effective algorithms. Recently this
has started to change and a number of prob-
lems such as robot navigation and planning
are beginning to be formulated and solved
as POMDPs. The advantage of the POMDP
approach is its clean semantics and its abil-
ity to produce principled solutions that inte-
grate physical and information gathering ac-
tions. In this paper we pursue this approach
in the context of two learning tasks: learn-
ing to sort a vector of numbers and learning
decision trees from data. Both problems are
formulated as POMDPs and solved by a gen-
eral POMDP algorithm. The main lessons and
results are the following:

1. the use of suitable heuristics and repre-
sentations allows us to solve sorting and
classification POMDPs of non-trivial sizes

2. the resulting solutions are competitive
with the ones obtained by the best algo-
rithms tailored for each of the two tasks

3. problematic aspects in decision tree
learning such as test and misclassifica-
tion costs, noisy tests, and missing val-
ues are naturally accommodated
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which both actions and observations can be proba-
bilistic (Sondik 1971; Cassandra, Kaebling, & Littman
1994). Many problems of interest can be formulated
as POMDPs yet the use of POMDPs has been limited
by the lack of effective algorithms (Cassandra, Kae-
bling, & Littman 1995). Recently this has started to
change and a number of problems such as robot nav-
igation and planning are beginning to be formulated
and solved as POMDPs (Cassandra, Kaebling, & Kurien
1996; Geffner & Bonet 1998a). The advantage of the
POMDP approach is its clean semantics and its ability
to produce principled solutions that integrate physi-
cal and information gathering actions. In this paper
we pursue this approach in the context of two learn-
ing tasks: learning to sort a vector of numbers and
learning decision trees from data. Both problems are
formulated as POMDPs and solved by a general POMDP
algorithm (Geffner & Bonet 1998b) based on the ideas
of Real Time Dynamic Programming (Barto, Bradtke,

& Singh 1995).

The choice of the two tasks requires an explanation.
Both are sequential decision problems that can be nat-
urally seen as POMDPs. Yet the difficulties and insights
that result from modeling and solving each problem as
a POMDP are different. Sorting involves finding a se-
quence of comparisons and swaps that would sort any
vector of size n. This is a challenging planning prob-
lem and we are not aware of any contingent planner
that can model and solve problems of this type. Mod-
eling and solving the problem from the perspective of
POMDPs is challenging too. For n = 10, the number
of possible states in the problem is greater than 106.
Until recently PoMDPs with more than 20 states could
not be reasonably solved especially when they involved
information-gathering actions. Here we provide solu-
tions for POMDPs of size n = 10 that involve more than
a million states. Moreover the solutions are good: on
average they involve half the number of comparisons



and swaps as Quicksort, one of the best sorting algo-
rithms (Aho, Hopcroft, & Ullman 1983). The solu-
tion method relies on good heuristic functions, com-
pact representations of beliefs, and suitable decompo-
sitions.

The sorting problem is difficult and we use it not to
learn about sorting but to learn about poMDPs. The
focus on decision tree induction is different as we ex-
pect that the POMDP approach may contribute to a
better understanding of decision tree induction on as-
pects such as noisy data and tests, missing values,
and tests and misclassification costs. All these as-
pects fit the POMDP formulation of decision tree in-
duction in a natural way. We evaluate this formula-
tion over a number of datasets from (Murphy & Aha
1998). Our goal is to show that the POMDP approach
may be competitive with the standard approaches
and potentially more general. Indeed POMDPS pro-
vide a unifying framework for modeling and solving
not only sorting and induction, but other ATl tasks as
well such as robot navigation, planning, control, diag-
nosis, etc. (Cassandra, Kaebling, & Littman 1994;
Geffner & Bonet 1998a). On the other hand, the
POMDPs algorithms we use do not scale up yet to learn-
ing problems over very large datasets.

