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Abstract

We present an ε-optimal grid based algorithm
for pomdps that is tractable in ε−1, the dis-
count factor and the maximum absolute value
of the cost function, but exponential in the
dimension of the state space. To the best
of our knowledge, this is the first optimal
grid-based algorithm for pomdps: all other
optimal algorithms that we know are based
on Sondik’s representation of the Value Func-
tion. We also propose a robustness criterion
for grid-based algorithms and show that the
new algorithm is robust in such sense.

1. Introduction

The theory of Markov Decision Processes (mdps) is a
mathematical framework for modeling sequential deci-
sion tasks that had become very popular in AI for three
important reasons. First, it provides an clean frame-
work for modeling complex real-life problems that have
large state-space (even infinite) and complex dynam-
ics and cost functions. Second, mdps provide mathe-
matical foundation for independently-developed learn-
ing algorithms in Reinforcement Learning (Sutton &
Barto, 1998; Bertsekas & Tsitsiklis, 1996). And third,
general and efficient algorithms for solving mdps had
been developed, the most important being Value Iter-
ation and Policy Iteration.

The mdp model assumes the existence of a physical
system that evolves in discrete time and that is con-
trolled by an agent. The system dynamics are gov-
erned by probabilistic transition functions that maps
states and controls to states. At every time point,
the agent applies a control and incurs a cost that de-
pends in the current state of the system and the con-
trol. Thus, the task is to find a control strategy (also
known as policy) that minimizes the expected total
cost over the infinite horizon time setting.

A Partially Observable Markov Decision Process
(pomdp) is an mdp in which the agent does not know
the state of the system. This is an important depar-

ture from the mdp model since even if the agent knows
the optimal strategy for the underlying mdp, it cannot
apply such strategy. Thus, the agent needs to estimate
the state of the system and then act accordingly. The
pomdp problem is to find an optimal control strat-
egy that map estimates to controls. It is known that
estimates of the form of probability distributions over
the set of possible states are sufficient for optimal be-
havior. These probability distributions, also known as
belief states, allow the agent to compute the probabil-
ity of the system being at any given state. The pomdp
framework also extends the mdps by allowing controls
to return information about the system; for example,
performing a blood test over a patient, or reading a
radar sensor. Such information is used to compute
new belief states from previous ones. Therefore, a so-
lution for a pomdp is a strategy that maps belief states
to controls. Unfortunately, state-of-the-art optimal al-
gorithms for pomdps are not as advanced as for mdps
in the sense that they only solve very small problems.

In this paper, we present a new optimal algorithm for
pomdps that might solve larger problems than the cur-
rent best optimal algorithms. The new algorithm be-
longs to the class of grid-based algorithms that had
been used to solve large pomdp problems. This is
a relevant contribution since, as far as we know, all
known grid-based algorithms do not offer optimality
guarantees. We also propose a novel robustness crite-
rion for optimal grid-based algorithms and show that
the new algorithm is robust in that sense. The main
ideas in the paper are general enough so that they can
be applied to “transform” other grid-based algorithms
into optimal and robust algorithms. Therefore, part of
the contribution is to lay down mathematical founda-
tions for optimal grid-based algorithms for pomdps.

We organize the paper as follows. In Sect. 2, we give
a formal definition for mdps and pomdps, give an
overview of the current algorithms for pomdps and
present the robustness criterion. In Sect. 3, we show
basic mathematical results about pomdps that are
used to derive the algorithm. The new algorithm is
presented in Sect. 4 together with its complexity and



optimality guarantees. The paper finishes with a brief
discussion in Sect. 5. All proofs are included in the
Appendix.

2. Preliminaries

This section contains a brief review of the mdp and
pomdp framework. We use notation and presentation
style as in (Bertsekas, 1995); the reader is referred
there for an excellent exposition of mdps.

The basic mdp model is characterized by

(M1) A finite state space S = {1, . . . , n},

(M2) a finite set of controls U(i) for each state i ∈ S,

(M3) transition probabilities pi,u(j) for all u ∈ U(i)
that are equal to the probability of the next state
being j after applying control u in state i, and

(M4) a cost g(i, u) associated to u ∈ U(i) and i ∈ S.

