
Learning in Depth-First Search: A Unified Approach to Heuristic Search in
Deterministic, Non-Deterministic, Probabilistic, and Game Tree Settings

Blai Bonet
Departamento de Computación

Universidad Siḿon Boĺıvar
Caracas, Venezuela

bonet@ldc.usb.ve

Héctor Geffner
ICREA & Universitat Pompeu Fabra

Paseo de Circunvalación, 8
Barcelona, Spain

hector.geffner@upf.edu

Abstract

Dynamic Programming provides a convenient and unified
framework for studying many state models used in AI but no
algorithms for handling large spaces. Heuristic-search meth-
ods, on the other hand, can handle large spaces but lack a
common foundation. In this work, we combine the bene-
fits of a general dynamic programming formulation with the
power of heuristic-search techniques for developing an al-
gorithmic framework, that we callLearning in Depth-First
Search, that aims to be both general and effective. The basic
LDFS algorithm searches for solutions by combining itera-
tive, bounded depth-first searches, with learning in the sense
of Korf’s LRTA* and Barto’set al. RTDP. In each iteration,
if there is a solution with cost not exceeding a lower bound,
then the solution is found, else the process restarts with the
lower bound and the value function updated.LDFS reduces
to IDA * with Transposition Tables over deterministic mod-
els, but solves also non-deterministic, probabilistic, and game
tree models, over which a slight variation reduces to the state-
of-the-artMTD algorithm. Over Max AND/OR graphs, on the
other hand,LDFS is a new algorithm which appears to be quite
competitive with AO*.

Introduction
Dynamic Programming provides a convenient and unified
framework for studying many state models used in AI (Bell-
man 1957; Bertsekas 1995) but no algorithms for handling
large spaces. Heuristic-search methods, on the other hand,
can handle large spaces effectively, but lack a common foun-
dation: algorithms likeIDA * aim at deterministic mod-
els (Korf 1985),AO* at non-deterministic models (Martelli
& Montanari 1973), Alpha-Beta at Game Trees (Newell,
Shaw, & Simon 1963), and so on (see (Nilsson 1980;
Pearl 1983)), and it is not always clear what these tasks
and techniques have in common, nor how they can be
generalized in a principled way to other models like non-
deterministic models with cycles or Markov decision pro-
cesses. In this work, we combine the benefits of a general
dynamic programming formulation with the effectiveness
of heuristic-search techniques for developing an algorithmic
framework, that we callLearning in Depth-First Search,that
aims to be both general and effective. The basicLDFS algo-
rithm searches for solutions by combining iterative, bounded
depth-first searches, with learning in the sense (Korf 1990)
and (Barto, Bradtke, & Singh 1995). In each iteration, if
there is a solution with cost not exceeding a lower bound,

then the solution is found and reported, else the process
restarts with the lower bound and the value function updated.
LDFS reduces toIDA * with Transposition Tables (Reinefeld
& Marsland 1994) over deterministic models, but solves also
non-deterministic, probabilistic, and game tree models, over
which a slight variation reduces to the state-of-the-artMTD
algorithm (Plaatet al. 1996).

The LDFS framework makes explicit and generalizes two
key ideas underlying a family of effective search algo-
rithms across a variety of models:learning and lower
bounds. We build on recent work that combines DP up-
dates with the use of lower bounds and knowledge of the
initial state for computingpartial optimal policies for MDPs
(Barto, Bradtke, & Singh 1995; Hansen & Zilberstein 2001;
Bonet & Geffner 2003). However, rather than developing
another algorithm for MDPs, we make use of these notions
to lay out a general framework covering a wide range of
models which we hope is transparent and useful. Prelim-
inary experiments over Max AND/OR graphs, suggest in-
deed thatLDFS is quite competitive with AO* (Bonet &
Geffner 2005).

Models
All the models can be defined in terms of the following com-
mon elements:

1. a discrete and finite state spaceS,
2. an initial states0 ∈ S,
3. a non-empty set of terminal statesST ⊆ S,
4. actionsA(s) ⊆ A applicable in each non-terminal state,
5. a function mapping non-terminal statess and actionsa ∈

A(s) into setsof statesF (a, s) ⊆ S,
6. action costsc(a, s) for non-terminal statess, and
7. terminal costscT (s) for terminal states.