The rest of the paper is organized as follows. Next
we review MDPs, POMDPs, and the POMDP algorithm
(Section 2). Then we formulate the problems of sort-
ing and decision tree induction as POMDPs, and report
empirical results (Sections 3 and 4). Finally we sum-
marize the main lessons and ideas (Section 5).

2 BACKGROUND

POMDPs are a generalization of a model of sequen-
tial decision making formulated by Richard Bellman in
the 50’s called Markov Decision Processes or MDPs, in
which the state of the environment is assumed known
(Bellman 1957). MDPs provide the basis for under-
standing POMDPs so we turn to them first.!

2.1 MDPs

The type of MDPs that we consider is a generalization
of the standard search model used in Al in which ac-
tions can have probabilistic effects. Goal MDPs, as we
call them, are characterized by:

!For some recent books on MDPs, see (Puterman 1994;
Bertsekas & Tsitsiklis 1996); for an Al perspective, see
(Boutilier, Dean, & Hanks 1995; Barto, Bradtke, & Singh
1995).

1. a state space S

2. sets A(s) C A of actions applicable in each state
s

3. positive costs c(a, s) of performing action a in s

4. transition probabilities P,(s'|s) of ending up in
state s" after doing action a € A(s) in state s

goal states G C §

(@24

Since the effect of actions is assumed to be observable
while not predictable, the solution of a MDP is not an
action sequence but a function that maps states s into
actions a € A(s). Such a function is called a policy,
and its effect is to assign a probability to each state
trajectory. We assume that goal states are absorbing
in the sense that actions in those states have no effects
and have zero costs. As aresult, state trajectories that
contain goal states have finite costs, while others have
infinite costs. The expected cost of a policy from an
initial state is the weighted average of the costs of all
the state trajectories starting in that state times their
probability. A policy is optimal when its expected cost
from any state is minimal. General conditions for the
existence of such policies can be found in (Puterman

1994; Bertsekas & Tsitsiklis 1996).

3 POMDPs

POMDPs generalize MDPs allowing the state to be par-
tially observable (Sondik 1971; Cassandra, Kaebling,
& Littman 1994; Russell & Norvig 1994). The solu-
tion of a POMDP is no longer a mapping from states
into actions, but a mapping from belief states into ac-
tions, where belief states are probability distributions
over the states. A POMDP agent or controller starts
with a prior belief state that adjusts as a result of the
actions he performs and the observations he gathers.
It is assumed that he has a model of both the actions
and the sensors. Formally, a goal POMDP is defined in
terms of:

states s € §
actions A(s) C A applicable in each state s

positive costs c(a, s) of performing action @ in s

= W=

transition probabilities P,(s'|s) of ending up
in state s’ after doing action a € A(s) in state s

initial belief state b,

final belief states bp

N oo

observations o in state s after action a with
probabilities P,(ols)



The first four components define an MDP that is ex-
tended with prior and final beliefs, and a sensor model.
Here we deal only with deterministic actions and hence
can represent the transition probabilities P,(s'|s) by
transition functions fq(s). The probability P,(s'|s) is
1if ' = fq(s) and 0 otherwise.

POMDPs can be formulated as information or belief
MDPs in which states are replaced by belief states
(Sondik 1971; Cassandra, Kaebling, & Littman 1994).
The task is to find a mapping 7 from belief states to
actions that will take us from the initial belief state
bo to a final belief state bp at a minimum expected
cost. The way actions and observations affect the belief
state is given by the equations (Cassandra, Kaebling,
& Littman 1994):

ba(s) = ZPG(S|S')Z)(S') (1)
s'eS

balo) = 3 Palols)bas) )
SES

bo(s) = Palo]|8)ba(s)/ba(0) if bu(o) #0 (3)

where b, is the belief state that results after doing
action a in b, by(0) is the probability of observing o
after doing « in b, and b is the belief state that re-
sults after doing action ¢ in b and then observing o.
The cost ¢(a,b) of an action a in b is the weighted av-
erage Y s c(s,a)b(s) . The exception are the final
belief states by that are assumed to be absorbing; i.e.,
c(a. bp) is defined as 0, and b, and b;, are defined as b,
when b is a final belief state. Finally, the set of actions
A(b) applicable in b excludes the actions « that are not
applicable in states s with b(s) > 0.

