
Planning and Control in Arti�cial Intelligence:A Unifying PerspectiveBlai Bonet and H�ector Ge�nerDepartamento de Computaci�onUniversidad Sim�on Bol��varAptdo. 89000, Caracas, VenezuelaAbstractThe problem of selecting actions in environments that are dynamic andnot completely predictable or observable is a central problem in intelligentbehavior. In AI, this translates into the problem of designing controllersthat can map sequences of observations into actions so that certain goalsare achieved. Three main approaches have been used in AI for designingsuch controllers: the programming approach, where the controller is pro-grammed by hand in a suitable high-level procedural language, the plan-ning approach, where the control is automatically derived from a suitabledescription of actions and goals, and the learning approach, where thecontrol is derived from a collection of experiences. The three approachescan exhibit successes and limitations. The focus of this paper is on theplanning approach. More speci�cally, we present an approach to plan-ning based on various state models that can handle various types of ac-tion dynamics (deterministic and probabilistic) and sensor feedback (null,partial, and complete). The approach combines high-level representationslanguages for describing actions, sensors, and goals, mathematical mod-els of sequential decisions for making precise the various planning tasksand their solutions, and heuristic search algorithms for computing thosesolutions. The approach is supported by a computational tool we have de-veloped that accepts high-level descriptions of actions, sensors, and goalsand produces suitable controllers. We also present empirical results anddiscuss open challenges.1 IntroductionThe problem of selecting actions in environments that are dynamic and notcompletely predictable or observable is a central problem in intelligent behav-ior. In AI, this translates into the problem of designing controllers that canmap sequences of observations into actions so that certain goals can be achieved(Fig. 1). Three main approaches have been used in AI for designing such con-trollers: 1



Goals �! Controller actions�!observations � WorldFigure 1: The control problem: designing controllers that can map sequences ofobservations into actions for achieving certain goals� the programming approach, where the controller is programmed by handin a suitable high-level procedural language,� the planning approach, where the controller is derived automatically froma suitable description of the actions, sensors, and goals, and� the learning approach, where the controller is derived from experiences.The work of R. Brooks and others in mobile robotics is an example of the �rstapproach [16, 1], Control Theory and AI planning are examples of the secondapproach [48, 25], and systems that learn by trial and error or generalizationare instances of the third approach [58, 7].The three approaches exhibit both strengths and limitations. In this paperwe focus on the planning approach. More speci�cally, we present a general andoperational approach to planning that combines elements from AI planning,dynamic programming, and logic, and is able to deal with systems that exhibitdi�erent types of dynamics (deterministic or probabilistic) and di�erent typesof feedback (null, partial, or complete). Plans are thus open-loop or closed-loopaccording to the type of sensors available (Fig. 2).The main ingredients of the approach are the use of high representationslogical languages for describing actions, sensors, and goals, mathematical modelsof sequential decisions for making precise the various planning tasks and theirsolutions, and heuristic search algorithms for obtaining those solutions.The use of high-level representation languages is common in AI Planning[25, 50] and our approach draws insight from recent work on theories of action[29, 54, 28]. Similarly, the use of mathematical models of sequential decisionssuch as Markov Decision Processes (MDPs), and Partially Observable MDPs(POMDPs) borrows from the work in Dynamic Programming [51, 6]. Finally,the use heuristic search algorithms has long tradition in AI (e.g., [46]), eventhough the use of such algorithms for solving Strips planning problems, MDPs,and POMDPs is more recent [3, 13, 11, 32].In this paper we provide a coherent integration of these various elementsand argue that the result provides a natural framework for modeling and solv-ing planning problems under a variety of conditions, including deterministicand probabilistic actions, and complete, partial or null sensing. We have actu-ally developed a computational tool that supports this approach and given aconvenient description of actions, sensors, and goals, computes the correspond-ing controllers. We report a number of experiments with this tool and discusscurrent limitations and future challenges.2



ActionsSensorsGoals �! Open-loopPlanner �! Plan actions�! WorldActionsSensorsGoals �! Closed-LoopPlanner �! Plan* actions�!observs � WorldFigure 2: Open and Closed-Loop Planning: in open-loop planning the plan is a�xed sequence of actions; in closed-loop planning, the sequence depends on theobservationsThe paper is written in a tutorial style requiring only a basic knowledge oflogic and probabilities. We have tried to keep the presentation coherent buthave made no attempt to provide a survey of the area. For more comprehensivetreatments on Planning and Control in AI, and Decision-Theoretic Planning,see [23, 53, 14, 35].The paper is organized as follows. First, we consider the models of sequen-tial decisions that make explicit the mathematical structures underlying variousplanning tasks (Models, Sect. 2). Second, we consider the class of search algo-rithms for solving these models (Algorithms, Sect. 3). Third, we discuss theuse of a logical language for specifying such models in a convenient way (Rep-resentation, Sect. 4). And �nally, we report results on a variety of experiments(Results, Sect. 5).2 ModelsWe consider �rst the mathematical models that make various forms of planningprecise according to the type of action dynamics and sensor feedback. In eachcase, the models determine what the planning task is and what is the form ofthe solution.2.1 State ModelsDeterministic state models [45] are the most basic action models in AI andconsist of a �nite set of states S, a �nite set of actions A, and a state transitionfunction f that describes how actions map one state into another. Deterministicstate models provide useful models for the dynamics of systems in which thee�ects of actions are discrete and fully predictable.A Deterministic Control Problem or dcp refers to the problem of �ndingthe actions that would drive a system described by a deterministic state model,3