A strategy or policy π is an infinite sequence
(µ0, µ1, . . . ) of functions where µk maps states to con-
trols so that the agent applies the control µk(i) in
state xk = i at time k, the only restriction being that
µk(i) ∈ U(i) for all i ∈ S. If π = (µ, µ, . . . ), the policy
is called stationary (i.e. the control does not depend in
time) and is simply denoted by µ. The cost associated
to policy π when the system starts at x0 is:

Jπ(x0) = lim
N→∞

E

{

N−1
∑

k=0

αkg(xk, µk(xk))

}

(1)

where the expectation is taken with respect to the
probability distribution induced by the transition
probabilities, and where the number α ∈ [0, 1], called
the discount factor, is used to discount future costs at
a geometric rate.

The mdp problem is to find an optimal policy π∗ satis-

fying J∗(i)
def
= Jπ∗(i) ≤ Jπ(i) (i = 1, . . . , n), for every

other policy π. Although there could be none or more
than one optimal policy, the optimal cost vector J∗ is
always unique. The existence of π∗ and how to com-
pute it are non-trivial mathematical problems. How-
ever, when α < 1 the optimal policy always exists and,
more important, there exists a stationary policy that
is optimal. In such case, J∗ is the unique solution to
the Bellman Optimality equations:

J∗(i) = min
u∈U(i)

g(i, u) + α

n
∑

j=1

pi,u(j)J
∗(j). (2)

Also, if J∗ is a solution for (2) then the greedy station-
ary policy µ∗ with respect to J∗:

µ∗(i) = argmin
u∈U(i)







g(i, u) + α

n
∑

j=1

pi,u(j)J
∗(j)







(3)

is an optimal stationary policy for the mdp. Therefore,
solving the mdp problem is equivalent to solving (2).

The equation (2) can be solved by considering the Dy-
namic Programming (dp) operators:

(TµJ)(i) = g(i, µ(i)) + α

n
∑

j=1

pi,µ(i)(j)J(j), (4)

(TJ)(i) = min
u∈U(i)

g(i, u) + α

n
∑

j=1

pi,u(j)J(j) (5)

that map n-dimensional vectors to n-dimensional vec-
tors. It is not hard to show that when α < 1 the oper-
ators Tµ and T are contraction mappings with unique
fix points Jµ and J∗ satisfying:

Jµ = TµJµ = lim
k→∞

T k
µJ0, (6)

J∗ = TJ∗ = lim
k→∞

T kJ0 (7)

where J0 is the zero n-dimensional vector. The Value
Iteration algorithm computes J∗ iteratively by using
(2) as an update rule. Thus, starting from any vec-
tor J , Value Iteration computes a succession of vec-
tors 〈Jk〉k as J0 = J and Jk+1 = TJk. The algo-
rithm stops when Jk+1 = Jk, or when the residual
maxi∈S |Jk+1(i) − Jk(i)| is sufficiently small. In the
latter case, the suboptimality of the resulting policy is
bounded by a constant multiplied by the residual.

2.1 Partially Observable MDPs

The pomdp framework, first studied in the Operations
Research community, had attracted a lot of interest
from AI. A good introduction to pomdps can be found
in (Astrom, 1965; Sondik, 1971; Lovejoy, 1991b; Cas-
sandra et al., 1994). A pomdp is characterized by:

(P1) A finite state space S = {1, . . . , n},

(P2) a finite set of controls U(i) for each state i ∈ S,

(P3) transition probabilities pi,u(j) for all u ∈ U(i)
equal to the probability of the next state being
j after applying u in i,

(P4) a finite set of observations O(i, u) ⊆ O that may
result after applying u ∈ U(i) in i ∈ S,

(P5) observation probabilities pi,u(o) for all u ∈ U(i)
and o ∈ O(i, u) equal to the probability of re-
ceiving o in i after applying u, and

(P6) a cost g(i, u) associated to u ∈ U(i) and i ∈ S.

It can be shown that finding an optimal strategy to
this problem is equivalent to solving an associated mdp
problem in belief space, the so-called belief-mdp. Its
basic elements are:



(B1) A belief space B of prob. distributions over S,

(B2) a set of controls U(x) = ∩{U(i) : x(i) > 0}, and

(B3) a cost g(x, u) =
∑n

i=1 g(i, u)x(i) for each u ∈
U(x) and x ∈ B.

