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Abstract

The problem of selecting actions in environments that are dynamic and
not completely predictable or observable is a central problem in intelligent
behavior. In AI, this translates into the problem of designing controllers
that can map sequences of observations into actions so that certain goals
are achieved. Three main approaches have been used in Al for designing
such controllers: the programming approach, where the controller is pro-
grammed by hand in a suitable high-level procedural langnage, the plan-
ning approach, where the control is automatically derived from a suitable
description of actions and goals, and the learning approach, where the
control is derived from a collection of experiences. The three approaches
can exhibit successes and limitations. The focus of this paper is on the
planning approach. More specifically, we present an approach to plan-
ning based on various state models that can handle various types of ac-
tion dynamics (deterministic and probabilistic) and sensor feedback (null,
partial, and complete). The approach combines high-level representations
languages for describing actions, sensors, and goals, mathematical mod-
els of sequential decisions for making precise the various planning tasks
and their solutions, and heuristic search algorithms for computing those
solutions. The approach is supported by a computational tool we have de-
veloped that accepts high-level descriptions of actions, sensors, and goals
and produces suitable controllers. We also present empirical results and
discuss open challenges.

1 Introduction

The problem of selecting actions in environments that are dynamic and not
completely predictable or observable is a central problem in intelligent behav-
ior. In Al this translates into the problem of designing controllers that can
map sequences of observations into actions so that certain goals can be achieved
(Fig. 1). Three main approaches have been used in Al for designing such con-
trollers:
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Figure 1: The control problem: designing controllers that can map sequences of
observations into actions for achieving certain goals

e the programming approach, where the controller is programmed by hand
in a suitable high-level procedural language,

e the planning approach, where the controller is derived automatically from
a suitable description of the actions, sensors, and goals, and

e the learning approach, where the controller is derived from experiences.

The work of R. Brooks and others in mobile robotics is an example of the first
approach [16, 1], Control Theory and Al planning are examples of the second
approach [48, 25], and systems that learn by trial and error or generalization
are instances of the third approach [58. 7].

The three approaches exhibit both strengths and limitations. In this paper
we focus on the planning approach. More specifically, we present a general and
operational approach to planning that combines elements from Al planning,
dynamic programming, and logic, and is able to deal with systems that exhibit
different types of dynamics (deterministic or probabilistic) and different types
of feedback (null, partial, or complete). Plans are thus open-loop or closed-loop
according to the type of sensors available (Fig. 2).

The main ingredients of the approach are the use of high representations
logical languages for describing actions, sensors, and goals, mathematical models
of sequential decisions for making precise the various planning tasks and their
solutions, and heuristic search algorithms for obtaining those solutions.

The use of high-level representation languages is common in Al Planning
[25, 50] and our approach draws insight from recent work on theories of action
[29, 54, 28]. Similarly, the use of mathematical models of sequential decisions
such as Markov Decision Processes (MDPs), and Partially Observable MDPs
(POMDPs) borrows from the work in Dynamic Programming [51, 6]. Finally,
the use heuristic search algorithms has long tradition in AI (e.g., [46]), even
though the use of such algorithms for solving Strips planning problems, MDPs,
and POMDPs is more recent [3, 13, 11, 32].

In this paper we provide a coherent integration of these various elements
and argue that the result provides a natural framework for modeling and solv-
ing planning problems under a variety of conditions, including deterministic
and probabilistic actions, and complete, partial or null sensing. We have actu-
ally developed a computational tool that supports this approach and given a
convenient description of actions, sensors, and goals, computes the correspond-
ing controllers. We report a number of experiments with this tool and discuss
current limitations and future challenges.
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Figure 2: Open and Closed-Loop Planning: in open-loop planning the plan is a
fixed sequence of actions; in closed-loop planning, the sequence depends on the
observations

The paper is written in a tutorial style requiring only a basic knowledge of
logic and probabilities. We have tried to keep the presentation coherent but
have made no attempt to provide a survey of the area. For more comprehensive
treatments on Planning and Control in Al, and Decision-Theoretic Planning,
see [23, 53, 14, 35].

The paper is organized as follows. First, we consider the models of sequen-
tial decisions that make explicit the mathematical structures underlying various
planning tasks (Models, Sect. 2). Second, we consider the class of search algo-
rithms for solving these models (Algorithms, Sect. 3). Third, we discuss the
use of a logical language for specifying such models in a convenient way (Rep-
resentation, Sect. 4). And finally, we report results on a variety of experiments
(Results, Sect. 5).

2 Models

We consider first the mathematical models that make various forms of planning
precise according to the type of action dynamics and sensor feedback. In each
case, the models determine what the planning task is and what is the form of
the solution.

2.1 State Models

Deterministic state models [45] are the most basic action models in AT and
consist of a finite set of states .S, a finite set of actions A, and a state transition
function f that describes how actions map one state into another. Deterministic
state models provide useful models for the dynamics of systems in which the
effects of actions are discrete and fully predictable.

A Deterministic Control Problem or DCP refers to the problem of finding
the actions that would drive a system described by a deterministic state model,



from a given initial state sq to a final set of goal states GG. More precisely, a
deterministic control problem is characterized by:

e a state space §

e an initial state sg € S

e actions A(s) C A applicable in each state s € S

e a transition function f(s,a) for s € S and a € A(s)
e action costs ¢(a,s) > 0

e a non empty set G C S of goal states

A solution of a deterministic control problem is a sequence of actions ay, a1, ...,
a, that generates a state trajectory so, s1 = f(s0)s .-+ Snt1 = f(s:,a:) such
that each action a; is applicable in s; and s,y; is a goal state, i.e., a; € A(s;)
and s,4+1 € G. The solution is optimal when the total cost 21":0 (s, a;) is
minimal.