from a given initial state s0 to a �nal set of goal states G. More precisely, adeterministic control problem is characterized by:� a state space S� an initial state s0 2 S� actions A(s) � A applicable in each state s 2 S� a transition function f(s; a) for s 2 S and a 2 A(s)� action costs c(a; s) > 0� a non empty set G � S of goal statesA solution of a deterministic control problem is a sequence of actions a0, a1, . . . ,an that generates a state trajectory s0, s1 = f(s0), . . . , sn+1 = f(si; ai) suchthat each action ai is applicable in si and sn+1 is a goal state, i.e., ai 2 A(si)and sn+1 2 G. The solution is optimal when the total cost Pni=0 c(si; ai) isminimal.Classical planning, i.e., open-loop planning with deterministic actions andcomplete knowledge of the initial situation, is a deterministic control problemwhere states are normally represented by sets of atoms, action costs are equal,and the transition function f and the sets of executable actions A(s) are im-plicitly de�ned in a high-level language such as Strips [25].While solution methods in classical planning have traditionally been basedon divide-and-conquer ideas [46, 53], methods based on explicit state spaceexploration and suitable domain-independent heuristic have recently been shownto be e�ective [12].2.2 MDPsMarkov Decision Processes (mdps) [51, 5] di�er from deterministic control prob-lems in two ways: �rst, they accommodate probabilistic actions, second, theyassume that the e�ect of actions, while no longer predictable, is fully observable.An mdp is thus given by:1� a state space S� actions A(s) � A applicable in each state s 2 S� transition probabilities Pa(s0js) for s 2 S and a 2 A(s)� action costs c(a; s) > 0� a non empty set G � S of goal statesThe states si+1 that result from an action ai are not predictable but are observ-able, providing feedback for the selection of the next action ai+1. As a result, asolution of an mdp is not an action sequence, but a function � mapping statess into actions a 2 A(s). Such a function is called a policy. A policy � assigns1We are considering a subclass of mdps, the so-called stochastic shortest-path mdps [5]. Forgeneral treatments, see [5] and [51]. For uses of mdps in Planning and AI, see [58, 14, 3, 53].4



a probability to every state trajectory s0; s1; s2; : : : starting in state s0 which isgiven by the product of all transition probabilities Pai(si+1jsi) with ai = �(si).We assume that actions in goal states have no costs and produce no changes(i.e., c(a; s) = 0 and Pa(sjs) = 1 if s 2 G). The expected cost associated witha policy � starting in state s is the weighted average of the probability of suchtrajectories times their cost P1i=0 c(�(si); si). An optimal solution is a controlpolicy �� that has a minimum expected cost for all states s 2 S.While Classical Planning can be formulated as a deterministic control prob-lem, Closed-Loop Planning with Complete Information can be formulated as anmdp [21, 3]. The desired closed-loop plans are the optimal policies ��. In AI,it is common to represent policies by lists of condition-action pairs or universalplans [55, 47].2.3 POMDPspomdps generalizemdps allowing the state to be partially observable [57, 17]. In-formation about the state comes from observations o whose probabilities Pa(ojs)depend on the action a performed and the unobserved but true resulting state s.In addition, a prior probability distribution over the states encodes a prior beliefabout the initial state of the world which is no longer assumed to be observableor known. A pomdp is thus characterized by the elements describing an mdp� states s 2 S� actions A(s) � A applicable in each state s� transition probabilities Pa(s0js) for s 2 S and a 2 A(s)� costs c(a; s) > 0 of performing action a in s� a non-empty set G � S of goal statesplus information about the initial state of uncertainty and the sensor model inthe form of� an initial belief state b0, and� a set O of observations o with probabilities Pa(ojs)The probabilities Pa(ojs) express the probability of getting the observation o instate s after having done action a. These probabilities must be de�ned for eachstate s and action a 2 A(s) and must add up to one, i.e. Po2O Pa(ojs) = 1.Since feedback from the environment is only partial in pomdps, the state ofthe system is normally not known, and therefore, policies that map states intoactions are of no use. The solution of a pomdp takes the form of a function thatmaps belief states into actions, where belief states are probability distributionsover the real states of the environment. The e�ect of actions on belief statesis completely predictable, and the belief state ba that results from performingaction a in belief state b can be obtained asba(s) =Xs02S Pa(sjs0)b(s0) (1)5



In the absence of observations, a pomdp reduces to a deterministic controlproblem in belief space where the task is to �nd a sequence of actions that mapsthe initial belief state b0 into a �nal belief state bF with actions a that map onebelief b into a successor belief ba as given in (1). We take the �nal belief statesto be the beliefs that make the goal certain, i.e., the bF 's for which bF (s) = 0 forall s 62 G, or more simply, bF (G) = 1. Di�erent sets of �nal belief states couldalso be used; e.g., the beliefs bF that make the goal very likely (bF (G) � 0:9),and so on.In the presence of observations, an action a can map a belief state b into sev-eral belief states boa according to the observation o that obtains. The probabilityba(o) of observing o is given byba(o) =Xs2S Pa(ojs)ba(s) (2)Similarly, the probability boa(s) that the state is s after doing action a in b andobserving o is boa(s) = Pa(ojs)ba(s)=ba(o) (3)These expressions follow from the action and sensor models, and Bayes rule.In the presence of observations thus actions have a probabilistic e�ects onbelief states, and hence a pomdp with sensing is no longer a deterministic controlproblem in belief space, but an mdp over belief space [2, 57, 17]. The solutionof the pomdp, is given by the solution of such belief mdp; namely, a policymapping belief states into actions such that the expected cost for going fromthe initial state b0 to a �nal belief state bF is minimized.The problem of planning with sensing [42] can be formulated as a pomdpwhose solutions are policies mapping belief states into actions. In the AI lit-erature, such policies are often represented by contingent plans, i.e., sequentialplans extended with tests and branching [19, 42, 20].2.4 Non-deterministic Control ProblemsIn mdps and pomdps, non-determinist transitions are modeled as probabilistictransitions. In certain contexts, however, we may want to describe the possiblee�ects of an action without specifying the corresponding probabilities. Thisapplies in particular to situations in which we are interested in minimizing theworst possible cost of a policy rather than its expected cost [34, 38]. Such se-quential decision problems can be expressed with a dynamic model made upof a non-deterministic transition function F (a; s) mapping actions and statesinto sets of states. Then, non-deterministic mdps can be de�ned by simply re-placing the transition probabilities with non-deterministic transition functions,and expected costs with worst possible costs. For de�ning non-deterministicpomdps, we also need to replace the probabilistic sensor model Pa(ojs) by anon-deterministic sensor model made up of sets O(a; s) of possible observationso that may arise in state s after having done action a. As we will see, the al-gorithms for solving mdps and pomdps can easily be adapted for solving theirnon-deterministic counterparts. 6