Definition (B2) is motivated from work in the planning
community in which controls are defined in terms of
preconditions and effects. Thus, U(x) is the set of all
controls whose preconditions are satisfied with proba-
bility 1. The use of preconditions allows the engineer
to easily specify real-life problems at different levels
of granularity. For example, if connecting a 120 Volts
device to a 240 Volts outlet has effects that the engi-
neer doesn’t want to model, then such situations can
be avoided with a simple precondition.

The transition probabilities of the belief-mdp are de-
termined by the abilities of the agent. A full capable
and rational agent should perform Bayesian updating
in order to behave optimally. However, in the most
general case, the agent might not be able to do that.1

Thus, we will assume that after applying a control u
in belief state x, the agent next belief is in a set A ⊆ B
with probability νu(x,A). Here, νu(x, ·) is a probabil-
ity measure over the space of belief states called the
transition measure associated with control u and belief
x. The dp operators for the belief-mdp are:

(TµJ)(x) = g(x, µ(x)) + α

∫

J(z) νµ(x)(x, dz), (8)

(TJ)(x) = min
u∈U(x)

g(x, u) + α

∫

J(z) νu(x, dz) (9)

where µ is a stationary policy in belief space, J : B →
R is a real function over B, and α ∈ [0, 1] is the dis-
count factor.2 As before, when α < 1 the dp operators
are contraction mappings with unique fix points. This
fact guarantees the existence of optimal policies and
that there is an optimal policy that is stationary.

From now on, we assume that the agent performs
Bayesian updating whenever it applies a control and
receives an observation. In this case, the transition

1For example, some real-world approaches to robotics
do approximate Bayesian updating by means of different
sampling techniques as Monte-Carlo and Gibbs sampling
(Thrun, 2000).

2To be mathematically correct, νu(·, ·) must satisfy two
conditions:

(i) νu(x, ·) is a measure for all x ∈ B, and

(ii) νu(·, A) is a measurable function for all measurable
A ⊆ B.

The first condition is required by the definition while the
second is a technical one that guarantees all mathematical
objects are well-defined (Fristedt & Gray, 1997, Ch.26).

measures are discrete measures defined by3

νu(x, {z}) =
∑

o∈O(x,u)

px,u(o)1{xo
u}
(z) (10)

where O(x, u) is the set of possible observations after
applying control u in belief state x, px,u(o) is the prob-
ability of receiving observation o after applying u in x,
and xou is the Bayesian update of x after u and o; i.e.,

xou(i) =
xu(i) pi,u(o)

px,u(o)
, (11)

xu(i) =

n
∑

j=1

x(j) pj,u(i), (12)

px,u(o) =

n
∑

i=1

xu(i) pi,u(o), (13)

O(x, u) = {o : px,u(o) > 0}. (14)

The dp operators associated with Eq.(10) are:

(TµJ)(x) = g(x, µ(x)) + α
∑

o∈O(x,µ(x))

px,µ(x)(o)J(x
o
µ(x))

(TJ)(x) = min
u∈U(x)

g(x, u) + α
∑

o∈O(x,u)

px,u(o)J(x
o
u).

Unfortunately, the Value Iteration method is no longer
feasible since each dp update has to be over an un-
countable number of belief states (similarly for Policy
Iteration). Thus, the question of how to compute the
optimal stationary policy, or an approximation to it,
is a major problem in the field.

Algorithms based on Sondik’s Representation

These algorithms are based on the fact that T kJ0 can
be represented as

(T kJ0)(x) = min
γ∈Γk

n
∑

i=1

x(i) γ(i) (15)

where Γk is a finite collection of n-dimensional vec-
tors. This result is known as Sondik’s piecewise lin-
ear and convex representation of the Value Function
(Sondik, 1971). Sondik’s algorithm works in stages
by computing Γk+1 from Γk and stopping when k is
sufficiently large to guarantee a given bound. Unfor-
tunately, Γk grows in size double exponentially in k
and, although different techniques had been proposed
to remove redundant vectors from Γk, the worst-case
growth is always exponential. Therefore, even with
fixed dimension |S|, all known ε-optimal algorithms
that work with Sondik’s representation are exponen-
tial. See (Smallwood & Sondik, 1973; Littman, 1996;
Cassandra et al., 1997; Zhang & Liu, 1997; Zhang &
Lee, 1997; Cassandra, 1998; Kaelbling et al., 1999).

