Learning in Depth-First Search: A Unified Approach to Heuristic Search in
Deterministic, Non-Deterministic, Probabilistic, and Game Tree Settings

Blai Bonet
Departamento de Computaai
Universidad Simn Bolivar

Caracas, Venezuela
bonet@Idc.usb.ve

Abstract

Dynamic Programming provides a convenient and unified
framework for studying many state models used in Al but no
algorithms for handling large spaces. Heuristic-search meth-
ods, on the other hand, can handle large spaces but lack a
common foundation. In this work, we combine the bene-
fits of a general dynamic programming formulation with the
power of heuristic-search techniques for developing an al-
gorithmic framework, that we callearning in Depth-First
Search that aims to be both general and effective. The basic
LDFs algorithm searches for solutions by combining itera-
tive, bounded depth-first searches, with learning in the sense
of Korf’s LRTA* and Barto’set al. RTDP. In each iteration,

if there is a solution with cost not exceeding a lower bound,
then the solution is found, else the process restarts with the
lower bound and the value function updatadFrs reduces

to IDA* with Transposition Tables over deterministic mod-
els, but solves also non-deterministic, probabilistic, and game
tree models, over which a slight variation reduces to the state-
of-the-artmTD algorithm. Over Max AND/OR graphs, on the
other handi.DFsis a new algorithm which appears to be quite
competitive with AO*.

Introduction

Dynamic Programming provides a convenient and unified
framework for studying many state models used in Al (Bell-
man 1957; Bertsekas 1995) but no algorithms for handling
large spaces. Heuristic-search methods, on the other hand
can handle large spaces effectively, but lack a common foun-
dation: algorithms likeibA* aim at deterministic mod-
els (Korf 1985),A0* at non-deterministic models (Martelli

Shaw, & Simon 1963), and so on (see (Nilsson 1980;

Pearl 1983)), and it is not always clear what these tasks 6.
and techniques have in common, nor how they can be 7.

generalized in a principled way to other models like non-
deterministic models with cycles or Markov decision pro-
cesses. In this work, we combine the benefits of a general
dynamic programming formulation with the effectiveness
of heuristic-search techniques for developing an algorithmic
framework, that we callearning in Depth-First Searclthat
aims to be both general and effective. The basies algo-
rithm searches for solutions by combining iterative, bounded
depth-first searches, with learning in the sense (Korf 1990)
and (Barto, Bradtke, & Singh 1995). In each iteration, if
there is a solution with cost not exceeding a lower bound,

Héctor Geffner
ICREA & Universitat Pompeu Fabra
Paseo de Circunvaldmi, 8
Barcelona, Spain
hector.geffner@upf.edu

then the solution is found and reported, else the process
restarts with the lower bound and the value function updated.
LDFS reduces tabA* with Transposition Tables (Reinefeld

& Marsland 1994) over deterministic models, but solves also
non-deterministic, probabilistic, and game tree models, over
which a slight variation reduces to the state-of-thenarb
algorithm (Plaatt al. 1996).

The LDFs framework makes explicit and generalizes two
key ideas underlying a family of effective search algo-
rithms across a variety of modelstearning and lower
bounds. We build on recent work that combines DP up-
dates with the use of lower bounds and knowledge of the
initial state for computingartial optimal policies for MDPs
(Barto, Bradtke, & Singh 1995; Hansen & Zilberstein 2001;
Bonet & Geffner 2003). However, rather than developing
another algorithm for MDPs, we make use of these notions
to lay out a general framework covering a wide range of
models which we hope is transparent and useful. Prelim-
inary experiments over Max AND/OR graphs, suggest in-
deed thatLDFs is quite competitive with AO* (Bonet &
Geffner 2005).

Models

All the models can be defined in terms of the following com-
mon elements:

1. adiscrete and finite state spate
2.
3. anon-empty set of terminal statégs C S,
4,

& Montanari 1973), Alpha-Beta at Game Trees (Newell, .

an initial statesg € .5,

actionsA(s) C A applicable in each non-terminal state,

a function mapping non-terminal stateand actions: €

A(s) into setsof statesF'(a, s) C S,

action costg(a, s) for non-terminal states, and

terminal costsr(s) for terminal states.