Non-deterministic planning problems with and without sensing have beenconsidered in the AI literature in [56, 20, 18] among other sources.3 AlgorithmsWe have seen that planning problems can be formulated as either dcps, mdps,or pomdps, or as their non-deterministic counterparts, according to the typeof action dynamics and sensor feedback that is present. Techniques for solvingdeterministic control problems are reviewed in details in most AI texts; e.g.,[53], and include algorithms such as A* which rely on heuristic functions h(s)that estimate the cost from states s to the goal. Here we focus �rst on Greedyor Hill-Climbing Search, which is a simple search strategy that can be easilyextended to deal with all the models we have considered.3.1 Greedy SearchGreedy search is one of the simplest search strategies. In a state s, the bestaction according to some criterion is applied, and the same process is repeateduntil the goal is reached. In deterministic control problems, it's natural tode�ne the best action in terms of a measureQ(a; s) given by the sum of the costc(a; s) of applying the action a in s, and the estimated cost of reaching the goalfrom the resulting state as measured by an heuristic function h. This searchprocedure, that we call greedy, is shown in Fig. 3.greedy is a simple search procedure that uses constant memory but isneither optimal nor complete. That is, greedy may return solutions with non-minimal costs or may loop and return no solution at all. Nonetheless, greedycan often be amended to become su�ciently practical. For a example, theplanner hsp [12] is based on a greedy search procedure guided by an heuristicfunction h(�) that is extracted automatically from Strips representations. Thegreedy search is extended with memory to avoid past states, a limited numberof plateu-moves (in which the heuristic h is not decremented), and multiplerestarts. hsp was entered into the AIPS98 Planning Contest where it solvedmore problems than state-of-the-art Graphplan and SAT planners [44] .In the main looop of greedy in Fig. 3, the state s0 resulting from the ap-plication of action a in s (Step 3) is taken to be the state sa that is predictedby the (deterministic) model of the system. With full observability, however,greedy can be easily extended to handle `perturbations' or behaviors not pre-dicted by the model. Indeed, when the resulting state s0 is not the same as thepredicted state sa in Step 3, greedy continues the search from s0 as if nothinghad happened. This can occur for instance when a block A that was supposedto be moved on top of block B unexpectedly falls on the table. In that case,provided that the new state is observable and s0 is set to the resulting state,greedy can recover. In such case, the greedy search behaves as a closed-looppolicy that we refer as the greedy policy.7



1. Evaluate each action a applicable in current state s asQ(a; s) = c(a; s) + h(sa)where sa is state predicted after doing a in s2. Apply action a that minimizes Q(a; s), breaking ties ran-domly3. Exit if resulting state s0 is a goal state, else set s to s0 andgo to 1 Figure 3: Greedy search3.2 Learning Real-Time A*Greedy search is simple and memory e�cient but has two problems: it mayreturn non-optimal solutions, or it may loop and return no solution at all. In[39], Korf proposed a simple change in greedy (that he calls real-time search)that solves both of these problems. The idea is to adjust the heuristic functionh dynamically during the search. More precisely, Korf suggests to regard theheuristic function h as providing the initial value of a function V that estimatesthe optimal cost of reaching the goal from each state. Then every time an actiona is selected and applied in a state s, this cost function V is updated asV (s) := c(a; s) + V (sa) (4)where V (sa) is the value of the cost function for the predicted state sa. Theseupdates aim to enforce the relation that has to hold between the cost of s andthe cost of sa when a is indeed the optimal action in s. For example, if initiallyV (s) = h(s) = 5, and action a with cost c(a; s) = 1 is applied in s leading to sawith cost V (sa) = h(sa) = 3, the update changes V (s) from 5 to 4.Korf shows that the result of these updates is twofold: �rst they guaranteethat the greedy search will not be trapped into a loop as long as there is a pathfrom every state to the goal; second, they guarantee that successive trials ofthe algorithm, each trial beginning with the value function resulting from theprevious trial, eventually deliver an optimal path to the goal. This is providedthat the heuristic h used to initialize the value function V is admissible (non-overestimating).Korf refers to the greedy search procedure extended with these updates aslearning real-time A* or lrta�. For the implementation of lrta�, the estimatesV (s) are stored in a hash table that initially contains the heuristic value of thestarting state only. Then, when the value V (s) of a state s that is not in thetable is needed, a new entry with V (s) set to h(s) is allocated (Step 1, Fig. 4).These entries are updated following (4) when a move from s is performed. Themain loop of a single trial of the lrta� algorithm is shown in Fig. 4.As an illustration, if lrta� is given the non-informative but admissibleheuristic h(s) = 0 in the 8-puzzle, the updates would guarantee that lrta�8



