
Learning sorting and decision trees with POMDPsBlai BonetDepartamento de Computaci�onUniversidad Sim�on Bol��varAptdo. 89000, Caracas 1080-AVenezuelabonet@usb.ve H�ector Ge�nerDepartamento de Computaci�onUniversidad Sim�on Bol��varAptdo. 89000, Caracas 1080-AVenezuelahector@usb.veAbstractpomdps are general models of sequential de-cisions in which both actions and observa-tions can be probabilistic. Many problems ofinterest, including extracting decision treesfrom data, can be formulated as pomdps yetthe use of pomdps has been limited by thelack of e�ective algorithms. Recently thishas started to change and a number of prob-lems such as robot navigation and planningare beginning to be formulated and solvedas pomdps. The advantage of the pomdpapproach is its clean semantics and its abil-ity to produce principled solutions that inte-grate physical and information gathering ac-tions. In this paper we pursue this approachin the context of two learning tasks: learn-ing to sort a vector of numbers and learningdecision trees from data. Both problems areformulated as pomdps and solved by a gen-eral pomdp algorithm. The main lessons andresults are the following:1. the use of suitable heuristics and repre-sentations allows us to solve sorting andclassi�cation pomdps of non-trivial sizes2. the resulting solutions are competitivewith the ones obtained by the best algo-rithms tailored for each of the two tasks3. problematic aspects in decision treelearning such as test and misclassi�ca-tion costs, noisy tests, and missing val-ues are naturally accommodated1 INTRODUCTIONpomdps are general models of sequential decisions in

which both actions and observations can be proba-bilistic (Sondik 1971; Cassandra, Kaebling, & Littman1994). Many problems of interest can be formulatedas pomdps yet the use of pomdps has been limitedby the lack of e�ective algorithms (Cassandra, Kae-bling, & Littman 1995). Recently this has started tochange and a number of problems such as robot nav-igation and planning are beginning to be formulatedand solved as pomdps (Cassandra, Kaebling, & Kurien1996; Ge�ner & Bonet 1998a). The advantage of thepomdp approach is its clean semantics and its abilityto produce principled solutions that integrate physi-cal and information gathering actions. In this paperwe pursue this approach in the context of two learn-ing tasks: learning to sort a vector of numbers andlearning decision trees from data. Both problems areformulated as pomdps and solved by a general pomdpalgorithm (Ge�ner & Bonet 1998b) based on the ideasof Real Time Dynamic Programming (Barto, Bradtke,& Singh 1995).The choice of the two tasks requires an explanation.Both are sequential decision problems that can be nat-urally seen as pomdps. Yet the di�culties and insightsthat result from modeling and solving each problem asa pomdp are di�erent. Sorting involves �nding a se-quence of comparisons and swaps that would sort anyvector of size n. This is a challenging planning prob-lem and we are not aware of any contingent plannerthat can model and solve problems of this type. Mod-eling and solving the problem from the perspective ofpomdps is challenging too. For n = 10, the numberof possible states in the problem is greater than 106.Until recently pomdps with more than 20 states couldnot be reasonably solved especially when they involvedinformation-gathering actions. Here we provide solu-tions for pomdps of size n = 10 that involve more thana million states. Moreover the solutions are good: onaverage they involve half the number of comparisons