Solving belief MDPs is difficult and until recently only
very small problems could be solved reasonably well
especially when they involved information-gathering
actions. This has started to change (Cassandra, Kae-
bling, & Littman 1995) and here we use a POMDP al-
gorithm introduced in (Geffner & Bonet 1998b) that
is based on the ideas of Real Time Dynamic Program-
ming (Barto, Bradtke, & Singh 1995) and has been
tested on a number of navigation and planning prob-

lems in (Geffner & Bonet 1998b; 1998a).

RTDP-BEL is a hill-climbing algorithm that from any
state b searches for the goal states bp by performing
actions a that lead to new states b, with probability
bu(0) (Figure 1). Estimates V(b) of the expected costs
to reach bp guide the search. The main difference with
standard hill-climbing is that these estimates are up-
dated dynamically. Initially V'(b) is set to h(b), where
h is a suitable heuristic function, and every time the

1. Evaluate each action a applicable in b as

Q(b.a) = e(b,a) + Y ba(0)V (D7)
0c0
initializing V (b7) to h(b.) when b, not in table

2. Apply action a that minimizes Q(b,a) breaking
ties randomly

Update V(b) to Q(b,a)

Observe o

=W

Ut

Compute b

Exit if b; is a final belief state, else set b to b, and
go tol

&

Figure 1: RTDP-BEL

state b is visited V(b) is updated to make it consistent
with the values V(b') of its possible successor states
b (Korf 1990). In the implementation, the estimates
V' (b) are stored in a hash table that initially contains
an estimate for V(bg) only. Then when the value V(b')
of a state b’ that is not in the table is needed, a new
entry with V(b') set to h(b') is created. Usually belief
states need to be discretized (Geffner & Bonet 1998b)
but this is not needed for the two tasks we’ll be con-
cerned with in this paper.

RTDP-BEL combines search and simulation, and in ev-
ery trial selects a random initial state s with proba-
bility by (s) on which the effects of the actions applied
by RTDP-BEL (Step 2) are simulated. More precisely,
when action a is chosen, the current state s in the simu-
lation changes to s’ with probability P,(s'|s) and then
produces an observation o with probability Py(o|s’).
The complete RTDP-BEL algorithm is shown in Fig. 1,
where the belief states b are obtained from b by mean
of equations 1 3.

4 SORTING

The sorting problem involves arranging a vector of
numbers in increasing order. We simplify the problem
slightly assuming that no two numbers in the vector
are equal. There are two types of actions available:
swap(1, j) that exchanges the elements in positions ¢
and j, and emp(i,7) that tests whether the element
in position ¢ is smaller than the element in position
7. One of the best algorithms for sorting is Quicksort,
which takes in the order of nlog(n) operations on av-
erage, where n is the size of the problem (the number
of elements to be sorted).



4.1 FORMULATION

We formulate the problem as a goal POMDP in which
we have to go from an initial belief state to a final belief
state by means of a number of tests and swaps. The
state s reflects the way in which the elements in the
input vector may be ordered; for example, the state
s =[3,1,2] for n = 3 says that the first element in the
input vector is the third smallest element, the second
element is the smallest element of all, and the third el-
ement is the second smallest element. More generally,
a state s will be a vector of size n such that s[i] = j,
for 1 <4,7 <mn and s[i] # s[j] for i # j. The meaning
of s[i] = j is that the i-th element in the input vector
is the j-th smallest element.