We assume that bothA(s) andF (a, s) are non-empty. The
various models correspond to:

• Deterministic Models (DET):|F (a, s)| = 1,
• Non-Deterministic Models (NON-DET):|F (a, s)| ≥ 1,
• Markov Decision Processes (MDPs): with probabilities

Pa(s′|s) for s′ ∈ F (a, s) s.t.
∑

s′∈F (a,s) Pa(s′|s) = 1.

In addition, for DET, NON-DET, and MDPs

• action costsc(a, s) are all positive, and
• terminal costscT (s) are non-negative.

When terminal costs are all zero, terminal states are called
goals. Finally,

• Game Trees (GT): are non-deterministic models (NON-
DET) with zero action costs, arbitrary terminal costs, and
a tree-structure.

A model has a tree-structure when two differ-
ent paths cannot lead to the same state. A path
s0, a0, s1, a1, . . . , an−1, sn is a sequence of states and
actions starting in the initial states0, such that each
action ai is applicable insi, ai ∈ A(si), and each
statesi+1 is a possible successor ofsi given actionai,
si+1 ∈ F (ai, si). We also define theacyclic modelsas
those which do not accommodatecyclic paths, i.e., paths
s0, a0, s1, a1, . . . , an−1, sn with si = sj for i 6= j. We
write aNON-DET and aMDPs to refer to the subclass of
acyclic NON-DET and MDPs models. For example, the
type of problems in the scope of theAO* algorithm, are
defined by those in aNON-DET.

Solutions
The solutions to the various models can be expressed in
terms of the so-called Bellman equation that characterizes
the optimal cost function (Bellman 1957; Bertsekas 1995):

V (s) def=
{

cT (s) if s terminal
mina∈A(s) QV (a, s) otherwise (1)

where theQV (a, s) values express the cost-to-go and are
short-handfor:

c(a, s) + V (s′), s′ ∈ F (a, s) for DET,
c(a, s) + maxs′∈F (a,s) V (s′) for NON-DET-Max,
c(a, s) +

∑
s′∈F (a,s) V (s′) for NON-DET-Add,

c(a, s) +
∑

s′∈F (a,s) Pa(s′|s)V (s′) for MDPs,

maxs′∈F (a,s) V (s′) for Game Trees.

We make a distinction between worst-case (Max) and addi-
tive (Add) non-deterministic models, as both are considered
in AI, and yet, they have slightly different properties. We
will refer to the models (NON-DET-Max and GT) whose Q-
values are defined with Max as Max models, and to the rest
of the models, defined with Sums, as Additive models.

Under some conditions, there is a unique value function
V ∗(s), the optimal cost function, that solves the Bellman
equation, and the optimal solutions to all the models can
be expressed in terms of the policiesπ that aregreedywith
respect toV ∗(s). A policy π is a function mapping states
s ∈ S into actionsa ∈ A(s), and a policyπV is greedy with
respect to a value functionV (s), or simply greedy inV , iff
πV is the best policy assuming that the cost-to-go is given
by V (s); i.e.

πV (s) = argmin
a∈A(s)

QV (a, s) . (2)

Often, however, these conditions are not met, and the set
of |S| Bellman equations have no solution. These happens
for example in the presence ofdead-ends. Also, for Max
models, as we will see, it is not the case that optimal solu-
tions must be greedy with respect toV ∗. For these reasons,
we characterize optimal solutions in a slightly different way,

taking into account the information about the initial states0

of the system which is assumed to be available and known.
We deal then withpartial policies that mapsome states

into actions only. We say that a partial policyπ is closed
(relative tos0) if π prescribes the action to be done in all the
(non-terminal)states reachable froms0 andπ; this setS′ ⊆
S is defined inductively as comprisings0 and all the states
s′ ∈ F (π(s), s) for s ∈ S′. In particular, closed policies
for deterministic models correspond to action sequences, for
game trees, to actual trees, and so on.