and swaps as Quicksort, one of the best sorting algo-rithms (Aho, Hopcroft, & Ullman 1983). The solu-tion method relies on good heuristic functions, com-pact representations of beliefs, and suitable decompo-sitions.The sorting problem is di�cult and we use it not tolearn about sorting but to learn about pomdps. Thefocus on decision tree induction is di�erent as we ex-pect that the pomdp approach may contribute to abetter understanding of decision tree induction on as-pects such as noisy data and tests, missing values,and tests and misclassi�cation costs. All these as-pects �t the pomdp formulation of decision tree in-duction in a natural way. We evaluate this formula-tion over a number of datasets from (Murphy & Aha1998). Our goal is to show that the pomdp approachmay be competitive with the standard approachesand potentially more general. Indeed pomdps pro-vide a unifying framework for modeling and solvingnot only sorting and induction, but other AI tasks aswell such as robot navigation, planning, control, diag-nosis, etc. (Cassandra, Kaebling, & Littman 1994;Ge�ner & Bonet 1998a). On the other hand, thepomdps algorithms we use do not scale up yet to learn-ing problems over very large datasets.The rest of the paper is organized as follows. Nextwe review mdps, pomdps, and the pomdp algorithm(Section 2). Then we formulate the problems of sort-ing and decision tree induction as pomdps, and reportempirical results (Sections 3 and 4). Finally we sum-marize the main lessons and ideas (Section 5).2 BACKGROUNDpomdps are a generalization of a model of sequen-tial decision making formulated by Richard Bellman inthe 50's called Markov Decision Processes or mdps, inwhich the state of the environment is assumed known(Bellman 1957). mdps provide the basis for under-standing pomdps so we turn to them �rst.12.1 MDPsThe type of mdps that we consider is a generalizationof the standard search model used in AI in which ac-tions can have probabilistic e�ects. Goal mdps, as wecall them, are characterized by:1For some recent books on mdps, see (Puterman 1994;Bertsekas & Tsitsiklis 1996); for an AI perspective, see(Boutilier, Dean, & Hanks 1995; Barto, Bradtke, & Singh1995).

1. a state space S2. sets A(s) � A of actions applicable in each states3. positive costs c(a; s) of performing action a in s4. transition probabilities Pa(s0js) of ending up instate s0 after doing action a 2 A(s) in state s5. goal states G � SSince the e�ect of actions is assumed to be observablewhile not predictable, the solution of a mdp is not anaction sequence but a function that maps states s intoactions a 2 A(s). Such a function is called a policy,and its e�ect is to assign a probability to each statetrajectory. We assume that goal states are absorbingin the sense that actions in those states have no e�ectsand have zero costs. As a result, state trajectories thatcontain goal states have �nite costs, while others havein�nite costs. The expected cost of a policy from aninitial state is the weighted average of the costs of allthe state trajectories starting in that state times theirprobability. A policy is optimal when its expected costfrom any state is minimal. General conditions for theexistence of such policies can be found in (Puterman1994; Bertsekas & Tsitsiklis 1996).3 POMDPspomdps generalize mdps allowing the state to be par-tially observable (Sondik 1971; Cassandra, Kaebling,& Littman 1994; Russell & Norvig 1994). The solu-tion of a pomdp is no longer a mapping from statesinto actions, but a mapping from belief states into ac-tions, where belief states are probability distributionsover the states. A pomdp agent or controller startswith a prior belief state that adjusts as a result of theactions he performs and the observations he gathers.It is assumed that he has a model of both the actionsand the sensors. Formally, a goal pomdp is de�ned interms of:1. states s 2 S2. actions A(s) � A applicable in each state s3. positive costs c(a; s) of performing action a in s4. transition probabilities Pa(s0js) of ending upin state s0 after doing action a 2 A(s) in state s5. initial belief state b06. �nal belief states bF7. observations o in state s after action a withprobabilities Pa(ojs)