Given an input vector, there is a single state that is
the true state associated with the input vector and
the swaps performed. The actions emp(i, j) yield in-
formation about such state and the actions swap(4, j)
mutate it. The resulting ‘sorting’” POMDP for a partic-
ular problem size n consists of:

1. states given by the vectors s of size n such that
sfi] = j for 0 <i,j <mn and s[i] # s[j] ifi #j

2. actions swap(i,j) and emp(i, j) for0 <i < j<n

3. transition functions f, such that f,(s) = s if
a = emp(i,j), and fo(s) = s’ if a = swap(i,7)
where §'[k] is s[i] if & = 7, s[j] if k =4, and s[k]
otherwise

4. action costs ¢(a,s) =1 for all a and s

initial belief state by uniform over all states

(S

6. final belief state by for which bp(G) = 1, where
s = G is the sorted state for which s[i] = i for

1=1,...,n
7. observations o; = (i < j) or 0, = (j < %)
from the actions a = test(i,j) with probabil-

ities P,(01]|s) equal to 1 (0) when s[i] < s[j]
(s[7] > s[j]), and complementary probabilities for
P,(02]s).

4.2 IMPLEMENTATION

Finding a policy to take us from by to b at a nearly op-
timal expected cost is difficult, and for the RTDP-BEL
algorithm to solve this problem even for small values
of n, suitable belief representations and heuristic func-
tions are needed.

4.2.1 Representation of Beliefs

The beliefs b(s) encode the probability that state s re-
flects the manner in which the elements in the input
are ordered. For a sorting problem of size n, the size
of the state space is n!. For n = 10, this means 10°
states. Such large state spaces introduce problems of
memory and time in RTDP-BEL and other POMDP al-
gorithms. Memory is a potential problem as in the
worst case the size of the hash table grows with the
size of the belief space which is in the order of 2™.
This problem, however, can be ameliorated by the use
of a good heuristic function as discussed below.

The time complexity is more troublesome. The
RTDP-BEL loop involves the computation of the be-
lief states b, and bel from the original belief state a
as dictated by Equations 1-3. In the worst case the
time for these computations grow with |S|*> and [S||O|
respectively. If belief states had few non-zero entries a
suitable sparse representation could be used, but this
is not, true in sorting where the initial belief state is
uniform (we don’t know initially how the elements are
ordered).

The representation that we use exploits features of the
sorting problem that we expect would also arise in
other tasks.? First of all, since the prior is uniform and
the ‘sensors’ (L.e., tests) are noiseless, belief states b
can be represented by sets of states S, = {b|b(s) > 0}.
Indeed. from Bayes’ rules it follows that b(s) = 1/|Ss|
if s € S and b(s) = 0 otherwise. Furthermore, in
sorting such sets can be conveniently encoded by col-
lection of ‘links” of the form + — 7 for 0 < 4,7 < n,
where each link ¢ — 7 is a constraint that excludes all
states s for which s[i] £ s[j]. The initial belief state
by is represented by an empty set of such links, while
the representation of b is obtained from the represen-
tation of b, by adding the link ¢ — j if 0 = (i < j),
and j = ¢ if o = (j < 7). The representation of b,
and b are equal for @ = ecmp(7, ) and the first is ob-
tained from the second by exchanging the occurrences
of ¢ and j when a = swap(i, 7). Our implementation
extends this idea with a simple mechanism that re-
moves redundant links after any observation (a link
is redundant when it can be inferred by transitivity).
The result of this representation is that we reduce the
complexity of updating beliefs b into b2 from |S]? to
|O] which is significantly smaller.

In particular we expect similar ideas to be applicable to
the problem of handling continuous attributes in decision
tree learning, but we don’t deal with such problems here.