Classical planning, i.e., open-loop planning with deterministic actions and
complete knowledge of the initial situation, is a deterministic control problem
where states are normally represented by sets of atoms, action costs are equal,
and the transition function f and the sets of executable actions A(s) are im-
plicitly defined in a high-level language such as Strips [25].

While solution methods in classical planning have traditionally been based
on divide-and-conquer ideas [46, 53], methods based on explicit state space
exploration and suitable domain-independent heuristic have recently been shown
to be effective [12].

2.2 MDPs

Markov Decision Processes (MDPs) [51, 5] differ from deterministic control prob-
lems in two ways: first, they accommodate probabilistic actions, second, they
assume that the effect of actions, while no longer predictable. is fully observable.
An MDP is thus given by:!

e a state space S

o actions A(s) C A applicable in each state s € S

e transition probabilities P,(s'|s) for s € S and a € A(s)

e action costs c¢(a,s) >0

e a non empty set G C .S of goal states
The states s;4+1 that result from an action a; are not predictable but are observ-
able, providing feedback for the selection of the next action a;y;. As a result, a

solution of an MDP is not an action sequence, but a function # mapping states
s into actions a € A(s). Such a function is called a policy. A policy 7 assigns

1We are considering a subclass of MDPs, the so-called stochastic shortest-path MDPs [5]. For

general treatments, see [5] and [51]. For uses of MDPs in Planning and Al see [58, 14, 3, 53].



a probability to every state trajectory sg, s1, s2,... starting in state so which is
given by the product of all transition probabilities P,,(s;+1|s;) with a; = 7(s;).
We assume that actions in goal states have no costs and produce no changes
(i.e., c(a,s) = 0 and Py(s|s) = 1if s € G). The expected cost associated with
a policy  starting in state s is the weighted average of the probability of such

trajectories times their cost Y .~ c(m(s;), ;). An optimal solution is a control
policy ©#* that has a minimum expected cost for all states s € S.

While Classical Planning can be formulated as a deterministic control prob-
lem, Closed-Loop Planning with Complete Information can be formulated as an
MDP [21, 3]. The desired closed-loop plans are the optimal policies 7*. In Al,
it is common to represent policies by lists of condition-action pairs or universal
plans [55, 47].

2.3 POMDPs

POMDPs generalize MDPs allowing the state to be partially observable [57, 17]. In-
formation about the state comes from observations o whose probabilities P,(o|s)
depend on the action a performed and the unobserved but true resulting state s.
In addition, a prior probability distribution over the states encodes a prior belief
about the initial state of the world which is no longer assumed to be observable
or known. A POMDP is thus characterized by the elements describing an MDP

e states s € S

e actions A(s) C A applicable in each state s

e transition probabilities P,(s'|s) for s € S and a € A(s)

e costs ¢(a, s) > 0 of performing action a in s

e a non-empty set G C .S of goal states

plus information about the initial state of uncertainty and the sensor model in
the form of

e an initial belief state by, and
e a set O of observations o with probabilities P,(0|s)

The probabilities P,(0|s) express the probability of getting the observation o in

state s after having done action a. These probabilities must be defined for each

state s and action a € A(s) and must add up to one, i.e. 37 ., Pu(ols) = 1.
Since feedback from the environment is only partial in POMDPs, the state of

the system is normally not known, and therefore, policies that map states into
actions are of no use. The solution of a POMDP takes the form of a function that
maps belief states into actions, where belief states are probability distributions
over the real states of the environment. The effect of actions on belief states
is completely predictable, and the belief state b, that results from performing
action a in belief state b can be obtained as

ba(s) = D Puls]s")b(s) (1)

s'eS

ot



In the absence of observations, a POMDP reduces to a deterministic control
problem in belief space where the task is to find a sequence of actions that maps
the initial belief state by into a final belief state bp with actions ¢ that map one
belief b into a successor belief b, as given in (1). We take the final belief states
to be the beliefs that make the goal certain, i.e., the bp’s for which bg(s) = 0 for
all s ¢ G, or more simply, bp(G) = 1. Different sets of final belief states could
also be used; e.g., the beliefs bp that make the goal very likely (bp(G) > 0.9),
and so on.

In the presence of observations, an action a can map a belief state b into sev-
eral belief states b7 according to the observation o that obtains. The probability
be(0) of observing o is given by

by(0) = ZPa(o\s)ba(s) (2)

s€S

Similarly, the probability b9(s) that the state is s after doing action a in b and
observing o is

bo(s) = Pu(0]s)ba(s)/ba(0) (3)
These expressions follow from the action and sensor models, and Bayes rule.

In the presence of observations thus actions have a probabilistic effects on
belief states, and hence a POMDP with sensing is no longer a deterministic control
problem in belief space, but an MDP over belief space [2, 57, 17]. The solution
of the POMDP, is given by the solution of such belief MDP; namely, a policy
mapping belief states into actions such that the expected cost for going from
the initial state bg to a final belief state by is minimized.

The problem of planning with sensing [42] can be formulated as a POMDP
whose solutions are policies mapping belief states into actions. In the AT lit-
erature, such policies are often represented by contingent plans, i.e., sequential
plans extended with tests and branching [19, 42, 20)].

2.4 Non-deterministic Control Problems

In MDPs and POMDPs, non-determinist transitions are modeled as probabilistic
transitions. In certain contexts, however, we may want to describe the possible
effects of an action without specifying the corresponding probabilities. This
applies in particular to situations in which we are interested in minimizing the
worst possible cost of a policy rather than its expected cost [34, 38]. Such se-
quential decision problems can be expressed with a dynamic model made up
of a non-deterministic transition function F(a,s) mapping actions and states
into sets of states. Then, non-deterministic MDPs can be defined by simply re-
placing the transition probabilities with non-deterministic transition functions,
and expected costs with worst possible costs. For defining non-deterministic
POMDPs, we also need to replace the probabilistic sensor model Py(o|s) by a
non-deterministic sensor model made up of sets O(a, s) of possible observations
o that may arise in state s after having done action a. As we will see, the al-
gorithms for solving MDPs and POMDPs can easily be adapted for solving their
non-deterministic counterparts.