Any closed policyπ relative to a states has a costV π(s)
that expresses the cost of solving the problem starting from
s. The costsV π(s) are given by the solution of (1) but
with the operatormina∈A(s) removed and the actiona re-
placed byπ(s). These costs are thus well-defined when
the resulting equations have a solutionover the subset of
states reachable froms0 and π. Moreover, for all models
above, except MDPs, it can be shown that (closed) poli-
ciesπ have a well-defined finite costV π(s0) when they are
acyclic, and for MDPs, when they areproper. Otherwise
V π(s0) = ∞. A closed policyπ is cyclic if it gives rise to
cyclic pathss0, a0, s1, a1, . . . , an−1, sn whereai = π(si),
and it isproper if a terminal state is reachable from every
states reachable froms0 andπ (Bertsekas 1995).

For all models except for MDPs, since solutionsπ are
acyclic, the costsV π(s0) can be defined also recursively,
starting with the terminal statess′ for which V π(s′) =
cT (s′), and up to the non-terminal statess reachable froms0

andπ for whichV π(s) = QV π (π(s), s). In all cases, we are
interested in computing a solutionπ that minimizesV π(s0).
The resulting value is the optimal problem costV ∗(s0).

A General Algorithm
We assume throughout the paper that we have an initial
value (or heuristic) functionV that for all non-terminal
states is alower bound, V (s) ≤ V ∗(s), and monotonic,
V (s) ≤ mina∈A(s) QV (a, s). Also for simplicity, we as-
sumeV (s) = cT (s) for all terminalstates. We summarize
these conditions by simply saying thatV is admissible.This
value function is then modified bylearning in the sense of
(Korf 1990) and (Barto, Bradtke, & Singh 1995), where the
values of selected states are made consistent with the val-
ues of successor states; an operation that takes the form of a
Bellmanupdate:

V (s) := min
a∈A(s)

QV (a, s) . (3)

If the initial value function is admissible, it remains so after
one or more updates. Methods like value iteration perform
the iterationV (s) := mina∈A(s) QV (a, s) until the differ-
ence between right and left does not exceed someε ≥ 0.
The differencemina∈A(s) QV (a, s) − V (s), which is non-
negative for monotonic value functions, is called theresid-
ual of V overs, denotedResV (s). Clearly, a value function
V is a solution to Bellman equation and is thus equal toV ∗

if it has zero residuals over all states. Given a fixed initial
states0, however, it is not actually necessary to eliminate all
residuals for ensuring optimality:

Proposition 1 Let V be an admissible value function and
let π be a policy greedy inV . Thenπ minimizesV π(s0)

starting with an admissibleV
repeat

FIND s reachable froms0 andπV with ResV (s) > ε
UpdateV (s) to mina∈A(s) QV (a, s)

until no such state is found
return V

Algorithm 1: TheFIND-and-REVISE schema

and hence is optimal ifResV (s) = 0 over all the statess
reachable froms0 andπ.

This suggests a simple and general schema for solving all
the models, that avoids the strong assumptions required by
standard DP methods and yields partial optimal policies.

Since there may be many policiesπ greedy inV , we will
assume an ordering on actions and letπV refer to the partic-
ular greedy policy obtained by selecting in each state the ac-
tion greedy inV that is minimal with respect to this ordering.
Then, in order to obtain a policy and a value function satisfy-
ing Proposition 1, it is sufficient to search for a states reach-
able froms0 andπV with residualResV (s) > ε and update
the state, keeping this iteration until there are no such states
left. If ε = 0 and the initial value value functionV is ad-
missible, then the resulting (closed) greedy policyπV is op-
timal. ThisFIND-and-REVISE schema, shown in Fig. 1 and
introduced in (Bonet & Geffner 2003) for solving MDPs,
can be used to solve all the models, without the strong as-
sumptions made by DP algorithms and without having to
compute complete policies:1

Proposition 2 Starting with an admissible value function
V , the FIND-and-REVISE schema forε = 0, solves all the
models (DET, NON-DET, GT, MDPs) provided they have so-
lution.