4.2.2 Updating the values of belief states

The structures used to represent belief states need to
be converted into numbers for computing the values

Qa,b) :=c(a,b) + Z V(ba)ba(o)

oc0,

This expression involves a probability b,(0) that has to
be obtained from the representation of b;. One way to
compute by(0) is by computing the proportion of states
s in b, that satisfy o (s satisfies (4 < 7) if s[i] < s[J]).
This however is very costly and grows linearly with
|S]. For this reason we pursue a different approach
approximating b,(0) for o = (i < j) as:

1 ifi—jinb,
ba(o)=4 0 ifj > iinb, (4)
1/2  otherwise

where + — 7 is in b, when the link forms part of the
representation of b, or can derived from such links by
transitivity. The approximation here is that proba-
bilities that are not either 0 or 1 are mapped into
1/2. This amounts to assuming that a test cmp(i,7)
whose outcome is not predictable can go either way
with equal probability. This assumption is not true in
general but speeds up the computation and does not
appear to do harm, as it is approximately correct for
the tests that are optimal. We'll discuss later on a
similar approximation in the context of decision tree
learning.

4.2.3 Heuristic Functions

The representations of beliefs reduces the complexity
of updating beliefs b into b9, while the approximation
above eliminates the cost of computing the probabil-
ity ba(0) of observing o after doing action @ in b. Both
together speed up considerably the inner loop of the
RTDP-BEL algorithm that correspond to the selection
and application of actions. To speed up the solution
of problems we also need to consider and apply as few
actions as possible. This we do by means of the heuris-
tic function h(bd) that must provide an estimate of the
minimal expected number of actions needed to go from
b to the final belief state bp. We consider the combi-
nation of two heuristics:

1. the longest chain heuristic h(b) is based on the
longest sequence of links 21 < i3 < i3 < ...%p
that appear explicitly in the representation of b,
with h(b) defined as n —m

2. the number of misplaced elements heuristic hp,(b)
applies to definite belief states only; i.e., those b’s
such that b(s) = 1 for some state s. In such a
case h,,(b) is defined as the number of positions
i=1,...,n, for which s[i] # 1

These heuristics are not admissible in the sense that
they may overestimate the minimum expected cost to
the goal, and as a result may prevent the estimates
V(b) to approach the optimal values.® Yet the admis-
sible heuristics we have tried were not as informative,
led the algorithm to visit too many belief states, and
in general resulted in memory problems.

A final point about the implementation of the
RTDP-BEL for sorting is that we impose the precon-
dition that the ordering between the elements at po-
sitions ¢+ and 7 be known before considering a swap
between them. This is done by making an action
swap(t, j) applicable in b only when a link ¢ — j or
j — @ is in the representation of b. This condition
tends to reduce the branching factor of the problem
which is still large as it grows linearly with n.

4.3 EVALUATION

We tried the above implementation of the RTDP-BEL
algorithm on sorting problems of two sizes. Figure 2(a)
shows the performance of the sorting policies com-
puted by RTDP-BEL for problems of size n = 5 and
compares them with the ones obtained by Quicksort.
The y-axis measures the average number of actions
performed and the z-axis the number of trials. For
n = 5, there are b! = 120 states, 20 actions, and 40
observations. The curves for RTDP-BEL correspond to
the heuristic h = 0, h = h; and the decomposition
method to be explained below. The point at trial +
for ¢« = 1000, 2000, 3000,...10000, indicates the aver-
age cost to reach the goal over 1000 simulations using
the greedy policy determined by the estimates in the
table at trial :. RTDP-BEL shows improvement with
the heuristics b = 0 and h; but no improvement with
the decomposition method. In all cases they arrive to
an expected cost that is slightly below 11 which is half
the expect cost incurred by Quicksort (which is the
top line in both figures). A run of 10000 trials with
h = 0 takes in the order of 1.36 minutes and leaves
4230 entries in the hash table. The heuristic h; and
the decomposition method are slightly faster.