31A refers to the indicator function of the set A.



Grid-Based Algorithms

A grid G over the belief space is a finite collection of
points together with a projective map η : B → G. A
grid-based approximation to J∗ is a real-valued vector
J̃ : G → R so that J∗(x) is approximated by J̃(η(x)).
A grid-based algorithm is an algorithm that from input
G outputs an approximation J̃ .4

Several grid-based algorithms had been proposed
for finding approximate solutions to pomdps, e.g.
(Hauskrecht, 2000; Bonet & Geffner, 1998; Bonet &
Geffner, 2000; Brafman, 1997; Lovejoy, 1991a). Al-
though some grid-based algorithms had shown impres-
sive performance over benchmark problems, none of
them guarantees a bound on the quality of the result.
That is, a bound on

‖J∗ − J̃ ◦ η‖
def
= sup

x∈B
|J∗(x)− J̃(η(x))|. (16)

Quite often, the map η is defined in terms of a distance
function (metric) σ in belief space such that η(x) is the
nearest grid-point to x (under σ). In such case, we say
that G is a topological grid and we define the mesh of
the grid as the maximum separation between a grid-
point and its surrogated points, i.e.

sup
x∈G

sup {σ(x, y) : y ∈ η−1(x)}. (17)

We conclude this section with the definition of a ro-
bustness criterion for algorithms based on topological
grids. We say that a grid-based method is robust in
the strong sense if, independently of the position of
the grid-points, the approximation error goes to zero
as the mesh goes to zero:

Definition 1 (Strong Robustness) Let G be a
topological grid on B, η : B → G the projection in-
duced by G, and J̃ : G→ R a grid-based approximation
to J∗. We say that J̃ is robust in the strong sense if

lim
ε↘0

sup
G

‖J∗ − J̃ ◦ η ‖ = 0 (18)

where the sup is over all grids with mesh at most ε.

Our goal is to obtain a strong-robust grid-based algo-
rithm for pomdps.

3. Basic Mathematical Results

It should be clear that for achieving strong robust-
ness, some notion of continuity for J∗ is necessary: if
J∗(x) is approximated by J∗(y), then |J∗(x)− J∗(y)|

4Other more general definitions for grid-based algo-
rithm had been given, see (Hauskrecht, 2000).

should go to zero as x “approaches” y. To achieve
that, we propose to replace the sup metric in belief
space σ(x, y) = maxi |x(i)− y(i)| with the following:

Definition 2 Let ρ : B × B → R+ be the function
defined by ρ(x, y) = |S| if x, y have different support
(i.e. ∃i such that x(i) + y(i) > 0 and x(i)y(i) = 0),
and by ρ(x, y) =

∑n
i=1 |x(i)− y(i)| otherwise.

Note that ρ(x, y) = |S| if and only if x and y have dif-
ferent support. The following result justifies the claim
it is a metric and establishes properties about ρ.

Theorem 1 ρ is a distance metric over the set of be-
lief states. For all x, y ∈ B, u ∈ U(x) and o ∈ O(x, u),
if ρ(x, y) < |S|, then

(i) U(x) = U(y) and O(x, u) = O(y, u),

(ii) ρ(xu, yu) ≤ ρ(x, y),

(iii) |px,u(o)− py,u(o)| ≤
∑n

i=1 pi,u(o)|xu(i)− yu(i)|,

(iv) ρ(xou, y
o
u) ≤

2
p∧q

∑n
i=1 pi,u(o)|xu(i)−yu(i)| where

p = px,u(o), q = py,u(o) and a ∧ b = min{a, b}.

An interesting fact about the metric ρ is that its asso-
ciated topology,5 denoted by ρ-topology, has isolated
points. Indeed, the “deterministic” belief states are
the isolated points. The following result justifies the
use of ρ and permits us to obtain the algorithm.

Theorem 2 (Key Theorem) Suppose α ∈ [0, 1)
and ‖g‖ < ∞. Then, the optimal cost function J∗

is a uniform continuous map from B to R. Indeed, for
integer m ≥ 1 (given below) define F (x) = x(1−α)

m

.
Then, for small ρ(x, y),

|J∗(x)− J∗(y)| <
‖g‖

1− α
F (ρ(x, y)) (19)

where ‖g‖
def
= maxi∈S maxu∈U(i) |g(i, u)|.