1. Evaluate each action a applicable in s asQ(a; s) = c(a; s) + V (sa)initializing V (sa) to h(sa) when sa is not in the table2. Apply action a with minimum Q(a; s) value, breaking tiesrandomly3. Update V (s) to Q(a; s)4. Exit: if resulting state s0 is goal, else set s to s0 and go to 1Figure 4: Single trial of lrta�will �nd a solution to the goal in every trial. Moreover, after a su�ciently largenumber of trials, lrta� will reach a point in which the updates no longer changethe value function. The solutions returned by lrta� from that point on, can beshown to be optimal. The rate at which lrta� converges to the optimal solutiondepends on the size of the state space and the quality of the heuristic functionh. A better heuristic yields a more focused search, a higher ratio of updates onthe relevant states, and faster convergence. However, if the state space is verylarge and the heuristic is not good enough, the time and space requirements forconvergence may grow impractically large.A common way to speed up lrta� is by cutting o� trials that take too manysteps. This is normally done by selecting a cuto� value known to be above theoptimal number of steps. For the use of lrta� in planning, see [13].3.3 Dynamic ProgrammingBarto et al. in [3] provide an explanation of lrta� in terms of dynamic pro-gramming. In dynamic programming [4, 51, 5], a deterministic control problemis solved by �nding the function V � that assigns to each state s the optimal costV �(s). This optimal value function satis�es the �xed point equationV �(s) = mina2A(s)[c(a; s) + V �(sa)] (5)also called the Bellman equation. Given V �(s), the optimal actions in s are theones that minimize the right-hand side of (5) [51, 6].A common way for �nding the function V � is by an iterative method knownas value iteration in which estimates Vi are plugged into the right-hand side of(5) so that an improved value function Vi+1 is obtained on the left-hand side:Vi+1(s) := mina2A(s)[c(a; s) + Vi(sa)] (6)These updates are done in parallel for all states s 2 S. The new value functionVi+1 can be plugged again into the right-hand side of (5) to yield still betterestimates, until eventually the optimal value function is obtained. Namely,9



under suitable conditions, parallel value iteration yields a sequence of valuefunctions V0, V1, . . . , such that limi!1 Vi = V � [6].For the implementation of value iteration, two vectors V and V 0 of size jSjare needed. One stores the current estimates; the other, the new estimates.Actually, a way for reducing space and speeding up convergence is to use asingle vector V for storing current and new estimates. The updates then getthe simpler form V (s) := mina2A(s)[c(a; s) + V (sa)] (7)The di�erence with parallel-value iteration is that once the value V (s) of an states is updated according to (7), it immediately becomes available for computingthe new value V (s0) of other states.A second variation on parallel value iteration is to perform the updates ofthe form (7) over subsets S0 of S or even over single states s in S:V (s) := mina2A(s)[c(a; s) + V (sa)] for selected s 2 S (8)The order in which these states s are selected for updates can be arbitrary, andas long as all states are selected in�nitely often, the function V converges to theoptimal value function [5, 6].The relation between this form of asynchronous value iteration and Korf'slrta� must be clear by now. As noticed in [3], by combining a greedy searchwith updates, lrta� is performing a form of value iteration in which the statesselected for update are the ones visited during the search. The novelty in lrta�in comparison with other forms of value iteration, is that lrta� does not requireto update all states in�nitely often for delivering an optimal solution. Indeed,provided that the heuristic used to initialize the cost function V is admissible(non-overestimating), the updates can be restricted to the states visited duringthe search; all other states can be safely ignored. This set of states can bea small fraction of the total number of states if the heuristic h is su�cientlygood. This is crucial and in many cases makes lrta� applicable in problemswhere standard dynamic programming methods are not. Indeed, lrta� unlikestandard dynamic programming methods makes use of the initial state s0, anddoes not compute the optimal value function over all states but over a fractionof relevant states that include those appearing in the optimal trajectories froms0.3.4 Real Time Dynamic ProgrammingDynamic programming methods apply not only to deterministic problems butto probabilistic and non-deterministic problems as well. For mdps the �xedpoint equation characterizing the optimal value function V � becomesV �(s) = mina2A(s)[c(a; s) +Xs02S Pa(s0js)V �(s0)] (9)10



1. Evaluate each action a applicable in s as:Q(a; s) = c(a; s) +Xs02S Pa(s0js)V (s0)initializing V (s0) to h(s0) when s0 not in the table.2. Apply action a with minimum Q(a; s) value, breaking tiesrandomly3. Update V (s) to Q(a; s)4. Generate successor state s0 with probability Pa(s0js)5. Exit if s0 is a goal, else set s to s0 and go to 1Figure 5: Trial of rtdp algorithmProvided that the goal is reachable from every state with positive probability,this value function is well-de�ned and can be computed by performing updatesof the form (see [6])V (s) := mina2A(s)[c(a; s) +Xs02S Pa(s0js)V (s0)] (10)If the updates are performed over all states in parallel, the result is the familiarvalue iteration algorithm. On the other hand, if the updates are performed onthe states visited by a greedy search guided by the value function V , the result isthe probabilistic version of lrta�, called real time dynamic programming (rtdp)in [3]. The resulting algorithm is shown in Fig. 5. Note that due to the inclusionof probabilistic actions, the state s0 that follows a given action a in state s isgenerated with probability Pa(s0js).2rtdp is an `anytime' algorithm for solving mdps. At any one point, the hashtable and the heuristic function encode a value function V (s)3 that determinesa greedy policy. This greedy policy is given by the �rst two steps in Fig. 5. Forrtdp, the same lrta� properties apply; if the heuristic h is non-overestimatingand there is a path (with positive probability) from every state to the goal,rtdp will eventually �nd the goal in every trial, and after successive trials, itwill eventually deliver an optimal policy [3, 6]. Up to that point, the greedypolicy normally improves monotonically at a rate that has to do with the sizeof the state space and the quality of the heuristic.2If the algorithm is applied to a real or simulated system, the successor state s0 is notgenerated but is observed.3This value function is assumed equal to h(s) when there is no entry for s in the hashtable. 11