For larger sizes, neither of the two heuristics h = 0

%See (Barto, Bradtke, & Singh 1995) for the relation

between admissibility and optimality in RTDP algorithms.
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Figure 2: Average number of actions vs Number of Trials for sorting problems of sizes n = 5 and n = 10. Top

line is the curve for Quicksort.

nor h = h; scale up. Figure 2(b) shows the results of
the decomposition method for n = 10. This means a
POMDP with several million states, 45 actions and 90
observations. The idea of the decomposition method
is the following: the sorting problem is divided in two
by introducing the definite belief states b, as subgoals,
where the b’;’s are such that bz(s) = 1 for some s. We
deal with the problem of going from by to some b,
and from b to bp separately. That is, each problem
has its own heuristic function and its own hash table.
The second subproblem is triggered after a belief b,
is obtained. For the first subproblem, the heuristic h;
is used, while for the second subproblem, h,, is used.
Note that the resulting curves for both n = 5 and
n = 10 are practically flat. This means that the re-
sulting algorithm starts off very well but then does not
improve much. As mentioned above this is the result
of the non-admissibility of the heuristics h; and h,,
for each of the two tasks. We actually ran the same
experiment eliminating the update step in RTDP-BEL.
The resulting algorithm, which is a purely greedy al-
gorithm, produced the same results while consuming
constant memory (the table with the estimates is not
needed). Yet even this simplification of RTDP-BEL is
not good for very large values of n as the branching
factor of the problems (the number of actions) is linear
in n. For such problems other optimizations would be
needed. An alternative that we have considered but
haven’t yet tried is the use of ‘indexicals’ to control
the actions that can be considered at any given point.
The indexicals in this problem can be just a pair of
vector subscripts so that only comparisons and swaps
of elements with those subscripts can be considered, in
addition to the operation of incrementing and decre-
menting those indices. Schemes such as these reduce
the branching factor of the problem but push the solu-
tions deeper in search space. Whether and when such

tradeoff would speed up computation remains an open
question.

4.4 SUMMARY

Sorting is a challenging problem that can be effec-
tively modeled and solved as a POMDP provided suit-
able heuristics, representations and decompositions
are used. In this way we have solved a POMDP that
involves millions of states by a greedy algorithm, and
have obtained solutions that compare favorably with
Quicksort in terms of the number of steps. The ob-
vious weakness of the resulting sorting policy is that
it applies to a particular problem size. An interesting
challenge is the extraction of a concise and generalized
representation of the policy that could be applied to
problems of any size. One way to approach this prob-
lem may be through the use of decision tree learning
algorithms that we address next.

5 DECISION TREES

Decision trees are classifiers that map instances into
classes by sequentially testing the value of a finite set
of attributes (Mitchell 1997). The standard way to
learn decision trees from data is by a top-down greedy
strategy in which the attribute that is most informa-
tive for the classification according to the data is used
to split the data first, and for each possible outcome,
the attribute that is most informative according to
the remaining data is used second and so on, until ei-
ther there are no more data or no more uncertainty
regarding the classification (Breiman et al. 1984;
Quinlan 1993). The generalization power of decision
tree algorithms is measured by the classification error
over part of the data that is left aside for testing. De-
cision tree learning algorithms have been applied to a



number of domains (Murthy 1998) and a number of
variations and extensions have been considered (Diet-

triech 1997).

5.1 FORMULATION

The problem of learning decision trees can be seen as
a sequential decision problem that involves two types
of actions: report(i) by which the current instance s is
classified in class ¢;, and test(j) by which the attribute
t; of s is observed. The goal is to have the instance
s classified, and this can be achieved by any of the
actions report(i), ¢ = 1,...,n where n is the num-
ber of classes. The expected cost associated with such
actions depends on the true class of s. The actions
test(j) provide information about s. The ‘classifica-
tion” POMDP consists thus of:

1. states s that are the instances in the training set
supplemented by a separate goal state G

2. actions report(i) for cach of the classes ¢;, and
test(j), for each of the attributes t;

3. tramsition functions f, such that f,(s) = s if
a = test(j), and f.(s) = G if a = report(i)