Non-deterministic planning problems with and without sensing have been
considered in the Al literature in [56, 20, 18] among other sources.

3 Algorithms

We have seen that planning problems can be formulated as either DCPs, MDPs,
or POMDPs, or as their non-deterministic counterparts, according to the type
of action dynamics and sensor feedback that is present. Techniques for solving
deterministic control problems are reviewed in details in most Al texts; e.g.,
[53], and include algorithms such as A* which rely on heuristic functions h(s)
that estimate the cost from states s to the goal. Here we focus first on Greedy
or Hill-Climbing Search, which is a simple search strategy that can be easily
extended to deal with all the models we have considered.

3.1 Greedy Search

Greedy search is one of the simplest search strategies. In a state s, the best
action according to some criterion is applied, and the same process is repeated
until the goal is reached. In deterministic control problems, it’s natural to
define the best action in terms of a measure Q(a, s) given by the sum of the cost
¢(a, s) of applying the action a in s, and the estimated cost of reaching the goal
from the resulting state as measured by an heuristic function h. This search
procedure, that we call GREEDY, is shown in Fig. 3.

GREEDY is a simple search procedure that uses constant memory but is
neither optimal nor complete. That is, GREEDY may return solutions with non-
minimal costs or may loop and return no solution at all. Nonetheless, GREEDY
can often be amended to become sufficiently practical. For a example, the
planner HSP [12] is based on a greedy search procedure guided by an heuristic
function h(-) that is extracted automatically from Strips representations. The
greedy search is extended with memory to avoid past states, a limited number
of plateu-moves (in which the heuristic h is not decremented), and multiple
restarts. HSP was entered into the AIPS98 Planning Contest where it solved
more problems than state-of-the-art Graphplan and SAT planners [44] .

In the main looop of GREEDY in Fig. 3, the state ¢’ resulting from the ap-
plication of action a in s (Step 3) is taken to be the state s, that is predicted
by the (deterministic) model of the system. With full observability, however,
GREEDY can be easily extended to handle ‘perturbations’ or behaviors not pre-
dicted by the model. Indeed, when the resulting state s’ is not the same as the
predicted state s, in Step 3, GREEDY continues the search from s’ as if nothing
had happened. This can occur for instance when a block A that was supposed
to be moved on top of block B unexpectedly falls on the table. In that case,
provided that the new state is observable and s’ is set to the resulting state,
GREEDY can recover. In such case, the greedy search behaves as a closed-loop
policy that we refer as the greedy policy.



1. Evaluate each action a applicable in current state s as
Q(a,s) =cla, s) + h(sq)

where s, is state predicted after doing a in s

2. Apply action a that minimizes Q(a, s), breaking ties ran-
domly

3. Exit if resulting state s’ is a goal state, else set s to s’ and
gotol

Figure 3: Greedy search

3.2 Learning Real-Time A*

Greedy search is simple and memory efficient but has two problems: it may
return non-optimal solutions, or it may loop and return no solution at all. In
[39], Korf proposed a simple change in GREEDY (that he calls real-time search)
that solves both of these problems. The idea is to adjust the heuristic function
h dynamically during the search. More precisely, Korf suggests to regard the
heuristic function h as providing the initial value of a function V that estimates
the optimal cost of reaching the goal from each state. Then every time an action
a is selected and applied in a state s, this cost function V is updated as

V(s):=c(a,s) + V(sq) (4)

where V(s,) is the value of the cost function for the predicted state s,. These
updates aim to enforce the relation that has to hold between the cost of s and
the cost of s, when a is indeed the optimal action in s. For example, if initially
V(s) = h(s) = 5, and action a with cost ¢(a, s) = 1 is applied in s leading to s,
with cost V(s,) = h(s,) = 3, the update changes V(s) from 5 to 4.

Korf shows that the result of these updates is twofold: first they guarantee
that the greedy search will not be trapped into a loop as long as there is a path
from every state to the goal; second, they guarantee that successive trials of
the algorithm, each trial beginning with the value function resulting from the
previous trial, eventually deliver an optimal path to the goal. This is provided
that the heuristic h used to initialize the value function V is admissible (non-
overestimating).

Korf refers to the greedy search procedure extended with these updates as
learning real-time A* or LRTA*. For the implementation of LRTA*, the estimates
V' (s) are stored in a hash table that initially contains the heuristic value of the
starting state only. Then, when the value V(s) of a state s that is not in the
table is needed, a new entry with V(s) set to h(s) is allocated (Step 1, Fig. 4).
These entries are updated following (4) when a move from s is performed. The
main loop of a single trial of the LRTA* algorithm is shown in Fig. 4.

As an illustration, if LRTA™ is given the non-informative but admissible
heuristic 1(s) = 0 in the 8-puzzle, the updates would guarantee that LRTA*



1. Evaluate each action a applicable in s as
Q(a,s) =c(a,s) + V(sq)

initializing V(s,,,) to h(s,) when s, is not in the table

2. Apply action a with minimum Q(a, s) value, breaking ties
randomly

3. Update V(s) to Q(a, s)

4. Exit: if resulting state s’ is goal, else set s to s’ and go to 1

Figure 4: Single trial of LRTA™

will find a solution to the goal in every trial. Moreover, after a sufficiently large
number of trials, LRTA™ will reach a point in which the updates no longer change
the value function. The solutions returned by LRTA™ from that point on, can be
shown to be optimal. The rate at which LRTA™ converges to the optimal solution
depends on the size of the state space and the quality of the heuristic function
h. A better heuristic yields a more focused search, a higher ratio of updates on
the relevant states, and faster convergence. However, if the state space is very
large and the heuristic is not good enough. the time and space requirements for
convergence may grow impractically large.