For the non-probabilistic models withintegeraction and ter-
minal costs, the number of iterations ofFIND-and-REVISE
with ε = 0 is bounded by

∑
s∈S [min(V ∗(s),MaxV) −

V (s)], whereMaxV stands for any upper bound on the op-
timal costsV ∗(s) of the states with finite cost. This is be-
cause updates increase the value function by at least one in
some states, decrease it in none, and preserve its admissi-
bility. In addition, states with values aboveMaxV are not
reachable froms0 and the greedy policy. Since the Find
procedure can implemented by a simple DFS procedure that
keeps track of visited states in timeO(|S|), it follows that
the time complexity ofFIND-and-REVISE over those models
can be bounded by the same expression timesO(|S|). For
MDPs, the convergence ofFIND-and-REVISE with ε = 0 is
asymptotic and cannot be bounded in this way. However, for
anyε > 0, the convergence is bounded by the same expres-
sion divided byε.

Learning DFS
We have seen that all the models admit a common for-
mulation and a common algorithm. This algorithm, while
not practical, will be useful for understanding and proving

1It is assumed that the initial value function is represented in-
tensionally and that the updated values are stored in a hash table.

the correctness of other, more effective approaches. We
will say that an iterative algorithm is instance ofFIND-and-
REVISE[ε], if each iteration of the algorithm terminates, ei-
ther identifying and updating a state reachable froms0 and
πV with residualResV (s) > ε, or proving that no such state
exists, and hence, that the model is solved. Such algorithms
will inherit the correctness ofFIND-and-REVISE, but by per-
forming more updates per iteration will converge faster.

We focus first on the models whosesolutionsare neces-
sarily acyclic, excluding thus MDPs but not acyclic MDPs
(aMDPs). We are not excludingmodelswith cycles though;
only models whose solutions may be cyclic. Hence the re-
quirements are weaker than those of algorithms likeAO*.

We will say that a states is consistentrelative to a value
function V if the residual ofV over s is no greater than
ε. Unless mentioned otherwise, we takeε to be 0. The
first practical instance ofFIND-and-REVISEthat we consider,
LDFS, implements the Find operation as a DFS that consid-
ers all the greedy actions in a state, backtracks on inconsis-
tent states, and updates not only the inconsistent states that
are found, but upon backtracking, their ancestors too. The
code forLDFS is shown in Fig. 2. The Depth-First Search
is achieved by means of two loops: one over the (greedy)
actionsa ∈ A(s) in s, the other, nested, over the possi-
ble successorss′ ∈ F (a, s). The tip nodes in this search
are the the inconsistent statess, (where for all the actions
QV (a, s) > V (s)), the terminal states, and the states that
are labeled as solved. A states is labeled as solved when the
search beneaths did not find any inconsistent state. This is
captured by the booleanflag. If s is consistent, andflag
is true after searching beneath the successorss′ ∈ F (a, s)
of a greedy actiona, thens is labeled as solved,π(s) is set
to a, and no more actions are tried ats. Otherwise, the next
greedy action is tried, and if no one is left,s is updated. Sim-
ilarly, if the search beneath a successor states′ ∈ F (a, s)
reports an inconsistency ora no longer satisfies the greedy
conditionQV (a, s) ≤ V (s), the rest of the successor states
s′′ ∈ F (a, s) are skipped.

LDFS is called iteratively overs0 from a driver routine that
terminates whens0 is solved, returning a value functionV
and a greedy policyπ that satisfies Proposition 1, and hence
is optimal. We show this by proving thatLDFS is an instance
of FIND-and-REVISE. First, since no model other than MDPs
can accommodate a cycle ofconsistentstates, we get that:

Proposition 3 For DET, NON-DET, GT, and aMDPs, a call
to LDFS cannot enter into a loop and thus terminates.

Then, provided with the same ordering on actions asFIND-
and-REVISE, it is simple to show that the first states that is
updated byLDFS is inconsistent and reachable froms0 and
πV , and if there is not such state,LDFS terminates withπV .

Proposition 4 Provided an initial admissible value func-
tion, LDFS is an instance ofFIND-and-REVISE[ε = 0], and
hence, it terminates with a closed partial policyπ that is
optimal for DET, NON-DET, GT, and aMDPs.