4. action costs c(report(i),s) = C;j for class(s) =
c; and c(test(j),s) = Cj,

initial belief state by uniform over the non-goal
states and zero over the goal state

(S

6. final belief state bp for which b¥'(G) =1

7. observations o after action a = test(j) with
probabilities P,(o|s) = 1 if 0 = v,(s) and 0 oth-
erwise, where v;(s) stands for the value of s over
the attribute ;

The pOMDP formulation suggests generalizations of the
standard decision tree learning setting such as different
test and misclassification costs C; and C};. noisy tests
with P,(o|s) € (0,1), etc. By default we will assume
here that the cost of tests and correct classifications is
1, while the cost C;; of misclassifications for ¢ # 7, is
some constant C' > 1.

5.2 IMPLEMENTATION

We represent belief states as sets of states (training
set instances), taking advantage of the the uniform
prior over the instances and the noiseless ‘sensors’.
With this representation, the complexity of a single
RTDP-BEL cycle reduces from |S|? to |S|. The value

ba(0) for a = test(j) in Equation 2 is obtained as the
proportion of states s in b for which v;(s) = 0, a pro-
portion that is computed as [69]/|b|.

We use the non-informative heuristic h = 0. Heuris-
tics based on measures such as information gain (Quin-
lan 1990) could be used as well but they only make a
difference in the first trials of RTDP-BEL as they are
not calibrated with the expected classification costs.
It may be possible to calibrate such heuristics to ac-
celerate convergence but we don’t how to do that yet.

5.3 EVALUATION

Table 1 compares RTDP-BEL with two standard deci-
sion tree learning algorithms, ID3 and C4.5 (Quinlan
1990; 1993) over some small datasets obtained from
the UCI Repository (Murphy & Aha 1998) for two
different misclassification costs C.* For each dataset,
we constructed the corresponding POMDP and ran the
RTDP-BEL algorithm with the non-informative heuris-
tics h = 0 for 10.000 trials. The curve in Figure 3
shows the average classification accuracy as a function
of the number of trials in the Monk-1 and Monk-2
datasets. A run of 10.000 trials over the Monk datasets
takes a few minutes on average and leaves a few thou-
sand entries in the hash table. For the larger Vote
dataset, the run takes 24 minutes on average and leaves
around 16.000 entries in the hash table.

5.3.1 Missing Values

In the presence of missing values in the training set,
the sum of the beliefs ba(o) over the real observations
o may fail to add up to 1 due to the mass b,(m) #
0 over the missing observations.
beliefs bg(0) are normalized by dividing them by the
sum ZZ b, (0;) taken over the real observations o;. This
amounts to assuming that having ‘observed’ a missing
value m is like having observed a real observation o;
with probability b,(0;). This implies that b* = b,, in
agreement with the interpretation of missing values as
missing observations. The dataset Vote in Table 1 has
missing values.

In such cases, the

*The figures for ID3 and C4.5 were taken from (Fried-
man, Kohavi, & Yun 1996). The column named ‘Test’
in the table indicates how the generalization performance
of the algorithms was measured. The Monk-n datasets
come with separate training and test data; on the other
two problems the test data was generated by 5-fold cross
validation: the data were partitioned into five segments,
and fives runs were performed by leaving one different seg-
ment as test data and the other four as training data. The
results are averages over these fives runs.
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Figure 3: Classification Accuracy vs. Trials for Monk-1 and Monk-2
Table 1: Accuracy after 10,000 trials compared with ID3 and C4.5
RTDP

Dataset Feat. Miss Train  Test 1d3 C4.5 C =25 C = 10000
monk-1 6 no 124 432 81.25+1.89 75.70+2.07 97.394+0.29 97.39+0.35
monk-2 6 no 169 432 69.914+221 65.00£2.30 64.42+1.13 64.404£0.81
monk-3 6 no 122 432 90.28£1.43 97.20+£0.80 95.164+0.49 94.334+0.78
hayes-roth 4 no 160 CV-5 68.75+8.33 74.38+4.24 77.70+4.65 72.04+5.44
vote 16 yes 435 CV-5 93.10+2.73 95.63+0.43 9442+ 1.88 83.12+6.75