A common way to speed up LRTA™ is by cutting off trials that take too many
steps. This is normally done by selecting a cutoff value known to be above the
optimal number of steps. For the use of LRTA* in planning, see [13].

3.3 Dynamic Programming

Barto et al. in [3] provide an explanation of LRTA™ in terms of dynamic pro-
gramming. In dynamic programming [4, 51, 5], a deterministic control problem
is solved by finding the function V* that assigns to each state s the optimal cost
V*(s). This optimal value function satisfies the fixed point equation

V*(s) = Inin)[(:(a,, $)+V7(s4)] (5)

acA(s

also called the Bellman equation. Given V*(s), the optimal actions in s are the
ones that minimize the right-hand side of (5) [51, 6].

A common way for finding the function V* is by an iterative method known
as value iteration in which estimates V; are plugged into the right-hand side of
(5) so that an improved value function V4 is obtained on the left-hand side:

Vit1(s) := min [c(a,s) + Vi(sq)] (6)

a€A(s)

These updates are done in parallel for all states s € S. The new value function
Vit1 can be plugged again into the right-hand side of (5) to yield still better
estimates, until eventually the optimal value function is obtained. Namely,



under suitable conditions, parallel value iteration yields a sequence of value
functions Vg, V1, ..., such that lim; . V; = V* [6].

For the implementation of value iteration, two vectors V and V' of size |S]
are needed. One stores the current estimates; the other, the new estimates.
Actually, a way for reducing space and speeding up convergence is to use a
single vector V for storing current and new estimates. The updates then get
the simpler form

V(s):= min [¢(a,s)+ V(sa)] (7)
a€A(s)
The difference with parallel-value iteration is that once the value V'(s) of an state
s is updated according to (7), it immediately becomes available for computing
the new value V(s') of other states.

A second variation on parallel value iteration is to perform the updates of

the form (7) over subsets S’ of S or even over single states s in S:

Vi(s):= rr}i}l)[c(a, s) + V(s,)] for selected s € S (8)
acAls

The order in which these states s are selected for updates can be arbitrary, and
as long as all states are selected infinitely often, the function V converges to the
optimal value function [5, 6].

The relation between this form of asynchronous value iteration and Korf’s
LRTA* must be clear by now. As noticed in [3]. by combining a greedy search
with updates, LRTA* is performing a form of value iteration in which the states
selected for update are the ones visited during the search. The novelty in LRTA™
in comparison with other forms of value iteration, is that LRTA* does not require
to update all states infinitely often for delivering an optimal solution. Indeed,
provided that the heuristic used to initialize the cost function V is admissible
(non-overestimating), the updates can be restricted to the states visited during
the search; all other states can be safely ignored. This set of states can be
a small fraction of the total number of states if the heuristic h is sufficiently
good. This is crucial and in many cases makes LRTA™ applicable in problems
where standard dynamic programming methods are not. Indeed, LRTA™ unlike
standard dynamic programming methods makes use of the initial state s¢, and
does not compute the optimal value function over all states but over a fraction
of relevant states that include those appearing in the optimal trajectories from
S9.

3.4 Real Time Dynamic Programming

Dynamic programming methods apply not only to deterministic problems but
to probabilistic and non-deterministic problems as well. For MDPs the fixed
point equation characterizing the optimal value function V* becomes

V*(s) = min [e(a.s) + Zs Pa(s|5)V"(s")] (9)

10



1. Evaluate each action a applicable in s as:

Q(a,s) =c(a,s) + Z P,(s

s’'es

s)V(s)

initializing V(s') to h(s’) when s’ not in the table.

2. Apply action a with minimum Q(a, s) value, breaking ties
randomly

3. Update V(s) to @(a, s)

4. Generate successor state s’ with probability Pa(s'|s)

5. Exit if s is a goal, else set s to s and go to 1

Figure 5: Trial of RTDP algorithm

Provided that the goal is reachable from every state with positive probability,
this value function is well-defined and can be computed by performing updates
of the form (see [6])

V(s):= min [c(a,s)+ Z P (s'|s)V(s")] (10)

a€A(s) e

If the updates are performed over all states in parallel, the result is the familiar
value iteration algorithm. On the other hand, if the updates are performed on
the states visited by a greedy search guided by the value function V', the result is
the probabilistic version of LRTA*, called real time dynamic programming (RTDP)
in [3]. The resulting algorithm is shown in Fig. 5. Note that due to the inclusion
of probabilistic actions, the state s’ that follows a given action a in state s is
generated with probability Py(s'|s).?

RTDP is an ‘anytime’ algorithm for solving MDPs. At any one point, the hash
table and the heuristic function encode a value function V(s)* that determines
a greedy policy. This greedy policy is given by the first two steps in Fig. 5. For
RTDP, the same LRTA™ properties apply; if the heuristic h is non-overestimating
and there is a path (with positive probability) from every state to the goal,
RTDP will eventually find the goal in every trial, and after successive trials, it
will eventually deliver an optimal policy [3, 6]. Up to that point, the greedy
policy normally improves monotonically at a rate that has to do with the size
of the state space and the quality of the heuristic.

21f the algorithm is applied to a real or simulated system, the successor state s’ is not
generated but is observed.

3This value function is assumed equal to h(s) when there is no entry for s in the hash
table.