The �rst four components de�ne an mdp that is ex-tended with prior and �nal beliefs, and a sensor model.Here we deal only with deterministic actions and hencecan represent the transition probabilities Pa(s0js) bytransition functions fa(s). The probability Pa(s0js) is1 if s0 = fa(s) and 0 otherwise.pomdps can be formulated as information or beliefmdps in which states are replaced by belief states(Sondik 1971; Cassandra, Kaebling, & Littman 1994).The task is to �nd a mapping � from belief states toactions that will take us from the initial belief stateb0 to a �nal belief state bF at a minimum expectedcost. The way actions and observations a�ect the beliefstate is given by the equations (Cassandra, Kaebling,& Littman 1994):ba(s) = Xs02S Pa(sjs0)b(s0) (1)ba(o) = Xs2S Pa(ojs)ba(s) (2)boa(s) = Pa(ojs)ba(s)=ba(o) if ba(o) 6= 0 (3)where ba is the belief state that results after doingaction a in b, ba(o) is the probability of observing oafter doing a in b, and boa is the belief state that re-sults after doing action a in b and then observing o.The cost c(a; b) of an action a in b is the weighted av-erage Ps2S c(s; a)b(s) . The exception are the �nalbelief states bF that are assumed to be absorbing; i.e.,c(a; bF ) is de�ned as 0, and ba and boa are de�ned as b,when b is a �nal belief state. Finally, the set of actionsA(b) applicable in b excludes the actions a that are notapplicable in states s with b(s) > 0.Solving belief mdps is di�cult and until recently onlyvery small problems could be solved reasonably wellespecially when they involved information-gatheringactions. This has started to change (Cassandra, Kae-bling, & Littman 1995) and here we use a pomdp al-gorithm introduced in (Ge�ner & Bonet 1998b) thatis based on the ideas of Real Time Dynamic Program-ming (Barto, Bradtke, & Singh 1995) and has beentested on a number of navigation and planning prob-lems in (Ge�ner & Bonet 1998b; 1998a).rtdp-bel is a hill-climbing algorithm that from anystate b searches for the goal states bF by performingactions a that lead to new states boa with probabilityba(o) (Figure 1). Estimates V (b) of the expected coststo reach bF guide the search. The main di�erence withstandard hill-climbing is that these estimates are up-dated dynamically. Initially V (b) is set to h(b), whereh is a suitable heuristic function, and every time the

1. Evaluate each action a applicable in b asQ(b; a) = c(b; a) +Xo2O ba(o)V (boa)initializing V (boa) to h(boa) when boa not in table2. Apply action a that minimizes Q(b; a) breakingties randomly3. Update V (b) to Q(b; a)4. Observe o5. Compute boa6. Exit if boa is a �nal belief state, else set b to boa andgo to 1 Figure 1: rtdp-belstate b is visited V (b) is updated to make it consistentwith the values V (b0) of its possible successor statesb0 (Korf 1990). In the implementation, the estimatesV (b) are stored in a hash table that initially containsan estimate for V (b0) only. Then when the value V (b0)of a state b0 that is not in the table is needed, a newentry with V (b0) set to h(b0) is created. Usually beliefstates need to be discretized (Ge�ner & Bonet 1998b)but this is not needed for the two tasks we'll be con-cerned with in this paper.rtdp-bel combines search and simulation, and in ev-ery trial selects a random initial state s with proba-bility b0(s) on which the e�ects of the actions appliedby rtdp-bel (Step 2) are simulated. More precisely,when action a is chosen, the current state s in the simu-lation changes to s0 with probability Pa(s0js) and thenproduces an observation o with probability Pa(ojs0).The complete rtdp-bel algorithm is shown in Fig. 1,where the belief states boa are obtained from b by meanof equations 1{3.4 SORTINGThe sorting problem involves arranging a vector ofnumbers in increasing order. We simplify the problemslightly assuming that no two numbers in the vectorare equal. There are two types of actions available:swap(i; j) that exchanges the elements in positions iand j, and cmp(i; j) that tests whether the elementin position i is smaller than the element in positionj. One of the best algorithms for sorting is Quicksort,which takes in the order of n log(n) operations on av-erage, where n is the size of the problem (the numberof elements to be sorted).