3.5 RTDP for POMDPsThe most common way to solve pomdps is by formulating them as completelyobservable mdps over belief states [57, 17], where belief states are probabilitydistributions over the real states s in S. Given that the current belief state is band action a is performed resulting in the observation o, the revised belief stateboa can be computed using the action and sensor models, and Bayes' rule as [17]:boa(s) = Pa(ojs)ba(s)=ba(o) provided ba(o) 6= 0 (11)where ba(s) and ba(o) refer to the probabilities that the next state is s and thenext observation is o. These probabilities are given byba(s) = Xs02S Pa(sjs0)b(s0) (12)ba(o) = Xs2S Pa(ojs)ba(s) (13)The transformation of a pomdp into a belief mdp maps the partially observ-able problem of going from an initial state to a goal state into the completelyobservable problem of going from one initial belief state to a �nal belief state.The Bellman equation for the resulting belief mdp isV �(b) = mina2A(b)[c(a; b) +Xo2O ba(o)V �(boa)] (14)where c(a; b) is the average cost of doing action a in bc(a; b) =Xs2S c(a; s)b(s) (15)and A(b) is the set of actions a that are applicable in the belief state b, de�nedas A(b) = fa 2 A j a 2 A(s) for all s such that b(s) > 0g (16)Computationally, the belief mdp is di�cult to solve optimally as the re-sulting state space, given the probability distributions over S, is in�nite andcontinuous (unlike the �nite-state mdps we have considered so far). The knownoptimal pomdp algorithms can thus solve very small problems only (e.g., see[17]). Non-optimal methods, on the other hand, scale up better and often pro-duce reasonable results for non-trivial problems [33, 31, 59, 11]. Here we presentan algorithm that is the adaptation of rtdp for solving belief mdps. We callsuch algorithm rtdp-bel and show it in Fig. 6.Details on rtdp-bel can be found in [11, 9, 10] where the algorithm is usedto solve a variety of problems: planning problems with sensing, robot navigationproblems, and problems of sorting and classi�cation.A key idea in rtdp-bel, as in general heuristic search algorithms, is the useof an heuristic function h(b) to guide the search in belief space, focusing the12



1. Evaluate each action a applicable in b asQ(a; b) = c(a; b) +Xo2O ba(o)V (boa)initializing V (boa) to h(boa) when boa not in table2. Apply action a that minimizes Q(a; b) breaking ties ran-domly3. Update V (b) to Q(a; b)4. Generate o with probability ba(o)5. Compute boa6. Exit if boa is a goal (belief) state, else set b to boa and go to 1Figure 6: rtdp-bel: rtdp algorithm for pomdpsupdates on the (belief) states that are most relevant. A common choice for h(b)is the heuristic hmdp de�ned in terms of the optimal cost function V �mdp of theunderlying mdp hmdp(b) def= Xs2S V �mdp(s) b(s) (17)This heuristic presumes that the problem becomes fully observable after per-forming the next action. While this assumption is false, the resulting heuristicis non-overestimating and in certain problems can be quite informative.When sensing is noisy, the belief space needs to be discretized. The dis-cretization converts the continuous and in�nite belief space into a discrete and�nite grid of beliefs [43, 33]. While traditional methods were restricted to coarsegrids which often produce poor approximations, algorithms like rtdp-bel candeal with �ner grids due to their ability to focus the updates on the relevantparts of the grid. See [11] for details.3.6 RTDP for Non-Deterministic Control ProblemsThe rtdp algorithm for mdps and pomdps can easily be extended to non-deterministic mdps and pomdps where transition probabilities are replaced bynon-deterministic transition functions and expected costs are replaced by worstcase costs (Sect. 2.4 and [34, 38]). For non-deterministic fully observable prob-lems, i.e., non-deterministic mdps, the Bellman equation becomes:V �(s) = mina2A(s)[c(a; s) + maxs02F (a;s)V �(s0)] (18)where F (a; s) is the non-deterministic function mapping action and states intosets of states. 13



For non-deterministic partially observable problems, i.e., non-deterministicpomdps, the Bellman equation becomesV �(b) = mina2A(b)[c(a; b) + maxo2O V �(boa)] (19)where the belief states b and boa are now sets of states, and boa is the set of statesba resulting from doing action a in b �ltered with the observation o:ba = fs0 2 S j s0 2 F (a; s) for s 2 bg (20)boa = fs0 2 ba j o 2 O(a; s0)g (21)Here O(a; s) stands for the non-deterministic sensor model which takes the placeof the probabilistic sensor model Pa(ojs). For each action a and state s, O(a; s)stands for the observations that are possible in state s after having done actiona. Using the updates corresponding to the above Bellman equations, the rtdpand rtdp-bel algorithms can be used for solving non-deterministic control prob-lems with full or partial observability.4 LanguageDeterministic control problems,mdps, and pomdps, as well as their non-deterministiccounterparts, are useful models for making explicit the mathematical structureof a wide class of planning problems. Often, however, they are are not good lan-guages for describing them. This is due the number and size of the relations andparameters involved. In AI, it has been common to describe planning problemscompactly in terms of modular and high-level languages such as Strips [25]. Inrecent years similar languages have been de�ned for describing probabilistic ac-tions [41, 22] and general pomdps [9]. We'll illustrate the latter with a problemof planning with incomplete information from [42].4.1 ExampleThe problem involves an agent that has a large supply of eggs and whose goalis to get three good eggs and no bad ones into one of two bowls. The eggs canbe either good or bad, and at any time the agent can �nd out whether a bowlcontains a bad egg by inspecting the bowl. In [9] this problem is encoded byexpressions such as the ones in Figs. 7 and 8, which are compiled into a pomdpand solved by the rtdp-bel algorithm.The language illustrated in Figs. 7 and 8 extends Strips in several ways:states are not associated with sets of atoms but with assignments to arbitrary
uents; probabilities, costs and primitive operations like `+' are included, anda special predicate obs is used to indicate observability. The 
uents in thisproblem are the number of good and bad eggs in each bowl (ngood, nbad), andthe boolean variables holding? and good? that represent whether the agent is14