11



3.5 RTDP for POMDPs

The most common way to solve POMDPs is by formulating them as completely
observable MDPs over belief states [57, 17], where belief states are probability
distributions over the real states s in S. Given that the current belief state is b
and action a is performed resulting in the observation o, the revised belief state
b can be computed using the action and sensor models, and Bayes’ rule as [17]:

bo(s) = Py(0]s)ba(s)/ba(0)  provided b,(0) # 0 (11)

where bg(s) and bg(0) refer to the probabilities that the next state is s and the
next observation is 0. These probabilities are given by

ba(s) = Y Pals|s")b(s") (12)
s'es

ba(0) = Y Pu(0ls)ba(s) (13)
sES

The transformation of a POMDP into a belief MDP maps the partially observ-
able problem of going from an initial state to a goal state into the completely
observable problem of going from one initial belief state to a final belief state.
The Bellman equation for the resulting belief MDP is

V*(b) = min [c(a, b + Z bal( () by ] (14)

A(b)
ac ) 0cO

where c(a, b) is the average cost of doing action a in b

cla,b) = Zc(a,s)b(s) (15)

SES

and A(b) is the set of actions a that are applicable in the belief state b, defined
as
Ab)={a € A | a € A(s) for all s such that b(s) > 0} (16)

Computationally, the belief MDP is difficult to solve optimally as the re-
sulting state space, given the probability distributions over S, is infinite and
contimious (unlike the finite-state MDPs we have considered so far). The known
optimal POMDP algorithms can thus solve very small problems only (e.g., see
[17]). Non-optimal methods, on the other hand, scale up better and often pro-
duce reasonable results for non-trivial problems [33, 31, 59, 11]. Here we present
an algorithm that is the adaptation of RTDP for solving belief MDPs. We call
such algorithm RTDP-BEL and show it in Fig. 6.

Details on RTDP-BEL can be found in [11, 9. 10] where the algorithm is used
to solve a variety of problems: planning problems with sensing, robot navigation
problems, and problems of sorting and classification.

A key idea in RTDP-BEL, as in general heuristic search algorithms, is the use
of an heuristic function h(b) to guide the search in belief space, focusing the

12



1. Evaluate each action a applicable in b as

Q(a.b) = c(a.b) + Y ba(0)V (b7)

0€0

initializing V' (b2) to h(bS) when b2 not in table

[\]

Apply action a that minimizes Q(a,b) breaking ties ran-
domly

Update V(b) to Q(a.b)
Generate o with probability b, (o)

Compute 0

ISR

Exit if b9 is a goal (belief) state, else set b to b3 and go to 1

Figure 6: RTDP-BEL: RTDP algorithm for POMDPs

updates on the (belief) states that are most relevant. A common choice for h(b)
is the heuristic hy,qp defined in terms of the optimal cost function Vr:,dp of the
underlying MDP

honap(®) = Vg, (s) (s) (17)

s€S

This heuristic presumes that the problem becomes fully observable after per-
forming the next action. While this assumption is false, the resulting heuristic
is non-overestimating and in certain problems can be quite informative.

When sensing is noisy, the belief space needs to be discretized. The dis-
cretization converts the continuous and infinite belief space into a discrete and
finite grid of beliefs [43, 33]. While traditional methods were restricted to coarse
grids which often produce poor approximations, algorithms like RTDP-BEL can
deal with finer grids due to their ability to focus the updates on the relevant
parts of the grid. See [11] for details.

3.6 RTDP for Non-Deterministic Control Problems

The rTDP algorithm for MDPs and POMDPs can easily be extended to non-
deterministic MDPs and POMDPs where transition probabilities are replaced by
non-deterministic transition functions and expected costs are replaced by worst
case costs (Sect. 2.4 and [34, 38]). For non-deterministic fully observable prob-
lems, i.e., non-deterministic MDPs, the Bellman equation becomes:

V*(s)= min [c(a,s) + V(s 18
(s) aggg)[ﬂ(aﬂ) ,nax ()] (18)

where F'(a, s) is the non-deterministic function mapping action and states into
sets of states.
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For non-deterministic partially observable problems, i.e., non-deterministic
POMDPs, the Bellman equation becomes

V*(h) = min [c(a.! V= (be 19
()= iy e ) + oV 00)] )

where the belief states b and b are now sets of states, and b is the set of states
b, resulting from doing action @ in b filtered with the observation o:

b = {5 €8]+ €Fl(as)for s €h) (20)
b = {s'€by|o€O(as)} (21)

a

Here O(a, s) stands for the non-deterministic sensor model which takes the place
of the probabilistic sensor model P,(o|s). For each action a and state s, O(a, s)
stands for the observations that are possible in state s after having done action
a.

Using the updates corresponding to the above Bellman equations, the RTDP
and RTDP-BEL algorithms can be used for solving non-deterministic control prob-
lems with full or partial observability.

4 Language

Deterministic control problems, MDPs, and POMDPs, as well as their non-deterministic
counterparts, are useful models for making explicit the mathematical structure

of a wide class of planning problems. Often, however, they are are not good lan-
guages for describing them. This is due the number and size of the relations and
parameters involved. In Al it has been common to describe planning problems
compactly in terms of modular and high-level languages such as Strips [25]. In
recent years similar languages have been defined for describing probabilistic ac-
tions [41, 22] and general PoMDPs [9]. We'll illustrate the latter with a problem

of planning with incomplete information from [42].

4.1 Example

The problem involves an agent that has a large supply of eggs and whose goal
is to get three good eggs and no bad ones into one of two bowls. The eggs can
be either good or bad, and at any time the agent can find out whether a bowl
contains a bad egg by inspecting the bowl. In [9] this problem is encoded by
expressions such as the ones in Figs. 7 and 8, which are compiled into a POMDP
and solved by the RTDP-BEL algorithm.