4.1 FORMULATIONWe formulate the problem as a goal pomdp in whichwe have to go from an initial belief state to a �nal beliefstate by means of a number of tests and swaps. Thestate s re
ects the way in which the elements in theinput vector may be ordered; for example, the states = [3; 1; 2] for n = 3 says that the �rst element in theinput vector is the third smallest element, the secondelement is the smallest element of all, and the third el-ement is the second smallest element. More generally,a state s will be a vector of size n such that s[i] = j,for 1 � i; j � n and s[i] 6= s[j] for i 6= j. The meaningof s[i] = j is that the i-th element in the input vectoris the j-th smallest element.Given an input vector, there is a single state that isthe true state associated with the input vector andthe swaps performed. The actions cmp(i; j) yield in-formation about such state and the actions swap(i; j)mutate it. The resulting `sorting' pomdp for a partic-ular problem size n consists of:1. states given by the vectors s of size n such thats[i] = j for 0 � i; j � n and s[i] 6= s[j] if i 6= j2. actions swap(i; j) and cmp(i; j) for 0 � i < j � n3. transition functions fa such that fa(s) = s ifa = cmp(i; j), and fa(s) = s0 if a = swap(i; j)where s0[k] is s[i] if k = j, s[j] if k = i, and s[k]otherwise4. action costs c(a; s) = 1 for all a and s5. initial belief state b0 uniform over all states6. �nal belief state bF for which bF (G) = 1, wheres = G is the sorted state for which s[i] = i fori = 1; : : : ; n7. observations o1 = (i < j) or o2 = (j < i)from the actions a = test(i; j) with probabil-ities Pa(o1js) equal to 1 (0) when s[i] < s[j](s[i] > s[j]), and complementary probabilities forPa(o2js).4.2 IMPLEMENTATIONFinding a policy to take us from b0 to bF at a nearly op-timal expected cost is di�cult, and for the rtdp-belalgorithm to solve this problem even for small valuesof n, suitable belief representations and heuristic func-tions are needed.

4.2.1 Representation of BeliefsThe beliefs b(s) encode the probability that state s re-
ects the manner in which the elements in the inputare ordered. For a sorting problem of size n, the sizeof the state space is n!. For n = 10, this means 106states. Such large state spaces introduce problems ofmemory and time in rtdp-bel and other pomdp al-gorithms. Memory is a potential problem as in theworst case the size of the hash table grows with thesize of the belief space which is in the order of 2n!.This problem, however, can be ameliorated by the useof a good heuristic function as discussed below.The time complexity is more troublesome. Thertdp-bel loop involves the computation of the be-lief states ba and beloa from the original belief state aas dictated by Equations 1-3. In the worst case thetime for these computations grow with jSj2 and jSjjOjrespectively. If belief states had few non-zero entries asuitable sparse representation could be used, but thisis not true in sorting where the initial belief state isuniform (we don't know initially how the elements areordered).The representation that we use exploits features of thesorting problem that we expect would also arise inother tasks.2 First of all, since the prior is uniform andthe `sensors' (i.e., tests) are noiseless, belief states bcan be represented by sets of states Sb = fbjb(s) > 0g.Indeed, from Bayes' rules it follows that b(s) = 1=jSbjif s 2 Sb and b(s) = 0 otherwise. Furthermore, insorting such sets can be conveniently encoded by col-lection of `links' of the form i ! j for 0 � i; j � n,where each link i! j is a constraint that excludes allstates s for which s[i] 6< s[j]. The initial belief stateb0 is represented by an empty set of such links, whilethe representation of boa is obtained from the represen-tation of ba by adding the link i ! j if o = (i < j),and j ! i if o = (j < i). The representation of baand b are equal for a = cmp(i; j) and the �rst is ob-tained from the second by exchanging the occurrencesof i and j when a = swap(i; j). Our implementationextends this idea with a simple mechanism that re-moves redundant links after any observation (a linkis redundant when it can be inferred by transitivity).The result of this representation is that we reduce thecomplexity of updating beliefs b into boa from jSj2 tojOj which is signi�cantly smaller.2In particular we expect similar ideas to be applicable tothe problem of handling continuous attributes in decisiontree learning, but we don't deal with such problems here.