In addition, for the models that areadditive, it can be shown
that all the updates performed byLDFS areeffective, in the
sense that they are all done on states that are inconsistent,
and which as a result, strictly increase their values:

LDFS-DRIVER(s0)
begin

repeatsolved := LDFS(s0) until solved
return (V, π)

end

LDFS(s)
begin

if s is SOLVED or terminal then
if s is terminalthen V (s) := cT (s)
Mark s as solvedreturn true

flag := false
foreacha ∈ A(s) do

if QV (a, s) > V (s) then continue
flag := true
foreachs′ ∈ F (a, s) do

flag := LDFS(s′) & [QV (a, s) ≤ V (s)]
if ¬flag then break

if flag then break

if flag then
π(s) := a
Mark s asSOLVED

else
V (s) := mina∈A(s) QV (a, s)

return flag

end

Algorithm 2: Learning DFS Algorithm (LDFS)

Proposition 5 Provided an initial admissible value func-
tion, all the updates inLDFS over theadditive modelsDET,
NON-DET-Add, and aMDPs, strictly increase the value
function.

An immediate consequence of this is that for DET and
NON-DET-Add models with integer action and terminal
costs, the bound on the number of iterations can be reduced
to V ∗(s0) − V (s0), which corresponds to the maximum
number of iterations inIDA * under the same conditions.
Actually, provided thatLDFS and IDA * (with transposition
tables (Reinefeld & Marsland 1994)) consider the actions
in the same order, it can be shown that they will both tra-
verse the same paths, and maintain the same value (heuris-
tic) function in memory:

Proposition 6 Provided an admissible (and monotonic)
value functionV , and that actions are applied in the same
order in every state,LDFS is equivalent to IDA * with
Transposition Tables over the class of deterministic models
(DET).

Actually, for Additive Models, the workings ofLDFS can be
characterized as follows:

Proposition 7 Over the Additive Models DET, Non-DET-
Add, and aMDPs,LDFS tests whether there is solutionπ
with costV π(s0) ≤ V (s0) for an initial admissible value
functionV . If a solution exists, one such solution is found
and reported; elseV (s0) is increased, and the test is run
again, til a solution is found. SinceV remains a lower
bound, the solution found is optimal.

This is indeed the idea underlyingIDA * and the Memory-
enhanced Test Driver algorithm orMTD(−∞) for Game
Trees (Plaatet al. 1996). Interestingly, however, whileLDFS
solves Game Trees, it does not exhibit this pattern: the rea-
son is that over Max models, like GT and NON-DET-Max,
updates inLDFS are not always effective. We discuss this
next.

Local and Global Optimality
An optimal solution is one that minimizesV π(s0). If π also
minimizesV π(s) for all the statess reachable froms0 andπ,
we say thatπ isglobally optimal. A characteristic of additive
models is that the first condition implies the second. In Max
models, however, this is not true. This distinction arises be-
cause while all arguments count in a sum, not all arguments
count in a maximization. Game Tree algorithms make use
of this difference for computing optimal policies that are not
necessarily globally optimal. On the other hand,LDFS and
FIND-and-REVISE, compute only globally optimal policies.
This is because they keep updatingV until all inconsisten-
ciesover the states reachable froms0 and the greedy policy
πV are eliminated. Some of these inconsistencies, however,
are harmless in Max models. Interestingly, theAO* algo-
rithm has the same limitation and computes globally optimal
solutions even in models like aNON-DET-Max where this is
not required.

Bounded LDFS
The properties thatLDFS exhibits over additive models, in
particular the notion of effective updates, can be extended
to Max models by adding an extra argument toLDFS: a
Bound parameter. For simplicity, we will restrict our atten-
tion to Max models where no state can be reached through
paths of different costs.This includes of course Game Trees
and NON-DET-Max Tree models. For the general case, see
(Bonet & Geffner 2005).