The language illustrated in Figs. 7 and 8 extends Strips in several ways:
states are not associated with sets of atoms but with assignments to arbitrary
fluents; probabilities, costs and primitive operations like ‘4’ are included, and
a special predicate obs is used to indicate observability. The fluents in this
problem are the number of good and bad eggs in each bowl (ngood, nbad), and
the boolean variables holding? and good? that represent whether the agent is
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Domain: BOWL : small,large
Types: ngood(BOW L), nbad(BOWL) : Int
holding, good? : Bool

Init: ngood(small) = 0, nbad(small) = 0
ngood(large) = 0, nbad(large) = 0
Goal: ngood(large) = 3, nbad(large) = 0

Figure 7: Representation of Omelette Problem (part 1)

holding an egg and whether such an egg is good or bad. The fluent holding is
always observable, but the value of the expression nbad(bowl) > 0 is observable
after doing the action inspect(bowl) only. The formal syntax and semantics of
the language, can be found in [9]. We provide the main ideas below.

4.2 Language and States

The language is a typed logical language that involves a number of constant,
function, and predicate symbols from which atoms, terms, and formulas are
defined in the standard way. For example, (ngood(bowl) + nbad(bowl)) < 4 is a
formula expressing that the total number of eggs in bowl is less than 4.

Given a language with the relevant type and domain declarations, the states
are the logical interpretations over such language. That is, a state s assigns a
denotation z® to any symbol z from which the denotation of all terms, atoms,
and formulas is obtained following the standard composition rules. Symbols
like *<’, 4, and others, have a denotation that is fixed and is independent of the
state. States thus have to assign a denotation to fluent symbols only; symbols
like ngood, nbad, etc. Type and domain declarations for these symbols define
their possible set of denotations (values) and all together implicitly define the
state space. Then action preconditions define the set A(s) of actions applicable
in each state s (the actions whose preconditions have a true denotation in s)
and action effects define the state transition function or transition probabilities.

Assuming that the cost of all actions is 1, such a language can be used to
define state models and MDPs in a compact way. For describing POMDPs, it’s
necessary to describe also what is observable. That’s the role of the special
expressions like obs(nbad(bowl) > 0) in Fig. 8. An action a that makes the
expression obs(z) true for a term or formula z produces observations o : (z = v)
for each possible denotation v of # with probabilities b,(0) that depend on the
belief state b where the action o was done (see Equation 11).

The language also provides facilities for expressing deterministic or proba-
bilistic ramification rules. While action rules express the value of a variable in
terms of the value of variables at the previous time, ramification rules express
the value of a variable as a function of the value of variables at the same time
point. Ramification rules are useful in a number of circumstances. For example,
it’s possible to express that a sensing action reports the true value of a boolean



Action: grab-egg()
Precond: —holding
Effects: holding := true
good? := (true 0.5 ; false 0.5)
Action: break-egg(bowl : BOW L)
Precond: holding A (ngood(bowl) + nbad(bowl)) < 4
Effects: holding := false
good? — ngood(bowl) := ngood(bowl) + 1
agood? — nbad(bowl) := nbad(bowl) + 1

Action: pour(bl: BOWL,b2: BOWL)
Precond: (bl # b2) A —holding
’n.g{)ud(bl) + nbad(bl) + 'n,g()()d(bQ) + nbad(bZ) < 4
Effects: ngood(bl):=0 , nbad(bl):=0
ngood(b2) := ngood(b2) 4+ ngood(b1)
nbad(b2) := nbad(b2) + nbad(bl)
Action: clean(bowl:BOWL)
Precond: —holding
Effects: ngood(bowl) := 0 , nbad(bowl) :=0
Action: inspect(bow! : BOWL)
Effect: obs(nbad(bowl) > 0)

Action: all (all actions)

Effect: obs(holding)
Figure 8: Representation of Omelette Problem (part 2)

variable x with 0.9 probability by making the sensor report the true value of a
dummy variable y that with 0.9 probability has the same value as x. This is a
general way for encoding arbitrary sensor models in the language.

4.3 Language and Models

The logical representation language plays two roles in this setting. One is as
a convenient front-end for describing state models, MDPs, and POMDPs. This
is essential in complex domains where providing the state space and the action
and sensor models explicitly is often infeasible. However, there is a second role
for representation languages that is not as widely recognized. It’s a way for
making explicit the structure of the problem and the relations among the vari-
ables of interest so that they can be exploited computationally. For example,
[13] describes an LRTA* planner that, given the Strips encoding of a problem,
automatically extracts an heuristic function A and uses such function to guide
the search. The same idea is used in the HSP planner entered into the ATPS98
Planning Contest [12]. In neither case, this would have been possible if the Strips
description of the actions had been replaced by an equivalent state-transition
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function. High-level descriptions of planning problems are not thus just a mod-
eling convenience; they can be very useful computationally. A similar point
has been made about the use of factored models (like Bayesian Networks) for
representing decision-theoretic planning problems [14, 15].

5 Results

We have developed a computational tool that accepts high-level description of
planning problems with various types of actions dynamics and feedback, and
computes the resulting controllers. The controllers are obtained by solving the
corresponding mathematical model with a suitable version of the RTDP algo-
rithm and a heuristic function extracted from the description of the problem.
We have modeled and solved a number of problems with this tool: problems
of classical planning, problems of planning with sensing, robot navigation prob-
lems, and sorting and classification problems. Many of these results are reported
in [13, 9, 11, 10]. Some of these results are summarized below.

5.1 Classical Planning

Tables 9 and 10 show results from [13] comparing RTDP with two recent planners,
GRAPHPLAN [8] and SATPLAN [36].* The heuristic used is crucial to the perfor-
mance of RTDP in this setting. The heuristic is extracted automatically from
the Strips representation of the planning problems. The heuristic is very infor-
mative but is not admissible. For this reason the algorithm does not improve
much after successive trials, and hence only a single RTDP trial is considered.

As it can be seen from the tables, RTDP reaches the goal very fast with times
that are competitive with GRAPHPLAN and saTpPLAN(Fig. 9). On the other
hand, the length of plans is sometimes far from optimal (Fig. 10). One way
to decrease this length is to run the algorithm several times keeping only the
best run. Other methods considered in [13] are the addition of ‘noise’ in the
selection of actions and increased lookahead. More recent work along the line
of the RTDP planner can be found in [12].