4.2.2 Updating the values of belief statesThe structures used to represent belief states need tobe converted into numbers for computing the valuesQ(a; b) := c(a; b) + Xo2Oa V (boa)ba(o)This expression involves a probability ba(o) that has tobe obtained from the representation of ba. One way tocompute ba(o) is by computing the proportion of statess in ba that satisfy o (s satis�es (i < j) if s[i] < s[j]).This however is very costly and grows linearly withjSj. For this reason we pursue a di�erent approachapproximating ba(o) for o = (i < j) as:ba(o) = 8<: 1 if i! j in ba0 if j ! i in ba1=2 otherwise (4)where i ! j is in ba when the link forms part of therepresentation of ba or can derived from such links bytransitivity. The approximation here is that proba-bilities that are not either 0 or 1 are mapped into1=2. This amounts to assuming that a test cmp(i; j)whose outcome is not predictable can go either waywith equal probability. This assumption is not true ingeneral but speeds up the computation and does notappear to do harm, as it is approximately correct forthe tests that are optimal. We'll discuss later on asimilar approximation in the context of decision treelearning.4.2.3 Heuristic FunctionsThe representations of beliefs reduces the complexityof updating beliefs b into boa, while the approximationabove eliminates the cost of computing the probabil-ity ba(o) of observing o after doing action a in b. Bothtogether speed up considerably the inner loop of thertdp-bel algorithm that correspond to the selectionand application of actions. To speed up the solutionof problems we also need to consider and apply as fewactions as possible. This we do by means of the heuris-tic function h(b) that must provide an estimate of theminimal expected number of actions needed to go fromb to the �nal belief state bF . We consider the combi-nation of two heuristics:1. the longest chain heuristic hl(b) is based on thelongest sequence of links i1 < i2 < i3 < : : : imthat appear explicitly in the representation of b,with hl(b) de�ned as n �m

2. the number of misplaced elements heuristic hm(b)applies to de�nite belief states only; i.e., those b'ssuch that b(s) = 1 for some state s. In such acase hm(b) is de�ned as the number of positionsi = 1; : : : ; n, for which s[i] 6= iThese heuristics are not admissible in the sense thatthey may overestimate the minimum expected cost tothe goal, and as a result may prevent the estimatesV (b) to approach the optimal values.3 Yet the admis-sible heuristics we have tried were not as informative,led the algorithm to visit too many belief states, andin general resulted in memory problems.A �nal point about the implementation of thertdp-bel for sorting is that we impose the precon-dition that the ordering between the elements at po-sitions i and j be known before considering a swapbetween them. This is done by making an actionswap(i; j) applicable in b only when a link i ! j orj ! i is in the representation of b. This conditiontends to reduce the branching factor of the problemwhich is still large as it grows linearly with n.4.3 EVALUATIONWe tried the above implementation of the rtdp-belalgorithm on sorting problems of two sizes. Figure 2(a)shows the performance of the sorting policies com-puted by rtdp-bel for problems of size n = 5 andcompares them with the ones obtained by Quicksort.The y-axis measures the average number of actionsperformed and the x-axis the number of trials. Forn = 5, there are 5! = 120 states, 20 actions, and 40observations. The curves for rtdp-bel correspond tothe heuristic h = 0, h = hl and the decompositionmethod to be explained below. The point at trial ifor i = 1000; 2000; 3000; : : : 10000, indicates the aver-age cost to reach the goal over 1000 simulations usingthe greedy policy determined by the estimates in thetable at trial i. rtdp-bel shows improvement withthe heuristics h = 0 and hl but no improvement withthe decomposition method. In all cases they arrive toan expected cost that is slightly below 11 which is halfthe expect cost incurred by Quicksort (which is thetop line in both �gures). A run of 10000 trials withh = 0 takes in the order of 1:36 minutes and leaves4230 entries in the hash table. The heuristic hl andthe decomposition method are slightly faster.For larger sizes, neither of the two heuristics h = 03See (Barto, Bradtke, & Singh 1995) for the relationbetween admissibility and optimality in rtdp algorithms.