We assume that botA(s) and F'(a, s) are non-empty. The

various models correspond to:

e Deterministic Models (DET){F (a, s)| = 1,

¢ Non-Deterministic Models (NON-DET)¥#(a, s)| > 1,

e Markov Decision Processes (MDPs): with probabilities
Py(s']s) fors" € F(a,s) S.t. 3 cp(a,s) Pa(s]s) = 1.

In addition, for DET, NON-DET, and MDPs

e action costg(a, s) are all positive, and

e terminal costg:r(s) are non-negative.

When terminal costs are all zero, terminal states are called
goals Finally,

e Game Trees (GT): are non-deterministic models (NON-
DET) with zero action costs, arbitrary terminal costs, and
atree-structure

A model has a tree-structure when two differ-
ent paths cannot lead to the same state. A path
80, ag, S1,01,---,0,_1,8, 1S @ sequence of states and
actions starting in the initial state,, such that each
action a; is applicable ins;, a; € A(s;), and each
state s;11 IS a possible successor ef given actionay,
siv1 € Fl(a;,s;). We also define thacyclic modelsas
those which do not accommodatgclic paths i.e., paths
50,00,51,01,..,0n—1,5, With s; = s; for ¢ # j. We
write aNON-DET and aMDPs to refer to the subclass of
acyclic NON-DET and MDPs models. For example, the
type of problems in the scope of thred* algorithm, are
defined by those in aNON-DET.

Solutions

The solutions to the various models can be expressed in
terms of the so-called Bellman equation that characterizes
the optimal cost function (Bellman 1957; Bertsekas 1995):

Vis) & {

where theQy (a, s) values express the cost-to-go and are
short-handfor:

cla,s) +V(s'), s' € F(a,s) for DET,

c(a, s) + maxycp(q,s) V(s') for NON-DET-Max,
c(a,s) + 3 g cpas V(s) for NON-DET-Add,
c(a,8) + X ger(a,s Fals[s)V(s") for MDPs,
maxy e p(q,s) V(") for Game Trees.

We make a distinction between worst-case (Max) and addi-
tive (Add) non-deterministic models, as both are considered
in Al, and yet, they have slightly different properties. We
will refer to the models (NON-DET-Max and GT) whose Q-
values are defined with Max as Max models, and to the rest
of the models, defined with Sums, as Additive models.
Under some conditions, there is a unique value function
V*(s), the optimal cost function, that solves the Bellman
equation, and the optimal solutions to all the models can
be expressed in terms of the policieshat aregreedywith
respect toV*(s). A policy 7 is a function mapping states
s € Sinto actionsa € A(s), and a policyry is greedy with
respect to a value functio¥i(s), or simply greedy irV/, iff
my is the best policy assuming that the cost-to-go is given
by V(s); i.e.

if s terminal
otherwise

cr(s)
minge 4(s) Qv (a, s)

@

)

7wy (s) = argmin Qv (a,s).
a€A(s)

taking into account the information about the initial stage
of the system which is assumed to be available and known.

We deal then wittpartial policiesthat mapsome states
into actions only. We say that a partial poliayis closed
(relative tosy) if 7 prescribes the action to be done in all the
(non-terminal)states reachable fromy, and; this setS” C
S is defined inductively as comprising and all the states
s’ € F(n(s),s) for s € S’. In particular, closed policies
for deterministic models correspond to action sequences, for
game trees, to actual trees, and so on.