6

The integer m is chosen as the minimum positive in-
teger so that |O|(1−α)

m

< τ where τ > 1 satisfies

x+ ατ(2x)(1−α) − x(1−α) ≤ 0 (20)

for all x in an interval [0, ξ] (where ξ, that depends in τ ,
increases as τ decreases). This choice of m guarantees

x+ αβF (2x) ≤ F (x) (21)

5The collection of open sets with respect to ρ.
6That J∗ is a continuous function (with respect to ρ) is

trivial since it is the limit of a uniform converging sequence
of continuous functions. The fact that is uniform continu-
ous is more interesting since the metric space (B, ρ) is not
compact. The theorem goes one step further by giving the
modulus of continuity.
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Figure 1. Contours plot of x+αβF (2x)−F (x) at level set
0 for α = 0.95 and m = 1, 2, 3.

for all x ∈ [0, ξ] and all β ≤ τ (a fact needed in the
proof of the theorem). Fig. 1 shows a contour plot of
x+αβF (2x)−F (x) for different x’s, β’s and m’s, e.g.
τ = 1.01 is good enough for α = 0.95 so that (21)
holds for x ∈ [0, 0.005]. Thus, we say that ρ(x, y) is
“small” when it is < ξ. This bound is loose and can
be improved with a more careful analysis.

It is interesting to note that a result as the Key The-
orem is not possible for the sup metric. In fact, the
following example shows a pomdp such that J∗ is not
continuous in the σ-topology.

Example 1: Let S = {1, 2} and consider two con-
trols u1, u2 such that U(1) = {u1}, U(2) = {u1, u2},
g(1, u1) = 1, g(2, u1) = g(2, u2) = 0, p2,u2

(2) = 1 and
the transition probabilities for u1 are given by two pa-
rameters p1, p2 as shown in Fig. 2. Also, there is just
one observation that is always received with probabil-
ity 1. Each belief state in this problem is of the form
(p, 1− p) so it can be represented by p ∈ [0, 1]. When
α < 1, the corresponding pomdp is guaranteed to have
a solution, and it is easy to check that J∗ becomes

J∗(p) =

{

p+ αJ∗(pp1 + (1− p)(1− p2)) if p > 0,
0 if p = 0.

Note that pp1+(1−p)(1−p2) = 1+p(p1+p2−1)−p2.
Thus, if p1+p2 = 1, then J∗(1−p2) = 1−p2+αJ∗(1−
p2). Hence, if p1 + p2 = 1,

J∗(p) =

{

p+ α(1− p2)/(1− α) if p > 0,
0 if p = 0.

Clearly, J∗ is discontinuous at p = 0 with respect to
the σ-topology. On the other hand, p = 0 is an iso-
lated point in the ρ-topology, so J∗ is continuous with
respect to the latter. Also note that the jump can be
made arbitrary large. 2

Thus, in the most general case, any grid-based method
based on the sup metric is not robust in the strong
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Figure 2. Transition probabilities for u1 in Example 1.
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Figure 3. An ε-cover of the unit square.

sense. In the case when all U(i) are identical, it is easy
to show that J∗ is uniform continuous with respect to
the σ-topology (see footnote 6), though its modulus of
continuity is yet to be computed. In any case,

Theorem 3 Let σ′ be a metric in belief space such
that the σ′-topology is identical to the σ-topology, e.g.
σ′ = Euclidean distance. Then, any grid-based method
such that η maps belief states into their nearest grid-
points (under σ′) is not robust in the strong sense for
general pomdps.

An immediate consequence of the Key Theorem is that
any “reasonable” grid-based algorithm is robust in the
strong sense. In the next section, we present a very
simple grid-based algorithm.