The key observation is that while an increase inV (s′) for
somes′ ∈ F (a, s) does not necessarily translate into an
increase ofQV (a, s) in Max models, an increase ofV (s′)
above a certain bound will. Namely,QV (a, s) ≤ Bound
iff V (s′) ≤ Bound′ for Bound′ equal toBound in Game
Trees, toBound − c(a, s) in DET, to Bound − c(a, s) −∑

s′′∈F (a,s)\{s′} V (s′′) in NON-DET-Add, etc. The pro-
cedure BoundedLDFS shown in Fig. 3 takes advantage of
this, replacing the testsQV (a, s) ≤ V (s) in LDFS with
QV (a, s) ≤ Bound whereBound is the extra parameter,
which is initialized toV (s0) in the driver routine, and passes
as theBound′ above in the recursive calls. For Additive
models, this change has no effect because the following in-
variant holds before the loop over the actions:

Proposition 8 For the additive models, in allLDFS-BOUND
calls, the invariantV (s) = Bound holds before the A-loop.

As a result, directly from the code, it can be established that

Proposition 9 LDFS and LDFS-BOUND are equivalent over
the Additive models.

For Max models, however, a weaker invariant holds:

Proposition 10 For Max models, in allLDFS-BOUND calls,
the invariantV (s) ≤ Bound holds before the A-loop.

LDFS-BOUND-DRIVER(s0)
begin

repeatsolved := LDFS-BOUND(s0, V (s0)) until solved
return (V, π)

end

LDFS-BOUND(s,Bound)
begin

. . .
foreacha ∈ A(s) do

if QV (a, s) > Bound then continue
flag := true
foreachs′ ∈ F (a, s) do

Bound′ := see text
flag := LDFS-BOUND(s′, Bound′) &

[QV (a, s) ≤ Bound]
if ¬flag then break

if flag then break
. . .

end

Algorithm 3: LDFS-BOUND: fragment that differs from
LDFS

The difference between LDFS and LDFS-BOUND
over Max models is that while the former regards
mina∈A(s) QV (a, s) > V (s) as an inconsistency that
needs to be removed,LDFS-BOUND removes this incon-
sistency only whenmina∈A(s) QV (a, s) > Bound holds,
which is weaker due to the invariantV (s) ≤ Bound. As
a result,LDFS-BOUND, unlike LDFS, is not an instance of
FIND-and-REVISE over Max models, and thus termination
and correctness need to be proved in a different way. First,
a LDFS-BOUND call terminates over Game Trees as there
cannot be cyclic paths, and over NON-DET-Max models,
as the invariant0 ≤ V (s) ≤ Bound holds and the Bound
decreases monotonically along any path:

Proposition 11 A call to LDFS-BOUND over Max models
cannot enter into a loop and thus it always terminates.

Then with arguments similar to the ones used forFIND-and-
REVISE, one can bound the number of iterations, so that
upon terminationLDFS-BOUND returns a policyπ and a
value functionV such thatQV (π(s), s) ≤ Bound holds in
all the invocationsLDFS-BOUND(s,Bound) over the states
s reachable froms0 andπ. Yet sinceπ must be acyclic, in-
ductively once can prove thatV π(s0) ≤ V (s0) and hence:

Proposition 12 Provided an initial admissible value func-
tion, LDFS-BOUND terminates with a closed policyπ that is
optimal over the Max models GT and NON-DET-Max.

In addition, like the updates inLDFS over the additive mod-
els, updates inLDFS-BOUND areeffectiveover Max models:

Proposition 13 Provided an initial admissible value func-
tion, all updates inLDFS-BOUND over Max models, strictly
increase the value function.

As resultLDFS-BOUND over Max models can be also de-
scribed as an algorithm that finds a solutionπ with cost
V π(s0) ≤ V (s0) if there is one such solution, and else up-
datesV (s0) and other values, and tries again. It is thus not

a

e
−41 −5

g
−12 −90 −101 −80 −20 −30

k
−34 −80

m
−36

o
−35

s
−50

t
−36 −25 −3

d f j l q r

c i p

b h

Figure 1: Game Tree with MIN player playing first

entirely surprising that over Game Trees,LDFS-BOUND re-
duces to theMTD(−∞) algorithm (Plaatet al. 1996); i.e.,
given the same ordering on actions and successor states, both
algorithms traverse the same paths, and maintain the same
value function:2

Proposition 14 With the initial value functionV (s) = −∞,
for all s, LDFS-BOUND is equivalent toMTD(−∞).