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Figure 2: Average number of actions vs Number of Trials for sorting problems of sizes n = 5 and n = 10. Topline is the curve for Quicksort.nor h = hl scale up. Figure 2(b) shows the results ofthe decomposition method for n = 10. This means apomdp with several million states, 45 actions and 90observations. The idea of the decomposition methodis the following: the sorting problem is divided in twoby introducing the de�nite belief states b0F as subgoals,where the b0F 's are such that b0F (s) = 1 for some s. Wedeal with the problem of going from b0 to some b0F ,and from b0F to bF separately. That is, each problemhas its own heuristic function and its own hash table.The second subproblem is triggered after a belief b0Fis obtained. For the �rst subproblem, the heuristic hlis used, while for the second subproblem, hm is used.Note that the resulting curves for both n = 5 andn = 10 are practically 
at. This means that the re-sulting algorithm starts o� very well but then does notimprove much. As mentioned above this is the resultof the non-admissibility of the heuristics hl and hmfor each of the two tasks. We actually ran the sameexperiment eliminating the update step in rtdp-bel.The resulting algorithm, which is a purely greedy al-gorithm, produced the same results while consumingconstant memory (the table with the estimates is notneeded). Yet even this simpli�cation of rtdp-bel isnot good for very large values of n as the branchingfactor of the problems (the number of actions) is linearin n. For such problems other optimizations would beneeded. An alternative that we have considered buthaven't yet tried is the use of `indexicals' to controlthe actions that can be considered at any given point.The indexicals in this problem can be just a pair ofvector subscripts so that only comparisons and swapsof elements with those subscripts can be considered, inaddition to the operation of incrementing and decre-menting those indices. Schemes such as these reducethe branching factor of the problem but push the solu-tions deeper in search space. Whether and when such

tradeo� would speed up computation remains an openquestion.4.4 SUMMARYSorting is a challenging problem that can be e�ec-tively modeled and solved as a pomdp provided suit-able heuristics, representations and decompositionsare used. In this way we have solved a pomdp thatinvolves millions of states by a greedy algorithm, andhave obtained solutions that compare favorably withQuicksort in terms of the number of steps. The ob-vious weakness of the resulting sorting policy is thatit applies to a particular problem size. An interestingchallenge is the extraction of a concise and generalizedrepresentation of the policy that could be applied toproblems of any size. One way to approach this prob-lem may be through the use of decision tree learningalgorithms that we address next.5 DECISION TREESDecision trees are classi�ers that map instances intoclasses by sequentially testing the value of a �nite setof attributes (Mitchell 1997). The standard way tolearn decision trees from data is by a top-down greedystrategy in which the attribute that is most informa-tive for the classi�cation according to the data is usedto split the data �rst, and for each possible outcome,the attribute that is most informative according tothe remaining data is used second and so on, until ei-ther there are no more data or no more uncertaintyregarding the classi�cation (Breiman et al. 1984;Quinlan 1993). The generalization power of decisiontree algorithms is measured by the classi�cation errorover part of the data that is left aside for testing. De-cision tree learning algorithms have been applied to a