5.3.2 Misclassification Costs and Overfitting

As expected, misclassification costs and overfitting are
related in noisy datasets. Very high misclassification
costs induce the algorithm to fit the training data as
much as possible, which in those cases may increment
the error rate on the test set. This can be seen in
the last row in Table 1, where the error rate in the
Votes data set goes up almost 10 points when the mis-
classification costs were incremented from C' = 25 to
C = 10.000. In general these costs do not have to
be all equal and can be tuned to produce a minimal
error rate by leaving aside part of the training data
for that purpose. In other problems (e.g., medicine),
these costs can be chosen to approximate the real mis-
classification costs.

5.3.3 Approximations

In another set of experiments we introduced an ap-
proximation in the representation of beliefs and in the
evaluation of the probability b,(0), which in this case
stands for the probability of observing a certain value
v testing an attribute atir in a given context. The ex-
act value of b, (o) is given by the number of instances
in b (recall that beliefs are represented as set of states)
whose attribute attr has value v over the total number
of instances in b. Following a similar approximation in

the sorting domain, we approximated b, (o) uniformly
as 1/n, where n is the number of values that attribute
attr takes in the training set. As before the intuition
was the best action would be the most informative and
would tend to split the data in that way. The results
confirmed this intuition and matched almost exactly
the ones reported in Table 1. The CPU times were re-
duced three times on average, which is not that much.
Even with this approximation larger datasets cannot
be handled as memory tends to explode. The problem
is the lack of an informative heuristics that could guide
the search, while leaving a large fraction of the (belief)
state space unvisited. Heuristics such as ‘information
gain’ (Quinlan 1990) are informative but they are not
calibrated with the estimated costs.® As a result, they
produce a focused search for the goal in the first few
trials, but then become useless as some of the heuris-
tic values are replaced (updated) by cost estimates. It
seems that it should be possible to speed up the con-
vergence of RTDP algorithms by the use of uncalibrated
heuristics, but how to do that appears to be an open
question.

*That is, information gain is not a good estimate of the
expected costs.



5.4 SUMMARY

We have shown that decision tree induction can be
modeled and solved as a POMDP problem and that so-
lutions, while more expensive to compute, may com-
pete in quality with the standard approaches. POMDPs
may provide a fresh perspective on the problem of in-
ferring decision trees from data as aspects such a noisy
tests and data, tests and misclassification costs, and
missing values, fit into the POMDP approach in a nat-
ural way. The pOMDP algorithm used, however, does
not scale up yet to large datasets involving many at-
tributes, nor does it apply to datasets involving con-
tinuous attributes.

6 CONCLUSIONS

We aimed to show two things. Oneis that POMDPs can
be used to solve complex problems of sequential deci-
sion by the use of suitable heuristics, representations,
and decompositions. The second is that POMDPs pro-
vide a novel perspective on the problem of inferring
decision trees from data that may be worth explor-
ing in further depth. We have been able to solve very
large POMDPs with million of states and obtain solu-
tions that compete in quality with those produced by
some of the the best algorithms (Quicksort, C4.5). We
expect that some of the lessons learned will be applica-
ble to other problems such as the problem of handling
continuous attributes in decision tree learning that ap-
pears to have many aspects in common with sorting.
We also think that the POMDP methods used in this
paper can be refined so that the larger datasets could
be handled handled. A number of interesting open
questions remain that may be relevant for the applica-
tion of POMDP methods to other problems: e.g., how
can sorting policies be generalized to arbitrary array
sizes, whether misclassification costs can be used effec-
tively to deal with the problem of overfitting, how can
uncalibrated heuristics be used to speed up converge
of RTDP algorithms. etc.
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