Domain: BOWL : small; largeTypes: ngood(BOWL), nbad(BOWL) : Intholding, good? : BoolInit: ngood(small) = 0, nbad(small) = 0ngood(large) = 0, nbad(large) = 0Goal: ngood(large) = 3, nbad(large) = 0Figure 7: Representation of Omelette Problem (part 1)holding an egg and whether such an egg is good or bad. The 
uent holding isalways observable, but the value of the expression nbad(bowl) > 0 is observableafter doing the action inspect(bowl) only. The formal syntax and semantics ofthe language, can be found in [9]. We provide the main ideas below.4.2 Language and StatesThe language is a typed logical language that involves a number of constant,function, and predicate symbols from which atoms, terms, and formulas arede�ned in the standard way. For example, (ngood(bowl)+ nbad(bowl)) < 4 is aformula expressing that the total number of eggs in bowl is less than 4.Given a language with the relevant type and domain declarations, the statesare the logical interpretations over such language. That is, a state s assigns adenotation xs to any symbol x from which the denotation of all terms, atoms,and formulas is obtained following the standard composition rules. Symbolslike `<', 4, and others, have a denotation that is �xed and is independent of thestate. States thus have to assign a denotation to 
uent symbols only; symbolslike ngood, nbad, etc. Type and domain declarations for these symbols de�netheir possible set of denotations (values) and all together implicitly de�ne thestate space. Then action preconditions de�ne the set A(s) of actions applicablein each state s (the actions whose preconditions have a true denotation in s)and action e�ects de�ne the state transition function or transition probabilities.Assuming that the cost of all actions is 1, such a language can be used tode�ne state models and mdps in a compact way. For describing pomdps, it'snecessary to describe also what is observable. That's the role of the specialexpressions like obs(nbad(bowl) > 0) in Fig. 8. An action a that makes theexpression obs(x) true for a term or formula x produces observations o : (x = v)for each possible denotation v of x with probabilities ba(o) that depend on thebelief state b where the action a was done (see Equation 11).The language also provides facilities for expressing deterministic or proba-bilistic rami�cation rules. While action rules express the value of a variable interms of the value of variables at the previous time, rami�cation rules expressthe value of a variable as a function of the value of variables at the same timepoint. Rami�cation rules are useful in a number of circumstances. For example,it's possible to express that a sensing action reports the true value of a boolean15



Action: grab-egg()Precond: :holdingE�ects: holding := truegood? := (true 0:5 ; false 0:5)Action: break-egg(bowl : BOWL)Precond: holding ^ (ngood(bowl) + nbad(bowl)) < 4E�ects: holding := falsegood? ! ngood(bowl) := ngood(bowl) + 1:good? ! nbad(bowl) := nbad(bowl) + 1Action: pour(b1 : BOWL; b2 : BOWL)Precond: (b1 6= b2) ^ :holdingngood(b1)+ nbad(b1) + ngood(b2) + nbad(b2) < 4E�ects: ngood(b1) := 0 , nbad(b1) := 0ngood(b2) := ngood(b2) + ngood(b1)nbad(b2) := nbad(b2) + nbad(b1)Action: clean(bowl:BOWL)Precond: :holdingE�ects: ngood(bowl) := 0 , nbad(bowl) := 0Action: inspect(bowl : BOWL)E�ect: obs(nbad(bowl) > 0)Action: all (all actions)E�ect: obs(holding)Figure 8: Representation of Omelette Problem (part 2)variable x with 0:9 probability by making the sensor report the true value of adummy variable y that with 0:9 probability has the same value as x. This is ageneral way for encoding arbitrary sensor models in the language.4.3 Language and ModelsThe logical representation language plays two roles in this setting. One is asa convenient front-end for describing state models, mdps, and pomdps. Thisis essential in complex domains where providing the state space and the actionand sensor models explicitly is often infeasible. However, there is a second rolefor representation languages that is not as widely recognized. It's a way formaking explicit the structure of the problem and the relations among the vari-ables of interest so that they can be exploited computationally. For example,[13] describes an lrta� planner that, given the Strips encoding of a problem,automatically extracts an heuristic function h and uses such function to guidethe search. The same idea is used in the HSP planner entered into the AIPS98Planning Contest [12]. In neither case, this would have been possible if the Stripsdescription of the actions had been replaced by an equivalent state-transition16