Any closed policyr relative to a state has a cost ™ (s)
that expresses the cost of solving the problem starting from
s. The costsV/™(s) are given by the solution of (1) but
with the operatomin,c 4(5) removed and the action re-
placed by~ (s). These costs are thus well-defined when
the resulting equations have a solutiover the subset of
states reachable fromy, and . Moreover, for all models
above, except MDPs, it can be shown that (closed) poli-
ciest have a well-defined finite co$t™ (so) when they are
acyclic and for MDPs, when they angroper. Otherwise
V7(sp) = oco. A closed policyr is cyclicif it gives rise to
cyclic pathssg, ag, s1,a1, ..., a1, S, Wherea; = w(s;),
and it isproper if a terminal state is reachable from every
states reachable frons, andr (Bertsekas 1995).

For all models except for MDPs, since solutionsare
acyclic, the costd/™(sg) can be defined also recursively,
starting with the terminal states for which V™ (s') =
er(s’), and up to the non-terminal stategeachable fronsg
andr for whichV7™(s) = Qv~(m(s), s). In all cases, we are
interested in computing a solutianthat minimizes/ ™ (so).
The resulting value is the optimal problem c®5t(s).

A General Algorithm

We assume throughout the paper that we have an initial
value (or heuristic) functiorl/ that for all non-terminal
states is dower bound V(s) < V*(s), and monotoni¢

V(s) < mingeas) Qv(a,s). Also for simplicity, we as-
sumeV (s) = cr(s) for all terminal states. We summarize
these conditions by simply saying tHais admissible. This
value function is then modified biparningin the sense of
(Korf 1990) and (Barto, Bradtke, & Singh 1995), where the
values of selected states are made consistent with the val-
ues of successor states; an operation that takes the form of a
Bellmanupdate

V(s)

®3)

If the initial value function is admissible, it remains so after
one or more updates. Methods like value iteration perform
the iterationV (s) := min,e a(s) Qv (a, s) until the differ-
ence between right and left does not exceed seme 0.
The differencemin,c 4(s) Qv (a, s) — V (s), which is non-
negative for monotonic value functions, is called thsid-

ual of V overs, denotedResy (s). Clearly, a value function

Jnin Qv(a,s).

Often, however, these conditions are not met, and the set V' IS @ solution to Bellman equation and is thus equal'to

of |S| Bellman equations have no solution. These happens
for example in the presence dead-ends Also, for Max
models, as we will see, it is not the case that optimal solu-
tions must be greedy with respectitd. For these reasons,
we characterize optimal solutions in a slightly different way,

if it has zero residuals over all states. Given a fixed initial
statesy, however, it is not actually necessary to eliminate all
residuals for ensuring optimality:

Proposition 1 Let V' be an admissible value function and
let 7 be a policy greedy il/. Thenw minimizesV ™ (s)

starting with an admissiblg’

repeat
FIND s reachable fronso andry with Resy (s) > €
UpdateV/ (s) to minge 4¢s) Qv (@, 5)

until no such state is found
return V

Algorithm 1: TheFIND-andREVISE schema

and hence is optimal iResy (s) = 0 over all the states
reachable fromsg and .

This suggests a simple and general schema for solving all
the models, that avoids the strong assumptions required by

standard DP methods and yields partial optimal policies.
Since there may be many policieggreedy inV, we will
assume an ordering on actions andrdgtrefer to the partic-

ular greedy policy obtained by selecting in each state the ac-

tion greedy inl” that is minimal with respect to this ordering.
Then, in order to obtain a policy and a value function satisfy-
ing Proposition 1, itis sufficient to search for a stateach-
able fromsy andmy with residualResy (s) > e and update

the state, keeping this iteration until there are no such states

left. If ¢ = 0 and the initial value value functiolr is ad-
missible, then the resulting (closed) greedy pofigyis op-
timal. ThisFiIND-andREVISE schema, shown in Fig. 1 and
introduced in (Bonet & Geffner 2003) for solving MDPs,

can be used to solve all the models, without the strong as-

sumptions made by DP algorithms and without having to
compute complete policiés:

Proposition 2 Starting with an admissible value function
V', the FIND-andREVISE schema fok = 0, solves all the
models (DET, NON-DET, GT, MDPs) provided they have so-
lution.