number of domains (Murthy 1998) and a number ofvariations and extensions have been considered (Diet-triech 1997).5.1 FORMULATIONThe problem of learning decision trees can be seen asa sequential decision problem that involves two typesof actions: report(i) by which the current instance s isclassi�ed in class ci, and test(j) by which the attributetj of s is observed. The goal is to have the instances classi�ed, and this can be achieved by any of theactions report(i), i = 1; : : : ; n where n is the num-ber of classes. The expected cost associated with suchactions depends on the true class of s. The actionstest(j) provide information about s. The `classi�ca-tion' pomdp consists thus of:1. states s that are the instances in the training setsupplemented by a separate goal state G2. actions report(i) for each of the classes ci, andtest(j), for each of the attributes tj3. transition functions fa such that fa(s) = s ifa = test(j), and fa(s) = G if a = report(i)4. action costs c(report(i); s) = Cij for class(s) =cj and c(test(j); s) = Cj ,5. initial belief state b0 uniform over the non-goalstates and zero over the goal state6. �nal belief state bF for which bF (G) = 17. observations o after action a = test(j) withprobabilities Pa(ojs) = 1 if o = vj(s) and 0 oth-erwise, where vj(s) stands for the value of s overthe attribute tjThe pomdp formulation suggests generalizations of thestandard decision tree learning setting such as di�erenttest and misclassi�cation costs Cj and Cij , noisy testswith Pa(ojs) 2 (0; 1), etc. By default we will assumehere that the cost of tests and correct classi�cations is1, while the cost Cij of misclassi�cations for i 6= j, issome constant C > 1.5.2 IMPLEMENTATIONWe represent belief states as sets of states (trainingset instances), taking advantage of the the uniformprior over the instances and the noiseless `sensors'.With this representation, the complexity of a singlertdp-bel cycle reduces from jSj2 to jSj. The value

ba(o) for a = test(j) in Equation 2 is obtained as theproportion of states s in b for which vj(s) = o, a pro-portion that is computed as jboaj=jbj.We use the non-informative heuristic h = 0. Heuris-tics based on measures such as information gain (Quin-lan 1990) could be used as well but they only make adi�erence in the �rst trials of rtdp-bel as they arenot calibrated with the expected classi�cation costs.It may be possible to calibrate such heuristics to ac-celerate convergence but we don't how to do that yet.5.3 EVALUATIONTable 1 compares rtdp-bel with two standard deci-sion tree learning algorithms, ID3 and C4.5 (Quinlan1990; 1993) over some small datasets obtained fromthe UCI Repository (Murphy & Aha 1998) for twodi�erent misclassi�cation costs C.4 For each dataset,we constructed the corresponding pomdp and ran thertdp-bel algorithm with the non-informative heuris-tics h = 0 for 10:000 trials. The curve in Figure 3shows the average classi�cation accuracy as a functionof the number of trials in the Monk-1 and Monk-2datasets. A run of 10:000 trials over the Monk datasetstakes a few minutes on average and leaves a few thou-sand entries in the hash table. For the larger Votedataset, the run takes 24 minutes on average and leavesaround 16:000 entries in the hash table.5.3.1 Missing ValuesIn the presence of missing values in the training set,the sum of the beliefs ba(o) over the real observationso may fail to add up to 1 due to the mass ba(m) 6=0 over the missing observations. In such cases, thebeliefs ba(o) are normalized by dividing them by thesumPi ba(oi) taken over the real observations oi. Thisamounts to assuming that having `observed' a missingvalue m is like having observed a real observation oiwith probability ba(oi). This implies that bma = ba, inagreement with the interpretation of missing values asmissing observations. The dataset V ote in Table 1 hasmissing values.4The �gures for ID3 and C4.5 were taken from (Fried-man, Kohavi, & Yun 1996). The column named `Test'in the table indicates how the generalization performanceof the algorithms was measured. The Monk-n datasetscome with separate training and test data; on the othertwo problems the test data was generated by 5-fold crossvalidation: the data were partitioned into �ve segments,and �ves runs were performed by leaving one di�erent seg-ment as test data and the other four as training data. Theresults are averages over these �ves runs.