5.2 Planning with Incomplete Information
5.2.1 Assembly

We consider now a problem from [24] which deals with a robot that has to
decide whether to dispatch or reject pieces that come on an assembly line. The
pleces are supposed to be dispatched or rejected according to whether they are
believed to be flawed or not. Dispatched pieces have to be painted first. The
robot, cannot observe directly whether a piece is flawed or not, but can sense

4The algorithm in [13] is referred to as asp for Action Selection for Planning, and is
presented as a variation of Kort’s LrR1A* [39] which is the deterministic version of Rrnp. The
results for RIDP presented here are slightly different from those in [13] which involve some
lookahead before moves.
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Problem GRAPHPLAN | SATPLAN | RTDP
rocket_ext.a, 268 0.17 1.3
logistics.a 5,942 22 7
logistics.b 2,538 6 6
12 blocks 1,119 18 1
15 blocks 524 5
19 blocks 4,220 19

Figure 9: Time performance in seconds for RTDP in comparison with GRAPH-
PLAN and SATPLAN from [13]

Problem GRAPHPLAN | SATPLAN | RTDP
rocket_ext.a 34 34| 35/28
logistics.a 54 54 | 64/57
logistics.b 47 47 | 58/48
12 blocks 9 9| 16/12
15 blocks 14 | 24/19
19 blocks 18 | 32/25

Figure 10: Quality performance. Average and minimal plan lengths over 25
runs from [13]

with a probability of error p whether the piece is blemished. The robot also
knows that a flawed piece will appear as blemished as long as it’s not painted,
and once painted, the piece will appear as not blemished.

This problem can be expressed compactly in the language described above,
resulting in a small POMDP with 16 states and 4 actions (paint, dispatch, reject,
and inspect). The performance of the controller obtained by the RTDP-BEL
algorithm is shown in Fig. 11, where the vertical axis displays the average cost
to the goal over 10 simulations as a function of the number of trials. The
different curves correspond to different values of the parameter p that measures
the accuracy of the sensor. The more noisy the sensor, the longer it takes
RTDP-BEL to converge, and the more costly the resulting policy. This is because
with more noise it is necessary to sense more times the piece before making the
accept/reject decision. Sensor readings are assumed independent of each other,
but a different assumption could be accommodated as well (using a different
action description). The average time to complete 50 trials is in the order of 0.5
seconds.

5.2.2 Information Gathering

This is a navigation problem over the grid showed in Fig. 12 suggested by
Sebastian Thrun. An agent starts in position 6 in the grid and has to reach a
goal that is at position 0 or 4. The position that is not the goal is a high penalty
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Assembly Line Problem
100 T ‘

Learning Trials

Figure 11: Assembly problem: performance of controllers derived by RTDP.
Curve shows average cost to goal as a function of the accuracy of the sensor and
the number of trials

state. At position 9 there is a sensor that reports the true position of the goal
with probability p. When p = 1, the optimal solution is to go to position 9,
‘read’ the sensor once, and head up for the goal. We call this the ‘reference
policy’ for the problem. Its performance for the case in which p = 1 is shown
by the the flat curve in Fig. 13. The other curves show the performance of
the controllers derived by RTDP-BEL for different values of p. When p < 1, the
agent has to stay longer in 9 accumulating information from the sensor, thus
the expected cost of the optimal policy in that case is higher.

The problem is encoded in the language described above and is compiled
into a POMDP that contains 20 states and 4 actions.

Figure 13 shows the performance of the resulting RTDP-BEL controllers as a
function of the number of trials and the level of noise in the sensor. The average
costs were obtained by running 10 controllers in 100 simulations every 5 trials.
The average time to compute 60 trials is in the order of 1 second for the different
values of p.

5.2.3 Omelette Problem

Figures 14 displays the performance of the controller derived for the Omelette
Problem discussed above. The resulting POMDP involves 356 states, 11 actions,
and 6 observations. The curve that is flat shows the average number of actions to
solve the problem for the ‘reference’ policy in which an egg is grabbed and broken
it into one of the two bowls, and after inspecting the bowl, it’s either passed to
the other bowl or discarded, until three eggs have been passed. The other curve
shows the performance of the greedy controller resulting from RTDP-BEL as a
function of the number of trials.
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Figure 12: Information Gathering problem: agent is originally at position 6.
The goal is either at position 0 or 4, and the other state carries a high-penalty.
A sensor at position 9 provides information about the position of the goal.
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Figure 13: Information Gathering problem: performance of controllers derived
by RTDP-BEL as a function of the number of trials and accuracy of the sensor

The convergence takes more than 1000 trials as the algorithm has to ‘learn’
the value of the action ‘inspect’, which as all information-gathering actions,
appears useless to the hy,qp heuristic. The time for 2000 trials is in the order of
192 seconds on an UltraSparc running at 143Mhz.

5.3 Sorting Problems

The last test domain we discuss is the problem of sorting a vector of n numbers
in increasing order. This problem, and the related problem of inferring deci-
sion trees from data, are formulated as pPoMDPs and solved by the RTDP-BEL
algorithm in [10].

In sorting, there are two types of actions: ‘physical” actions such as swap(2, 7)
that exchange the elements in positions ¢ and j, and ‘information gathering’
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Figure 14: Comparison of RTDP-BEL policy vs. handcrafted policiy for the
Omelette Problem

actions such as ecmp(7, 7) that test whether the element in position ¢ is smaller
than the element in position 7. The problem is a convenient benchmark for
algorithms that perform planning with sensing as it is non-trivial and there
are a number of well known sorting algorithms for assessing the quality of the
solutions.