For the non-probabilistic models withtegeraction and ter-
minal costs, the number of iterations mfND-andREVISE
with ¢ = 0 is bounded by}~ _[min(V*(s), MazV) —
V(s)], whereM axV stands for any upper bound on the op-
timal costsV*(s) of the states with finite cost. This is be-

the correctness of other, more effective approaches. We
will say that an iterative algorithm is instance mfD-and-
REVISE[¢], if each iteration of the algorithm terminates, ei-
ther identifying and updating a state reachable frgnand

my with residualResy (s) > €, or proving that no such state
exists, and hence, that the model is solved. Such algorithms
will inherit the correctness afiND-and-REVISE, but by per-
forming more updates per iteration will converge faster.

We focus first on the models whoselutionsare neces-
sarily acyclic, excluding thus MDPs but not acyclic MDPs
(aMDPs). We are not excludingodelswith cycles though;
only models whose solutions may be cyclic. Hence the re-
quirements are weaker than those of algorithms Aiké.

We will say that a state is consistentelative to a value
function V' if the residual ofV over s is no greater than
e. Unless mentioned otherwise, we takéo be 0. The
first practical instance ¢inD-andREVISEthat we consider,
LDFs, implements the Find operation as a DFS that consid-
ers all the greedy actions in a state, backtracks on inconsis-
tent states, and updates not only the inconsistent states that
are found, but upon backtracking, their ancestors too. The
code forLDFs is shown in Fig. 2. The Depth-First Search
is achieved by means of two loops: one over the (greedy)
actionsa € A(s) in s, the other, nested, over the possi-
ble successors’ € F(a,s). The tip nodes in this search
are the the inconsistent states(where for all the actions
Qv (a,s) > V(s)), the terminal states, and the states that
are labeled as solved. A statés labeled as solved when the
search beneathdid not find any inconsistent state. This is
captured by the booleafiag. If s is consistent, angiag
is true after searching beneath the successoes F(a, s)
of a greedy actiom, thens is labeled as solved;(s) is set
to a, and no more actions are tried«atOtherwise, the next
greedy action is tried, and if no one is lefiis updated. Sim-
ilarly, if the search beneath a successor state F(a, s)
reports an inconsistency arno longer satisfies the greedy
conditionQv (a, s) < V(s), the rest of the successor states
s € F(a, s) are skipped.

LDFsis called iteratively oves, from a driver routine that
terminates wheny is solved, returning a value functidn

cause updates increase the value function by at least one inand a greedy policy that satisfies Proposition 1, and hence
some states, decrease it in none, and preserve its admissiis optimal. We show this by proving thabrsis an instance

bility. In addition, states with values abowdaxzV are not
reachable fromsy and the greedy policy. Since the Find

procedure can implemented by a simple DFS procedure that

keeps track of visited states in tind&(|S|), it follows that
the time complexity ofIND-andREVISE over those models
can be bounded by the same expression timgs|). For
MDPs, the convergence efND-andREVISEwith e = 0 is

of FIND-and-REVISE. First, since no model other than MDPs
can accommodate a cycle @fnsistenstates, we get that:

Proposition 3 For DET, NON-DET, GT, and aMDPs, a call
to LDFs cannot enter into a loop and thus terminates.

Then, provided with the same ordering on actionsia®-
andREVISE, it is simple to show that the first statehat is

asymptotic and cannot be bounded in this way. However, for updated byLDFs is inconsistent and reachable fromand

anye > 0, the convergence is bounded by the same expres-

sion divided bye.

Learning DFS

We have seen that all the models admit a common for-
mulation and a common algorithm. This algorithm, while
not practical, will be useful for understanding and proving

LIt is assumed that the initial value function is represented in-
tensionally and that the updated values are stored in a hash table.

7y, and if there is not such stateprs terminates withry,.

Proposition 4 Provided an initial admissible value func-
tion, LDFs is an instance ofFIND-andREVISE[e = 0], and
hence, it terminates with a closed partial polieythat is
optimal for DET, NON-DET, GT, and aMDPs.