The proof involves code transformations and invariants. For
example, theMT algorithm works with both lower and up-
per bounds, yet it can be shown that when the initial value
function is−∞, upper bounds (from the perspective of the
MIN player) play the same role as labels inLDFS-BOUND.
For the equivalence, it is necessary to assume that both the
top-nodes and the terminal nodes correspond to MIN-player
moves. WhileMT is symmetric in this sense,LDFS-BOUND
is not. Finally, for keeping the presentation simple, we have
assumed thatV (s) = cT (s) for terminal states, yet this con-
dition is not required.

The reader is encouraged to try theLDFS-BOUND algo-
rithm on the Game Tree shown in Fig. 1, modified from
(Plaatet al. 1996) so that it retains the same solution but
with the MIN player moving first (thus payoffs have been
made negative). The top nodea is the initial state where
there are two applicable actions, ‘left’ and ‘right’. The ac-
tion ’right’ in a has non-deterministic effectsi andp, and
so on (note that MAX nodes likeb andh do not correspond
to states but to ‘And’ nodes). With an initial value func-
tion V = −∞, LDFS-BOUND, like MTD(−∞), traverses the
subtree formed bya, b, c, d, e, f, g, h, i, j, k, l,m in the first
iteration and setsV (a) = −41. This value is used as the
bound of the second iteration, which also returns unsuccess-
fully with a new boundV (a) = −36, updated in the third
iteration toV (a) = −35. The fourth iteration ends suc-
cessfully proving this value optimal, with a solutionπ that
chooses ‘right’ ata andi, and ‘left’ atp.

MDPs
In order to handle MDPs, two features are needed: anε > 0
bound on the size of the residuals allowed for avoiding
asymptotic convergence, and a bookkeeping mechanism for
avoiding loops and recognizing states that are solved. To il-
lustrate the subtleties involved, let us assume that there is a
single actionπ(s) applicable in each state. By performing
a single depth-first pass over the descendants ofs, keeping

2As in MTD, −∞ refers to a large negative number. Thus,
−∞ < −∞+ k for positivek.

track of visited states for not visiting them twice, we want
to know when a states can be labeled as solved. The sub-
tlety arises due to the presence of cycles. In particular, it is
no longer correct to label a states as solved when the vari-
ableflag indicates that all descendants ofs are consistent
(i.e., have residuals no greater thanε); as there may be an-
cestors ofs that are also reachable froms with unexplored
descendents. Yet, even in such case, there must be statess
in the DFS tree spanned byLDFS-MDP (recall that no states
are visited twice) such that all the states that are reachable
from s andπ are beneaths, and for those states, it iscorrect
to label them as solved whenflag is true. Moreover, the la-
beling scheme becomescompleteif at that point not onlys
is labeled but also its descendants. The question of course is
how to recognize such ‘top’ elements in the state graph dur-
ing the depth-first search. The answer is given by Tarjan’s
strongly connected component algorithm (Tarjan 1972) that
keeps track of two indicess.low and s.idx for each state
s encountered. The top elementss are precisely those for
whichs.low = s.idx.

The resulting algorithm for MDPs,LDFS-MDP, is LDFS+
ε-RESIDUALS + TARJAN. We lack the space to show it here
but can prove that:

Proposition 15 LDFS-MDP is an instance ofFIND-and-
REVISE[ε] and hence for a sufficiently smallε, solves MDPs
provided they have a solution with finite (expected) cost.

LDFS-MDP is similar to theHDP algorithm (Bonet & Geffner
2003) that introduced Tarjan’s algorithm for labeling states
in MDPs, yet by trying all greedy actions in every state
LDFS-MDP ensures that all updates remain effective.