4. An Optimal Grid-Based Algorithm

An ε-cover for B is a finite collection of balls7

{B1, . . . , Bm}, open or closed with respect to ρ, such
that each Bi is of radius ε centered at some xi, xi 6∈ Bj

for i 6= j, and B ⊆ ∪mi=1Bi. Fig. 3 shows an example
of an ε-cover for the unit square. It is not hard to see
that an ε-cover always exists for every ε > 0 and that
the xi can be chosen so that all xi(j) are rational. If,
in addition, ε is rational, then we call the cover a ra-
tional ε-cover. Each such cover induces a projection
η : B → {x1, . . . , xm} by η(x) = xi if and only if i is

7The open ball with center x and radius ε is {y :
ρ(x, y) < ε}, for the closed ball replace < with ≤.



Input: A number ε > 0, and a finite collection
{x1, . . . , xm} such that the open/closed balls of
radius ε centered at xi form a rational cover.

Output: A m-dimensional real vector J̃ such that

‖J∗ − J̃ ◦ η‖ < 2‖g‖

(1−α)2
F (ε)

‖J∗ − Jµ̃‖ < 2α(1+α)‖g‖

(1−α)3
F (ε)

where µ̃ is the greedy policy with respect to J̃◦ η.

Procedure:

1. Let J̃0(xi) = 0 for i = 1, . . . ,m, and set k = 0.

2. Update J̃k+1 = T (J̃k◦ η).

3. Increase k and Goto 2 if

k ≤ (logF (ε)− 2 log(1− α))/ logα,

4. Return J̃k+1 otherwise.

Figure 4. An ε-optimal grid-based algorithm for pomdps.

minimum such that x ∈ Bi. By the Key Theorem,

|J∗(x)− J∗(η(x))| <
‖g‖

1− α
F (ε) (22)

for sufficiently small ε. Therefore, our goal is to con-
struct a “good” approximation to J∗◦ η. Consider the
sequence of vectors J̃k : {x1, . . . , xm} → R:

J̃0(xi) = 0, (23)

J̃k+1(xi) = min
u∈U(xi)

g(xi, u) + α
∑

o∈O(xi,u)

pxi,u(o)J̃k(η((xi)
o
u)).

This is the Value Iteration algorithm applied to an
mdp with state space {x1, . . . , xm} and transition
probabilities

pxi,u(xj) =
∑

o:η((xi)ou)=xj

pxi,u(o). (24)

It is easy to see that the associated dp operators are
identical to the restriction of Tµ(J ◦ η) and T (J ◦ η) to
the set {x1, . . . , xm}.

Since η−1 partitions the belief space into a finite num-
ber of pieces, Eq. (23) defines a grid-based algorithm
for pomdps. The following results bound the ap-
proximation error and the loss incurred by the result-
ing greedy policy when the Value Iteration method
〈J̃k ◦ η〉k≥0 is stopped.

Theorem 4 (Goodness) Suppose α ∈ [0, 1) and

‖g‖ <∞. Let J̃k be defined by (23), then

‖J∗ − J̃k ◦ η‖ <
‖g‖

(1− α)2
F (ε) +

αk‖g‖

1− α
. (25)

Corollary 5 (Policy Loss) Suppose α ∈ [0, 1) and
‖g‖ < ∞. Let µk be the greedy policy, in belief space,

with respect to J̃k ◦ η, i.e. Tµk(J̃k ◦ η) = T (J̃k ◦ η).
Then,

‖J∗ − Jµk‖ <
2α(1 + α)‖g‖

(1− α)3
F (ε) (26)

for every k ≥ k0 where k0 is such that αk0 ≤ F (ε)
1−α .

These results show the correctness of the grid-based
algorithm in Fig. 4. The algorithm is robust in the
strong sense, tractable in the parameters ε−1, α, |O|
and ‖g‖, and only exponential in the dimension |S|.
The exponentiality in |S| cannot be removed since it is
known that solving general pomdps, either optimally
or ε-optimally, is np-hard (Lusena et al., 2001).