In addition, for the models that aselditive it can be shown

that all the updates performed hpFs areeffective in the
sense that they are all done on states that are inconsistent,
and which as a result, strictly increase their values:

LDFS-DRIVER(So)

begin

repeat solved := LDFS(so) until solved
return (V,)

end

LDFS(s)
begin
if sis SOLVED or terminalthen
if sisterminalthen V' (s) := cr(s)
Mark s as solvedeturn true
flag := false
foreacha € A(s) do
if Qv (a,s) > V(s) then continue
flag := true
foreachs’ € F(a, s) do
flag := LDFS(s') & [Qv (a, s) < V(s)]
if = flag then break
if flag then break

if flag then
L w(s):=a

Mark s asSOLVED
else

L V(s):= minge A(s) Qv(a,s)
return flag

end

Algorithm 2: Learning DFS AlgorithmupDFSs)

Proposition 5 Provided an initial admissible value func-
tion, all the updates inDFs over theadditive modelDET,
NON-DET-Add, and aMDPs, strictly increase the value
function.

An immediate consequence of this is that for DET and
NON-DET-Add models with integer action and terminal

This is indeed the idea underlyinga* and the Memory-
enhanced Test Driver algorithm orTD(—o00) for Game
Trees (Plaagt al. 1996). Interestingly, however, whil®Fs
solves Game Trees, it does not exhibit this pattern: the rea-
son is that over Max models, like GT and NON-DET-Max,
updates inLDFs are not always effective. We discuss this
next.

Local and Global Optimality

An optimal solution is one that minimizés™(s,). If 7 also
minimizesV/ ™ (s) for all the states reachable froms, andmr,

we say thatr is globally optimal A characteristic of additive
models is that the first condition implies the second. In Max
models, however, this is not true. This distinction arises be-
cause while all arguments count in a sum, not all arguments
count in a maximization. Game Tree algorithms make use
of this difference for computing optimal policies that are not
necessarily globally optimal. On the other handfs and
FIND-andREVISE, compute only globally optimal policies.
This is because they keep updativiguntil all inconsisten-
ciesover the states reachable fraghand the greedy policy

my are eliminated. Some of these inconsistencies, however,
are harmless in Max models. Interestingly, the* algo-
rithm has the same limitation and computes globally optimal
solutions even in models like aNON-DET-Max where this is
not required.

Bounded LDFS

The properties thatDFs exhibits over additive models, in
particular the notion of effective updates, can be extended
to Max models by adding an extra argumentLioFS: a
Bound parameter. For simplicity, we will restrict our atten-
tion to Max models where no state can be reached through
paths of different cost§ his includes of course Game Trees
and NON-DET-Max Tree models. For the general case, see
(Bonet & Geffner 2005).

costs, the bound on the number of iterations can be reduced 1he key observation is that while an increaséify’) for

to V*(sp) — V(so), which corresponds to the maximum
number of iterations iNnDA* under the same conditions.
Actually, provided that.DFs andIDA* (with transposition
tables (Reinefeld & Marsland 1994)) consider the actions
in the same order, it can be shown that they will both tra-
verse the same paths, and maintain the same value (heuris
tic) function in memory:

Proposition 6 Provided an admissible (and monotonic)
value functionV, and that actions are applied in the same
order in every state,LDFS is equivalent toIDA* with
Transposition Tables over the class of deterministic models
(DET).

Actually, for Additive Models, the workings afbFs can be
characterized as follows:

Proposition 7 Over the Additive Models DET, Non-DET-
Add, and aMDPsLDFs tests whether there is solutian
with costV™(sg) < V(sg) for an initial admissible value
function V. If a solution exists, one such solution is found
and reported; elsé/(s¢) is increased, and the test is run
again, til a solution is found. Sinc& remains a lower
bound, the solution found is optimal.

somes’ € F(a,s) does not necessarily translate into an
increase ofQy (a, s) in Max models, an increase &f(s’)
above a certain bound will. Namel@y (a,s) < Bound

iff VI(s") < Bound' for Bound' equal toBound in Game
Trees, toBound — ¢(a, s) in DET, to Bound — ¢(a, s) —