function. High-level descriptions of planning problems are not thus just a mod-eling convenience; they can be very useful computationally. A similar pointhas been made about the use of factored models (like Bayesian Networks) forrepresenting decision-theoretic planning problems [14, 15].5 ResultsWe have developed a computational tool that accepts high-level description ofplanning problems with various types of actions dynamics and feedback, andcomputes the resulting controllers. The controllers are obtained by solving thecorresponding mathematical model with a suitable version of the rtdp algo-rithm and a heuristic function extracted from the description of the problem.We have modeled and solved a number of problems with this tool: problemsof classical planning, problems of planning with sensing, robot navigation prob-lems, and sorting and classi�cation problems. Many of these results are reportedin [13, 9, 11, 10]. Some of these results are summarized below.5.1 Classical PlanningTables 9 and 10 show results from [13] comparing rtdp with two recent planners,graphplan [8] and satplan [36].4 The heuristic used is crucial to the perfor-mance of rtdp in this setting. The heuristic is extracted automatically fromthe Strips representation of the planning problems. The heuristic is very infor-mative but is not admissible. For this reason the algorithm does not improvemuch after successive trials, and hence only a single rtdp trial is considered.As it can be seen from the tables, rtdp reaches the goal very fast with timesthat are competitive with graphplan and satplan(Fig. 9). On the otherhand, the length of plans is sometimes far from optimal (Fig. 10). One wayto decrease this length is to run the algorithm several times keeping only thebest run. Other methods considered in [13] are the addition of `noise' in theselection of actions and increased lookahead. More recent work along the lineof the rtdp planner can be found in [12].5.2 Planning with Incomplete Information5.2.1 AssemblyWe consider now a problem from [24] which deals with a robot that has todecide whether to dispatch or reject pieces that come on an assembly line. Thepieces are supposed to be dispatched or rejected according to whether they arebelieved to be 
awed or not. Dispatched pieces have to be painted �rst. Therobot cannot observe directly whether a piece is 
awed or not, but can sense4The algorithm in [13] is referred to as asp for Action Selection for Planning, and ispresented as a variation of Korf's lrta� [39] which is the deterministic version of rtdp. Theresults for rtdp presented here are slightly di�erent from those in [13] which involve somelookahead before moves. 17



Problem graphplan satplan rtdprocket ext.a 268 0.17 1.3logistics.a 5,942 22 7logistics.b 2,538 6 612 blocks 1,119 18 115 blocks | 524 519 blocks | 4,220 19Figure 9: Time performance in seconds for rtdp in comparison with graph-plan and satplan from [13]Problem graphplan satplan rtdprocket ext.a 34 34 35/28logistics.a 54 54 64/57logistics.b 47 47 58/4812 blocks 9 9 16/1215 blocks | 14 24/1919 blocks | 18 32/25Figure 10: Quality performance. Average and minimal plan lengths over 25runs from [13]with a probability of error p whether the piece is blemished. The robot alsoknows that a 
awed piece will appear as blemished as long as it's not painted,and once painted, the piece will appear as not blemished.This problem can be expressed compactly in the language described above,resulting in a small pomdp with 16 states and 4 actions (paint, dispatch, reject,and inspect). The performance of the controller obtained by the rtdp-belalgorithm is shown in Fig. 11, where the vertical axis displays the average costto the goal over 10 simulations as a function of the number of trials. Thedi�erent curves correspond to di�erent values of the parameter p that measuresthe accuracy of the sensor. The more noisy the sensor, the longer it takesrtdp-bel to converge, and the more costly the resulting policy. This is becausewith more noise it is necessary to sense more times the piece before making theaccept/reject decision. Sensor readings are assumed independent of each other,but a di�erent assumption could be accommodated as well (using a di�erentaction description). The average time to complete 50 trials is in the order of 0:5seconds.5.2.2 Information GatheringThis is a navigation problem over the grid showed in Fig. 12 suggested bySebastian Thrun. An agent starts in position 6 in the grid and has to reach agoal that is at position 0 or 4. The position that is not the goal is a high penalty18
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Figure 11: Assembly problem: performance of controllers derived by rtdp.Curve shows average cost to goal as a function of the accuracy of the sensor andthe number of trialsstate. At position 9 there is a sensor that reports the true position of the goalwith probability p. When p = 1, the optimal solution is to go to position 9,`read' the sensor once, and head up for the goal. We call this the `referencepolicy' for the problem. Its performance for the case in which p = 1 is shownby the the 
at curve in Fig. 13. The other curves show the performance ofthe controllers derived by rtdp-bel for di�erent values of p. When p < 1, theagent has to stay longer in 9 accumulating information from the sensor, thusthe expected cost of the optimal policy in that case is higher.The problem is encoded in the language described above and is compiledinto a pomdp that contains 20 states and 4 actions.Figure 13 shows the performance of the resulting rtdp-bel controllers as afunction of the number of trials and the level of noise in the sensor. The averagecosts were obtained by running 10 controllers in 100 simulations every 5 trials.The average time to compute 60 trials is in the order of 1 second for the di�erentvalues of p.5.2.3 Omelette ProblemFigures 14 displays the performance of the controller derived for the OmeletteProblem discussed above. The resulting pomdp involves 356 states, 11 actions,and 6 observations. The curve that is 
at shows the average number of actions tosolve the problem for the `reference' policy in which an egg is grabbed and brokenit into one of the two bowls, and after inspecting the bowl, it's either passed tothe other bowl or discarded, until three eggs have been passed. The other curveshows the performance of the greedy controller resulting from rtdp-bel as afunction of the number of trials. 19
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Figure 13: Information Gathering problem: performance of controllers derivedby rtdp-bel as a function of the number of trials and accuracy of the sensorThe convergence takes more than 1000 trials as the algorithm has to `learn'the value of the action `inspect', which as all information-gathering actions,appears useless to the hmdp heuristic. The time for 2000 trials is in the order of192 seconds on an UltraSparc running at 143Mhz.5.3 Sorting ProblemsThe last test domain we discuss is the problem of sorting a vector of n numbersin increasing order. This problem, and the related problem of inferring deci-sion trees from data, are formulated as pomdps and solved by the rtdp-belalgorithm in [10].In sorting, there are two types of actions: `physical' actions such as swap(i; j)that exchange the elements in positions i and j, and `information gathering'20
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Figure 14: Comparison of rtdp-bel policy vs. handcrafted policiy for theOmelette Problemactions such as cmp(i; j) that test whether the element in position i is smallerthan the element in position j. The problem is a convenient benchmark foralgorithms that perform planning with sensing as it is non-trivial and thereare a number of well known sorting algorithms for assessing the quality of thesolutions.In the pomdp formulation, the state s is taken to be a vector of size n withs[i] = j meaning that the i-th element of the input vector is the j-th smallestelement. We assume that all elements in the input vector are di�erent, and asa result, there is a single goal state sG for which sG[i] = i. The problem isto devise a policy of swaps and compares that takes an arbitrary and unknowninput state s0 into the goal state sG. The number of states in the problem isn!. The initial belief state b0 is uniform over all such states, and the goal beliefstate bF is such that b(sG) = 1.The rest of the formulation is straightforward. Fig. 15 from [10] shows theperformance of the rtdp-bel algorithm for the sorting problem with n = 5.This means a pomdp with 5! = 120 states, 20 actions, and 40 observations.The �gure shows the average number of swaps and comparisons in the policiescomputed by rtdp-bel with di�erent heuristics, and compares them with theresults obtained with Quicksort (top 
at curve). In all cases, and in particularfor the non-informative heuristic h = 0, rtdp-bel produces better policies thanQuicksort after a su�ciently large number of trials (3000) that take in the orderof 45 seconds. On the other hand, the policies computed by rtdp-bel are �xedfor n = 5 and do not scale up for large values of n. Indeed, for n = 10 suitableheuristics and belief representations are needed (see [10]). Even then, scalingfor larger values of n remains hard as the branching factor of the problem growswith n. In any case, if optimal policies could be derived for values of n as low21
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Figure 15: Performance of rtdp-bel controller for Sorting problem with n = 5using various heuristics. Top 
at curve is for Quicksort. From [10]as 13 some of the open conjectures in lower-bound theory could be settled (see[37]).6 DiscussionWe have presented a uni�ed approach for modeling and solving planning prob-lems that is based on state models that handle various types of dynamics (deter-ministic, non-deterministic, and probabilistic) and sensor feedback (null, partial,and complete). The approach combines logical representations languages for de-scribing actions, sensors, and goals, mathematical models of sequential decisionsfor making precise the various planning tasks and their solutions, and heuris-tic search algorithms in the form of real-time dynamic programming proceduresfor computing those solutions. The approach is supported by a computationaltool that accepts high-level descriptions of actions, sensors and goals and com-putes the resulting controllers. We have also presented results over a numberof domains that illustrate the scope of the approach and the capabilities of thetool.The planning approach described is a natural integration of a number of ideasfrom AI and Dynamic Programming: State models, mdps, and pomdps, [4, 57,17], rtdp algorithms [39, 3], and action representation languages [29, 52, 54].At the same time, it's related to a number of decision-theoretic approaches toplanning such as [41, 24, 14], while being distinct in the use of a more expressivelogical language for describing actions and sensors, and the use of the rtdpalgorithm for solving a variety of decision models.The challenge remains to scale up these methods to larger problems. As forany heuristic search algorithm, four key factors have a strong in
uence on theperformance of the rtdp algorithm: 22