In the poMDP formulation, the state s is taken to be a vector of size n with
s[i] = j meaning that the i-th element of the input vector is the j-th smallest
element. We assume that all elements in the input vector are different, and as
a result, there is a single goal state sg for which sg[:] = ¢. The problem is
to devise a policy of swaps and compares that takes an arbitrary and unknown
input state sg into the goal state sg. The number of states in the problem is
nl. The initial belief state by is uniform over all such states, and the goal belief
state bp is such that b(sG) =1.

The rest of the formulation is straightforward. Fig. 15 from [10] shows the
performance of the RTDP-BEL algorithm for the sorting problem with n = 5.
This means a POMDP with 5! = 120 states, 20 actions, and 40 observations.
The figure shows the average number of swaps and comparisons in the policies
computed by RTDP-BEL with different heuristics, and compares them with the
results obtained with Quicksort (top flat curve). In all cases, and in particular
for the non-informative heuristic h = 0. RTDP-BEL produces better policies than
Quicksort after a sufficiently large number of trials (3000) that take in the order
of 45 seconds. On the other hand, the policies computed by RTDP-BEL are fixed
for n = 5 and do not scale up for large values of n. Indeed, for n = 10 suitable
heuristics and belief representations are needed (see [10]). Even then, scaling
for larger values of n remains hard as the branching factor of the problem grows
with n. In any case, if optimal policies could be derived for values of n as low
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Figure 15: Performance of RTDP-BEL controller for Sorting problem with n =5
using various heuristics. Top flat curve is for Quicksort. From [10]

as 13 some of the open conjectures in lower-bound theory could be settled (see

[37]).

6 Discussion

We have presented a unified approach for modeling and solving planning prob-
lems that is based on state models that handle various types of dynamics (deter-
ministic, non-deterministic, and probabilistic) and sensor feedback (null, partial,
and complete). The approach combines logical representations languages for de-
scribing actions, sensors, and goals, mathematical models of sequential decisions
for making precise the various planning tasks and their solutions, and heuris-
tic search algorithms in the form of real-time dynamic programming procedures
for computing those solutions. The approach is supported by a computational
tool that accepts high-level descriptions of actions, sensors and goals and com-
putes the resulting controllers. We have also presented results over a number
of domains that illustrate the scope of the approach and the capabilities of the
tool.

The planning approach described is a natural integration of a number of ideas
from AT and Dynamic Programming: State models, MDPs, and POMDPs, [4, 57,
17], RTDP algorithms [39, 3], and action representation languages [29, 52, 54].
At the same time, it’s related to a number of decision-theoretic approaches to
planning such as [41, 24, 14], while being distinct in the use of a more expressive
logical language for describing actions and sensors, and the use of the RTDP
algorithm for solving a variety of decision models.

The challenge remains to scale up these methods to larger problems. As for
any heuristic search algorithm, four key factors have a strong influence on the
performance of the RTDP algorithm:
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1. the node generation rate

2. the quality of the heuristic function
3. the use of memory

4. the exploitation of symmetries

The node generation rate is particularly critical in POMDPs where going from
one state b to the next b, has complexity |S|?, where |S| is the size of the state
space. For this, specialized representations can help. For example, in [10] belief
states are represented as graphs and the mapping from b to b, takes roughly
constant time. Similarly, in non-deterministic domains, OBDDs (ordered binary
decision diagrams) have been used quite successfully for reducing both time and
space [18, 30].

For keeping time and memory requirements under control, the use of good
heuristics is critical. The domain-independent heuristic in [13] for Strips plan-
ning is quite informative but is not admissible. On the other hand, the heuristic
hndp for POMDPs derived from the underlying MDPs is admissible but is not
sufficiently informative. In both cases, it’s likely that better general heuristics
are to be found.

Finally, the exploitation of symmetries is a familiar theme in heuristic search
(e.g., [40]) but not so much in planning (although see [26]). Yet symmetries
abound, and if not detected, they can make the state spaces blow. Indeed,
while the presence of more resources should make planning problems simpler
(e.g.. more trucks in the ‘logistics’ domains), for most planners, they make it
more complex. Many times these symmetries can be exploited at modeling time
(e.g., by representing resources by numbers and not by individual names), yet
other times they have to be detected at run time. For example, in the 12-coin
problem [49], where a heavier or lighter coin is to be identified from a set of
12-coins using a two-pan scale, initially all coins are symmetrical, yet they are
not symmetrical after the first weighting. This is a typical problem of planning
with sensing, yet without recognizing these changing symmetries it’s unlikely to
solved with domain-independent planning tools.

The techniques discussed for making RTDP algorithms scale to larger prob-
lems arise form viewing RTDP as a heuristic search algorithm. RTDP, however,
can also be viewed as a dynamic programming algorithm. From that perspec-
tive, it makes sense to focus on the value function and ways for making the RTDP
updates more effective. One way to do this is by collapsing states that have
similar costs. This is a form of ideal state aggregation in which the dimension-
ality of the problem is reduced, gaining both in time and space. Since normally
the cluster of states with similar costs is not known a priori, an alternative that
is often used in Reinforcement Learning [58, 6] is to represent the value function
in parametric form with a number of parameters that is smaller than the num-
ber of states (e.g., linear functions, neural networks, etc). The value function
is then updated by adjusting those parameters. Under suitable conditions, if
the parametric form is adequate, compact representations can approximate the
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effect of the ideal form of state aggregation (see [6]). Other approaches attempt
to exploit the structure of problems through suitable modifications of the dy-
namic programming algorithms [15, 14]. Representing and using the structure
of problems for extracting heuristics and speeding up the computation of plans
is soon becoming a central problem in planning. See the forthcoming Workshop
on Analyzing and Exploiting Domain Knowledge for Efficient Planning, at the
ATPS’2000 Conference.
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