> srer(as)\{sy V(s") in NON-DET-Add, etc. The pro-
cedure BoundedbFs shown in Fig. 3 takes advantage of
this, replacing the test®y (a,s) < V(s) in LDFS with
Qv (a,s) < Bound whereBound is the extra parameter,
which is initialized toV (s) in the driver routine, and passes
as theBound' above in the recursive calls. For Additive
models, this change has no effect because the following in-
variant holds before the loop over the actions:

Proposition 8 For the additive models, in allDFS-BOUND
calls, the invariant’(s) = Bound holds before the A-loop.

As aresult, directly from the code, it can be established that

Proposition 9 LDFS and LDFS-BOUND are equivalent over
the Additive models.

For Max models, however, a weaker invariant holds:

Proposition 10 For Max models, in alLDFS-BOUND calls,
the invariantV (s) < Bound holds before the A-loop.

LDFS-BOUND-DRIVER(so)

begin
repeat solved := LDFS-BOUND(so, V' (s0)) until solved
return (V,)

end

LDFS-BOUND(s,Bound)
begin

foreacha € A(s) do
if Qv (a,s) > Bound then continue
flag := true
foreachs’ € F(a, s) do
Bound' := see text
flag := LDFS-BOUND(s’, Bound') &
[Qv (a,s) < Bound)
if =flag then break

| if flag then break

end

Algorithm 3: LDFS-BOUND: fragment that differs from
LDFS

The difference betweenLDFS and LDFS-BOUND
over Max models is that while the former regards
mingeca¢5) Qv (a,s) > V(s) as an inconsistency that
needs to be removed,DFS-BOUND removes this incon-
sistency only whemiin,c a(s) Qv (a,s) > Bound holds,
which is weaker due to the invariabt(s) < Bound. As

a result,LDFS-BOUND, unlike LDFS, is not an instance of
FIND-andREVISE over Max models, and thus termination
and correctness need to be proved in a different way. First,
a LDFS-BOUND call terminates over Game Trees as there
cannot be cyclic paths, and over NON-DET-Max models,
as the invarian® < V(s) < Bound holds and the Bound
decreases monotonically along any path:

Proposition 11 A call to LDFS-BOUND over Max models
cannot enter into a loop and thus it always terminates.

Then with arguments similar to the ones usedAiip-and-
REVISE, one can bound the number of iterations, so that
upon terminationLDFS-BOUND returns a policyr and a
value functionV' such thatQy (7 (s), s) < Bound holds in

all the invocations. DFS-BOUND(s, Bound) over the states

s reachable fromy, andw. Yet sincer must be acyclic, in-
ductively once can prove th&t™ (sq) < V(so) and hence:

Proposition 12 Provided an initial admissible value func-
tion, LDFS-BOUND terminates with a closed polieythat is
optimal over the Max models GT and NON-DET-Max.

In addition, like the updates itDFs over the additive mod-
els, updates inDFS-BOUND areeffectiveover Max models:

Proposition 13 Provided an initial admissible value func-
tion, all updates in.DFS-BOUND over Max models, strictly
increase the value function.

As resultLDFS-BOUND over Max models can be also de-
scribed as an algorithm that finds a solutionwith cost
V7™ (sg) < V(sp) if there is one such solution, and else up-
datesV (so) and other values, and tries again. It is thus not

41 5

-12 -90 -101-80 -20 -30 -34 -80 -36 -35 -50 -36 -25 -3

Figure 1: Game Tree with MIN player playing first

entirely surprising that over Game Tre@®FS-BOUND re-
duces to theuTD(—o0) algorithm (Plaakt al. 1996); i.e.,
given the same ordering on actions and successor states, both
algorithms traverse the same paths, and maintain the same
value functior?

Proposition 14 With the initial value functio (s) = —oo,
for all s, LDFS-BOUND is equivalent taMTD (—o0).