1. the node generation rate2. the quality of the heuristic function3. the use of memory4. the exploitation of symmetriesThe node generation rate is particularly critical in pomdps where going fromone state b to the next ba has complexity jSj2, where jSj is the size of the statespace. For this, specialized representations can help. For example, in [10] beliefstates are represented as graphs and the mapping from b to ba takes roughlyconstant time. Similarly, in non-deterministic domains, OBDDs (ordered binarydecision diagrams) have been used quite successfully for reducing both time andspace [18, 30].For keeping time and memory requirements under control, the use of goodheuristics is critical. The domain-independent heuristic in [13] for Strips plan-ning is quite informative but is not admissible. On the other hand, the heuristichmdp for pomdps derived from the underlying mdps is admissible but is notsu�ciently informative. In both cases, it's likely that better general heuristicsare to be found.Finally, the exploitation of symmetries is a familiar theme in heuristic search(e.g., [40]) but not so much in planning (although see [26]). Yet symmetriesabound, and if not detected, they can make the state spaces blow. Indeed,while the presence of more resources should make planning problems simpler(e.g., more trucks in the `logistics' domains), for most planners, they make itmore complex. Many times these symmetries can be exploited at modeling time(e.g., by representing resources by numbers and not by individual names), yetother times they have to be detected at run time. For example, in the 12-coinproblem [49], where a heavier or lighter coin is to be identi�ed from a set of12-coins using a two-pan scale, initially all coins are symmetrical, yet they arenot symmetrical after the �rst weighting. This is a typical problem of planningwith sensing, yet without recognizing these changing symmetries it's unlikely tosolved with domain-independent planning tools.The techniques discussed for making rtdp algorithms scale to larger prob-lems arise form viewing rtdp as a heuristic search algorithm. rtdp, however,can also be viewed as a dynamic programming algorithm. From that perspec-tive, it makes sense to focus on the value function and ways for making the rtdpupdates more e�ective. One way to do this is by collapsing states that havesimilar costs. This is a form of ideal state aggregation in which the dimension-ality of the problem is reduced, gaining both in time and space. Since normallythe cluster of states with similar costs is not known a priori, an alternative thatis often used in Reinforcement Learning [58, 6] is to represent the value functionin parametric form with a number of parameters that is smaller than the num-ber of states (e.g., linear functions, neural networks, etc). The value functionis then updated by adjusting those parameters. Under suitable conditions, ifthe parametric form is adequate, compact representations can approximate the23
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