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Figure 3: Classi�cation Accuracy vs. Trials for Monk-1 and Monk-2Table 1: Accuracy after 10; 000 trials compared with ID3 and C4.5 rtdpDataset Feat. Miss Train Test Id3 C4.5 C = 25 C = 10000monk-1 6 no 124 432 81:25� 1:89 75:70� 2:07 97:39� 0:29 97:39� 0:35monk-2 6 no 169 432 69:91� 2:21 65:00� 2:30 64:42� 1:13 64:40� 0:81monk-3 6 no 122 432 90:28� 1:43 97:20� 0:80 95:16� 0:49 94:33� 0:78hayes-roth 4 no 160 CV-5 68:75� 8:33 74:38� 4:24 77:70� 4:65 72:04� 5:44vote 16 yes 435 CV-5 93:10� 2:73 95:63� 0:43 94:42� 1:88 83:12� 6:755.3.2 Misclassi�cation Costs and Over�ttingAs expected, misclassi�cation costs and over�tting arerelated in noisy datasets. Very high misclassi�cationcosts induce the algorithm to �t the training data asmuch as possible, which in those cases may incrementthe error rate on the test set. This can be seen inthe last row in Table 1, where the error rate in theVotes data set goes up almost 10 points when the mis-classi�cation costs were incremented from C = 25 toC = 10:000. In general these costs do not have tobe all equal and can be tuned to produce a minimalerror rate by leaving aside part of the training datafor that purpose. In other problems (e.g., medicine),these costs can be chosen to approximate the real mis-classi�cation costs.5.3.3 ApproximationsIn another set of experiments we introduced an ap-proximation in the representation of beliefs and in theevaluation of the probability ba(o), which in this casestands for the probability of observing a certain valuev testing an attribute attr in a given context. The ex-act value of ba(o) is given by the number of instancesin b (recall that beliefs are represented as set of states)whose attribute attr has value v over the total numberof instances in b. Following a similar approximation in

the sorting domain, we approximated ba(o) uniformlyas 1=n, where n is the number of values that attributeattr takes in the training set. As before the intuitionwas the best action would be the most informative andwould tend to split the data in that way. The resultscon�rmed this intuition and matched almost exactlythe ones reported in Table 1. The CPU times were re-duced three times on average, which is not that much.Even with this approximation larger datasets cannotbe handled as memory tends to explode. The problemis the lack of an informative heuristics that could guidethe search, while leaving a large fraction of the (belief)state space unvisited. Heuristics such as `informationgain' (Quinlan 1990) are informative but they are notcalibrated with the estimated costs.5 As a result, theyproduce a focused search for the goal in the �rst fewtrials, but then become useless as some of the heuris-tic values are replaced (updated) by cost estimates. Itseems that it should be possible to speed up the con-vergence of rtdp algorithms by the use of uncalibratedheuristics, but how to do that appears to be an openquestion.5That is, information gain is not a good estimate of theexpected costs.



5.4 SUMMARYWe have shown that decision tree induction can bemodeled and solved as a pomdp problem and that so-lutions, while more expensive to compute, may com-pete in quality with the standard approaches. pomdpsmay provide a fresh perspective on the problem of in-ferring decision trees from data as aspects such a noisytests and data, tests and misclassi�cation costs, andmissing values, �t into the pomdp approach in a nat-ural way. The pomdp algorithm used, however, doesnot scale up yet to large datasets involving many at-tributes, nor does it apply to datasets involving con-tinuous attributes.6 CONCLUSIONSWe aimed to show two things. One is that pomdps canbe used to solve complex problems of sequential deci-sion by the use of suitable heuristics, representations,and decompositions. The second is that pomdps pro-vide a novel perspective on the problem of inferringdecision trees from data that may be worth explor-ing in further depth. We have been able to solve verylarge pomdps with million of states and obtain solu-tions that compete in quality with those produced bysome of the the best algorithms (Quicksort, C4.5). Weexpect that some of the lessons learned will be applica-ble to other problems such as the problem of handlingcontinuous attributes in decision tree learning that ap-pears to have many aspects in common with sorting.We also think that the pomdp methods used in thispaper can be re�ned so that the larger datasets couldbe handled handled. A number of interesting openquestions remain that may be relevant for the applica-tion of pomdp methods to other problems; e.g., howcan sorting policies be generalized to arbitrary arraysizes, whether misclassi�cation costs can be used e�ec-tively to deal with the problem of over�tting, how canuncalibrated heuristics be used to speed up convergeof rtdp algorithms, etc.AcknowledgmentsThis work was supported in part by a grant fromConicit, S1-96001365.ReferencesAho, A.; Hopcroft, J.; and Ullman, J. 1983. Data Struc-tures and Algorithms. Addison-Wesley.Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning
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