The proof involves code transformations and invariants. For
example, theuT algorithm works with both lower and up-
per bounds, yet it can be shown that when the initial value
function is—oco, upper bounds (from the perspective of the
MIN player) play the same role as labelsLDFS-BOUND.

For the equivalence, it is necessary to assume that both the
top-nodes and the terminal nodes correspond to MIN-player
moves. WhilemT is symmetric in this sensepFsS-BOUND

is not. Finally, for keeping the presentation simple, we have
assumed that'(s) = er(s) for terminal states, yet this con-
dition is not required.

The reader is encouraged to try thers-BOUND algo-
rithm on the Game Tree shown in Fig. 1, modified from
(Plaatet al. 1996) so that it retains the same solution but
with the MIN player moving first (thus payoffs have been
made negative). The top nodeis the initial state where
there are two applicable actions, ‘left’ and ‘right’. The ac-
tion right’ in @ has non-deterministic effecisandp, and
so on (note that MAX nodes likkandh do not correspond
to states but to ‘And’ nodes). With an initial value func-
tion V' = —oo, LDFS-BOUND, like MTD(—0o0), traverses the
subtree formed byi, b, ¢, d, e, f, g, h, 1, j, k, 1, m in the first
iteration and set¥ (a) = —41. This value is used as the
bound of the second iteration, which also returns unsuccess-
fully with a new boundV' (a) = —36, updated in the third
iteration toV(a) = —35. The fourth iteration ends suc-
cessfully proving this value optimal, with a solutienthat
chooses ‘right’ ati andi, and ‘left’ atp.

MDPs

In order to handle MDPs, two features are needed: ar)
bound on the size of the residuals allowed for avoiding
asymptotic convergence, and a bookkeeping mechanism for
avoiding loops and recognizing states that are solved. To il-
lustrate the subtleties involved, let us assume that there is a
single actionn(s) applicable in each state. By performing

a single depth-first pass over the descendants kéeping

2As in MTD, —oo refers to a large negative number. Thus,
—o0 < —oo + k for positivek.

track of visited states for not visiting them twice, we want
to know when a state can be labeled as solved. The sub-
tlety arises due to the presence of cycles. In particular, it is
no longer correct to label a stateas solved when the vari-
able flag indicates that all descendants ©fre consistent
(i.e., have residuals no greater thgnas there may be an-
cestors ofs that are also reachable frosmwith unexplored
descendents. Yet, even in such case, there must be states
in the DFS tree spanned hpFs-mDP (recall that no states
are visited twice) such that all the states that are reachable
from s andr are beneath, and for those states, it @rrect
to label them as solved whefiag is true. Moreover, the la-
beling scheme becomesmpleteif at that point not onlys
is labeled but also its descendants. The question of course is
how to recognize such ‘top’ elements in the state graph dur-
ing the depth-first search. The answer is given by Tarjan’s
strongly connected component algorithm (Tarjan 1972) that
keeps track of two indices.low and s.idz for each state
s encountered. The top elementsre precisely those for
which s.low = s.idz.

The resulting algorithm for MDPS,DFS-MDP, iS LDFS+
€-RESIDUALS + TARJAN. We lack the space to show it here
but can prove that:

Proposition 15 LDFS-MDP is an instance ofFiND-and-
REVISEe] and hence for a sufficiently smallsolves MDPs
provided they have a solution with finite (expected) cost.

LDFS-MDP is similar to theHDP algorithm (Bonet & Geffner
2003) that introduced Tarjan’s algorithm for labeling states
in MDPs, yet by trying all greedy actions in every state
LDFS-MDP ensures that all updates remain effective.