Discussion
We have developed a computational framework,LDFS,
which makes explicit and generalizes two key ideas under-
lying a family of effective search algorithms across a va-
riety of models: learning and lower bounds.3 The same
LDFS algorithm handles deterministic and non-deterministic
models, with or without cycles, and a simple variation han-
dles MDPs where solutions can be cyclic. The framework
uncovers also a key distinction between Additive and Max
models that has apparently gone unnoticed: optimal solu-
tions to Additive models are globally optimal, but optimal
solutions to Max models need not be. Still algorithms like
AO* compute globally optimal solutions, which is adequate
for Additive AND/OR graphs but is not required for Max
AND/OR graphs. We have actually implemented theLDFS
and BoundedLDFS algorithms and compared them withAO*
and Value Iteration over Max AND/OR Graphs. The re-
sults, reported in (Bonet & Geffner 2005), show that over a
wide variety of instances and heuristic functions,LDFS and
BoundedLDFS are almost never worse than eitherAO* or
Value Iteration, and instead are often one or more orders of
magnitude faster. We do not expect similar practical gains
over DET and GTs whereLDFS and BoundedLDFS reduce

3For other works emphasizing the common ideas between
single-agent and two-player search (DET and GTs in our terms);
see (Marsland & Reinefeld 1993) and (Schaeffer, Plaat, & Jung-
hanns 2001).

to well known algorithms. The value of the proposed frame-
work, however, goes beyond the particular algorithms ob-
tained for the various models. For example, since allLDFS
algorithms can be understood as ‘extensions’ ofIDA * some
of their limitations can be understood in terms of the lim-
itations of IDA * itself. For example, it is well known that
IDA * doesn’t do well when action costs are real numbers.
In MDPs, this problem arises even when action costs are in-
tegers because of the probabilities. We are thus currently
exploring variations on the basicLDFS-MDP algorithm that
exploit this parallelism.

References
Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning to act using
real-time dynamic programming.Artificial Intelligence72:81–
138.
Bellman, R. 1957.Dynamic Programming. Princeton University
Press.
Bertsekas, D. 1995.Dynamic Programming and Optimal Control,
(2 Vols). Athena Scientific.
Bonet, B., and Geffner, H. 2003. Faster heuristic search algo-
rithms for planning with uncertainty and full feedback. In Got-
tlob, G., ed.,Proc. 18th International Joint Conf. on Artificial
Intelligence, 1233–1238. Acapulco, Mexico: Morgan Kaufmann.
Bonet, B., and Geffner, H. 2005. An algorithm better than AO*?
Accepted for AAAI-05.
Hansen, E., and Zilberstein, S. 2001. LAO*: A heuristic search
algorithm that finds solutions with loops.Artificial Intelligence
129:35–62.
Korf, R. 1985. Depth-first iterative-depeening: An optimal ad-
missible tree search.Artificial Intelligence27(1):97–109.
Korf, R. 1990. Real-time heuristic search.Artificial Intelligence
42(2–3):189–211.
Marsland, T. A., and Reinefeld, A. 1993. Heuristic search in one
and two player games. Technical Report TR 93-02, University of
Alberta.
Martelli, A., and Montanari, U. 1973. Additive AND/OR graphs.
In Nilsson, N., ed.,Proc. 3rd International Joint Conf. on Artifi-
cial Intelligence, 1–11. Palo Alto, CA: William Kaufmann.
Newell, A.; Shaw, J. C.; and Simon, H. 1963. Chess-playing
programs and the problem of complexity. In Feigenbaum, E., and
Feldman, J., eds.,Computers and Thought. McGraw Hill. 109–
133.
Nilsson, N. 1980.Principles of Artificial Intelligence. Tioga.
Pearl, J. 1983.Heuristics. Morgan Kaufmann.
Plaat, A.; Schaeffer, J.; Pijls, W.; and de Bruin, A. 1996. Best-
first fixed-depth minimax algorithms.Artificial Intelligence87(1-
2):255–293.
Reinefeld, A., and Marsland, T. 1994. Enhanced iterative-
deepening search.IEEE Trans. on Pattern Analysis and Machine
Intelligence16(7):701–710.
Schaeffer, J.; Plaat, A.; and Junghanns, A. 2001. Unifying single-
agent and two-player search.Inf. Sci.135(3-4):151–175.
Tarjan, R. E. 1972. Depth first search and linear graph algorithms.
SIAM Journal on Computing1(2):146–160.