5. Discussion

Since the number of grid-points grows exponentially
with the dimension, the problem of how to solve the
grid problem is still a research topic. In stochastic
shortest-path problems, we think that the grid could
be solved by using algorithms like rtdp and lao* with
“good” heuristic functions (Barto et al., 1995; Hansen
& Zilberstein, 2001; Bonet & Geffner, 2000). In sum-
mary, we have presented a new grid-based optimal al-
gorithm for general pomdps and proposed a robustness
criterion for such algorithms. Our results and method-
ology are general enough so that they can be applied
to other algorithms, e.g. some of the recent adaptive
and multi-resolution grid methods. Thus, the paper
lays down mathematical foundations for new and bet-
ter pomdps algorithms. In the near future, we plan
to make empirical comparisons between our algorithm
and those based on Sondik’s representation.
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Appendix: Proofs

Proof of Theorem 1: That ρ is a metric is trivial so it is
left to the reader. Let x, y ∈ B be such that ρ(x, y) < |S|.
Since x and y have identical support, it is obvious that
U(x) = U(y) and O(x, u) = O(y, u). For (ii) and (iii),

ρ(xu, yu)

=
n
∑

i=1

|xu(i)− yu(i)| =
n
∑

i=1

∣

∣

∣

∣

∣

n
∑

j=1

pj,u(i) (x(j)− y(j))

∣

∣

∣

∣

∣

≤
∑

1≤i,j≤n

pj,u(i) |x(j)− y(j)| = ρ(x, y),

|px,u(o)− py,u(o)|

=

∣

∣

∣

∣

n
∑

i=1

xu(i)pi,u(o)− yu(i)pi,u(o)

∣

∣

∣

∣

≤
n
∑

i=1

pi,u(o) |xu(i)− yu(i)|.

For the last one, let p = px,u(o) and q = py,u(o) and as-
sume, without loss of generality, p > q. Then,

ρ(xou, y
o
u)

=
1

pq

n
∑

i=1

piu(o)
∣

∣qxu(i)− pyu(i)
∣

∣

≤
1

pq

n
∑

i=1

piu(o)
(

p |xu(i)− yu(i)|+ |p− q|xu(i)
)

=
1

pq

(

p
n
∑

i=1

piu(o) |xu(i)− yu(i)|+ |p− q|p

)

≤
2

p ∧ q

n
∑

i=1

pi,u(o) |xu(i)− yu(i)|.

2

Proof of Key Theorem: Let x, y ∈ B be such that
ρ(x, y) < |S| is small. Thus, U(x) = U(y) and O(x, u) =
O(y, u). First, we show using induction that |(T kJ0)(x)−
(T kJ0)(y)| < ‖g‖F (ρ(x, y))/(1− α). For the base case,

|(TJ0)(x)− (TJ0)(y)|

=

∣

∣

∣

∣

(

min
u∈U(x)

g(x, u) + α

∫

J0(z)νu(x, dz)

)

−

(

min
u∈U(y)

g(y, u) + α

∫

J0(z)νu(y, dz)

)
∣

∣

∣

∣

≤ |g(x, u)− g(y, u)| ≤ ‖g‖ρ(x, y)

<
‖g‖

1− α
F (ρ(x, y)) (since F (x) > x for small x)



where the u ∈ U(x) in the first inequality is the control
that minimizes the second term, and we have assumed,
without loss of generality, that the first term is larger than
the second. The inductive step is

|(T k+1J0)(x)− (T k+1J0)(y)|

≤ |g(x, u)− g(y, u)| +

α
∣

∣

∣

∑

o

px,u(o)(T
kJ0)(x

o
u)− py,u(o)(T

kJ0)(y
o
u)
∣

∣

∣

≤ ‖g‖ρ(x, y) +

α
∑

o

[

(p ∧ q)
∣

∣(T kJ0)(x
o
u)− (T kJ0)(y

o
u)
∣

∣+ ‖T kJ0‖|p− q|

]

< ‖g‖ρ(x, y) +
α‖g‖ρ(x, y)

1− α
+

α‖g‖

1− α

∑

o

(p ∧ q)F (ρ(xou, y
o
u))

=
‖g‖ρ(x, y)

1− α
+

α‖g‖

1− α

∑

o

(p ∧ q)F (ρ(xou, y
o
u))

≤
‖g‖ρ(x, y)

1− α
+

α‖g‖

1− α
F (2ρ(x, y))

∑

o

(p ∧ q)1−(1−α)m

≤
‖g‖ρ(x, y)

1− α
+

α‖g‖

1− α
F (2ρ(x, y)) |O|

(

1

|O|

)1−(1−α)m

≤
‖g‖

1− α
F (ρ(x, y)) (by the choice of m).