Discussion

We have developed a computational framewotkFs,
which makes explicit and generalizes two key ideas under-
lying a family of effective search algorithms across a va-
riety of models: learning and lower bounds. The same
LDFs algorithm handles deterministic and non-deterministic
models, with or without cycles, and a simple variation han-
dles MDPs where solutions can be cyclic. The framework
uncovers also a key distinction between Additive and Max
models that has apparently gone unnoticed: optimal solu-
tions to Additive models are globally optimal, but optimal
solutions to Max models need not be. Still algorithms like
AO0* compute globally optimal solutions, which is adequate
for Additive AND/OR graphs but is not required for Max
AND/OR graphs. We have actually implemented tines

and BoundedDFs algorithms and compared them witb*

and Value lteration over Max AND/OR Graphs. The re-
sults, reported in (Bonet & Geffner 2005), show that over a
wide variety of instances and heuristic functionsfFs and
BoundedLDFs are almost never worse than eithres* or
Value lteration, and instead are often one or more orders of
magnitude faster. We do not expect similar practical gains
over DET and GTs whereDFs and Bounded.DFs reduce

3For other works emphasizing the common ideas between
single-agent and two-player search (DET and GTs in our terms);
see (Marsland & Reinefeld 1993) and (Schaeffer, Plaat, & Jung-
hanns 2001).

to well known algorithms. The value of the proposed frame-
work, however, goes beyond the particular algorithms ob-
tained for the various models. For example, since ais
algorithms can be understood as ‘extensionsbef* some

of their limitations can be understood in terms of the lim-
itations of IDA* itself. For example, it is well known that
IDA* doesn’t do well when action costs are real numbers.
In MDPs, this problem arises even when action costs are in-
tegers because of the probabilities. We are thus currently
exploring variations on the basi®Fs-MDP algorithm that
exploit this parallelism.

References

Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning to act using
real-time dynamic programmingArtificial Intelligence72:81—
138.

Bellman, R. 1957Dynamic ProgrammingPrinceton University
Press.

Bertsekas, D. 199®ynamic Programming and Optimal Control,
(2 Vols) Athena Scientific.

Bonet, B., and Geffner, H. 2003. Faster heuristic search algo-
rithms for planning with uncertainty and full feedback. In Got-
tlob, G., ed.,Proc. 18th International Joint Conf. on Atrtificial
Intelligence 1233-1238. Acapulco, Mexico: Morgan Kaufmann.
Bonet, B., and Geffner, H. 2005. An algorithm better than AO*?
Accepted for AAAI-05.

Hansen, E., and Zilberstein, S. 2001. LAO*: A heuristic search
algorithm that finds solutions with loopgArtificial Intelligence
129:35-62.

Korf, R. 1985. Depth-first iterative-depeening: An optimal ad-
missible tree searchrtificial Intelligence27(1):97-109.

Korf, R. 1990. Real-time heuristic searchttificial Intelligence
42(2-3):189-211.

Marsland, T. A., and Reinefeld, A. 1993. Heuristic search in one
and two player games. Technical Report TR 93-02, University of
Alberta.

Martelli, A., and Montanari, U. 1973. Additive AND/OR graphs.
In Nilsson, N., ed.Proc. 3rd International Joint Conf. on Atrtifi-
cial Intelligence 1-11. Palo Alto, CA: William Kaufmann.

Newell, A.; Shaw, J. C.; and Simon, H. 1963. Chess-playing
programs and the problem of complexity. In Feigenbaum, E., and
Feldman, J., edsGomputers and ThoughMcGraw Hill. 109—
133.

Nilsson, N. 1980 Principles of Artificial Intelligence Tioga.

Pearl, J. 1983Heuristics Morgan Kaufmann.

Plaat, A.; Schaeffer, J.; Pijls, W.; and de Bruin, A. 1996. Best-
first fixed-depth minimax algorithmégrtificial Intelligence87(1-
2):255-293.

Reinefeld, A., and Marsland, T. 1994. Enhanced iterative-
deepening searchEEE Trans. on Pattern Analysis and Machine
Intelligencel6(7):701-710.

Schaeffer, J.; Plaat, A.; and Junghanns, A. 2001. Unifying single-
agent and two-player searcimf. Sci.135(3-4):151-175.

Tarjan, R. E. 1972. Depth first search and linear graph algorithms.
SIAM Journal on Computing(2):146—-160.