Where p = px,u(o) and q = py,u(o) for some u ∈ U(x) as

in the base case. The bound on
∑

o(p ∧ q)1−(1−α)m

comes
from the fact that the expression is maximized when all
p = q = 1/|O|. In the third inequality, we used

∑

o

‖T kJ0‖ |p− q| ≤
‖g‖

1− α

∑

o

n
∑

i=1

pi,u(o)|xu(i)− yu(i)|

=
‖g‖

1− α
ρ(xu, yu) ≤

‖g‖

1− α
ρ(x, y).

Therefore, for small ρ(x, y),

|J∗(x)− J∗(y)| = lim
k→∞

∣

∣

∣
(T kJ0)(x)− (T kJ0)(y)

∣

∣

∣

<
‖g‖

1− α
F (ρ(x, y)).

2

Proof of Theorem 4: First note that

|J∗(x)− J̃k(η(x))|

= |J∗(x)− J∗(η(x)) + J∗(η(x))− J̃k(η(x))|

<
‖g‖

1− α
F (ε) + |J∗(η(x))− J̃k(η(x))|.

Now, use induction on k to find a bound on |J∗(x)− J̃k(x)|
for x ∈ {x1, . . . , xm} as follows:

|J∗(x)− J̃1(x)| ≤ α
∑

o

px,u(o)
∣

∣J∗(xou)− J̃0(η(x
o
u))
∣

∣

≤ α‖J∗‖,

|J∗(x)− J̃2(x)| ≤ α
∑

o

px,u(o)
∣

∣J∗(xou)− J̃1(η(x
o
u))
∣

∣

< α
∑

o

px,u(o)

(

‖g‖F (ε)

1− α
+ α‖J∗‖

)

=
‖g‖F (ε)

1− α
α+ α2‖J∗‖

where u is some control belonging to U(x) (check the proof
of Key Theorem to see where u comes from). Then,

|J∗(x)− J̃k+1(x)| ≤ α
∑

o

px,u(o)
∣

∣J∗(xou)− J̃k(η(x
o
u))
∣

∣

< α

(

‖g‖F (ε)

1− α
+
‖g‖F (ε)

1− α

k−1
∑

j=1

αj + αk‖J∗‖

)

=
‖g‖F (ε)

1− α

k
∑

j=1

αj + αk+1‖J∗‖.

Therefore,

sup
x∈B

|J∗(x)− J̃k(η(x))|

<
‖g‖F (ε)

1− α
+
‖g‖F (ε)

1− α

k−1
∑

j=1

αj + αk‖J∗‖

≤
‖g‖F (ε)

(1− α)2
+

αk‖g‖

1− α
.

2

To bound the loss incurred by the greedy policy with re-
spect to J̃k ◦ η, we use a known result for mdps. Consider
an mdp (with finite or infinite state space) and its dp op-
erators T and Tµ. Let J

∗ be the unique fix point of T , J
a real cost function over the state space, and µ a greedy
policy with respect to J (i.e., TµJ = TJ), then the follow-
ing bound on the suboptimality of µ holds (see (Bertsekas,
1995, Vol 2, pp. 19–24))

sup
x

Jµ(x)− J∗(x) ≤

α

1− α

(

sup
x

|(TJ)(x)− J(x)| − inf
x
|(TJ)(x)− J(x)|

)

(27)

where Jµ is the unique fix point of Tµ, and the sup and inf
are taken over the corresponding state space.

Proof of Corollary 5:

|(T (J̃k◦ η))(x)− J̃k(η(x))|

≤ |(T (J̃k◦ η))(x)− (TJ∗)(x)|+ |J∗(x)− J̃k(η(x))|

≤ α
∑

o

px,u(o) |J̃k(η(x
o
u))− J∗(xou)|+ |J

∗(x)− J̃k(η(x))|

≤ (1 + α) ‖J∗ − J̃k◦ η‖

< (1 + α)

(

‖g‖F (ε)

(1− α)2
+

αk‖g‖

1− α

)

≤ (1 + α)
2‖g‖F (ε)

(1− α)2

for all k ≥ k0. Now, use the bound (27) on the subopti-
mality of µk:

Jµk (x)− J∗(x) ≤
α

1− α

(

sup
x∈B

|(T (J̃k◦ η))(x)− J̃k(η(x))|

)

<
α(1 + α)

1− α

2‖g‖F (ε)

(1− α)2

for all k ≥ k0. 2


