
GPT Meets PSR

Blai Bonet
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90024, USA
bonet@cs.ucla.edu

Sylvie Thiébaux
Computer Sciences Laboratory

The Australian National university
Canberra, ACT 0200, Australia

Sylvie.Thiebaux@anu.edu.au

Abstract

We present a case study in confronting the GPT general-
purpose planner with the challenging power supply restora-
tion (PSR) benchmark for contingent planning. PSR is derived
from a real-world problem, and the dif£culty of modeling and
solving it contrasts with that of the purely arti£cial bench-
marks commonly used in the literature. This confrontation
leads us to improve general techniques for contingent plan-
ning, to provide a PDDL-syle encoding of PSR which we hope
to see used in planning competitions, and to report the £rst
results on generating optimal policies for PSR.

Introduction
Coping with partially observable domains is arguably one of
the most exciting and dif£cult challenges the £eld of plan-
ning has been faced with. Despite promising advances in
using compact symbolic representations, heuristic search,
and domain-speci£c control knowledge (Bertoli et al. 2001;
Bonet & Geffner 2000; Hansen & Feng 2000; Karlsson
2001; Majercik & Littman 1999), the perception is that par-
tial observability still lies on the critical path between plan-
ning research and applications. This perception is supported
by the fact that, with very few exceptions (Cassandra et al.
1996; Bertoli et al. 2002), experimental results reported in
the literature are con£ned to a well worn set of purely arti-
£cial benchmarks, featuring bombs in toilets, tigers hidden
behind doors, and rotten eggs. We have reached the point
where assessing the accuracy of this perception and pushing
the envelope require that general-purpose uncertainty plan-
ners confront benchmarks derived from real-world applica-
tions, and that such confrontations begin to inform their de-
velopment.

This paper reports a case study in doing just that. We
confront the General Planning Tool (GPT) (Bonet & Geffner
2000) with the power supply restoration (PSR) challenge is-
sued in (Thiébaux & Cordier 2001), and examine the impact
that this benchmark had on new developments to GPT.

GPT’s input language is close to PDDL, but additionally
accounts for the possibility of partial sensor feedback and
non-deterministic dynamics. GPT views planning under in-
complete information (or contingent planning) as a problem

Copyright c© 2003, American Association for Arti£cial Intelli-
gence (www.aaai.org). All rights reserved.

of heuristic search in the belief space, which it solves opti-
mally in £nite time using an off-line variant of Real-Time
Dynamic Programming (RTDP) (Barto et al. 1995).

The PSR problem consists in planning actions to recon-
£gure a faulty power distribution network in such a way as
to minimize breakdown costs. Due to sensor and actuator
uncertainty, the location of the faulty areas and the current
network con£guration are uncertain, which leads to a trade-
off between acting to resupply customers and acting (intru-
sively) to reduce uncertainty. (Bertoli et al. 2002) reports
the £rst successful attack of a general purpose planner on
the PSR domain: MBP was able to solve non-trivial instances
of the problem of generating a contingent plan guaranteed
to achieve a given supply restoration goal. By contrast, our
objective was to have GPT address the full scope of the PSR
benchmark, for which there is no speci£ed goal but rather
the request to minimize breakdown costs. This amounts to
generating optimal policies for a contingent planning prob-
lem, which we wish to emphasize is typically much harder.

The fact that even small instances of this optimization
problem were stretching GPT’s limits motivated the devel-
opment of improved, general methods for planning under
incomplete information. E.g, to avoid the costly genera-
tion of a large number of irrelevant states, we had to resort
to an incremental version of RTDP. This, in turn, required
us to £nd clever ways of dynamically computing a domain-
independent admissible heuristic for contingent planning (a
variant of the well known QMDP), without generating the en-
tire state space. This results in a substantial improvement in
the ability of GPT to cope with larger problem instances.

In addition to reporting an interesting case study and im-
proved techniques for contingent planning, this paper makes
a number of contributions towards the use of PSR as a bench-
mark for planning under uncertainty. For instance, we give a
concise, PDDL style, problem-independent encoding match-
ing the informal description of PSR in (Thiébaux & Cordier
2001), which we expect to be particularly useful for future
planning competitions.

We start with an overview of PSR and of the contingent
planning model it can be recast as. We next present the tech-
niques we developed to improve GPT’s performance and in
particular the dynamic computation of the heuristic. We then
explain how we encoded PSR in GPT’s input language, and
why this required to extend GPT to deal with PDDL axioms



CB1

CB5

CB2

CB3

CB6

CB7

closed

circuit−breaker

area supplied by

CB4

CB4

SD1 SD2 SD3

SD26

SD4

SD6

SD7SD8SD9

SD12 SD13

SD22 SD25

SD14SD23

SD15SD16SD17

SD21SD20SD19

SD10SD11

SD24

SD18

SD5

l1 l2 l3 l4

l15

l5

l6

l7

l8l9

l10

l11l12

l13

l14

l16

l17

l18

l19l20l22 l21

l23 l24

l26 l25

open

switch

Figure 1: Rural Network in (Thiébaux & Cordier 2001)

(McDermott 1998). Finally, we present experimental results
before summarizing our contribution and concluding with
remarks about related and future work.

The PSR Benchmark

In (Thiébaux & Cordier 2001), the authors recast the prob-
lem of supply restoration in power distribution systems as
a benchmark for planning under uncertainty. They give an
informal description of the PSR benchmark which we now
summarize, and issue the challenge of modeling and solving
PSR with general purpose planning tools.

Network Topology For the purpose of the benchmark, a
power distribution system (see Figure 1) consists of elec-
tric lines and devices of two types: circuit-breakers (large
squares in the £gure) and switches (small squares). Devices
are connected to at most two lines and have two possible po-
sitions: either closed or open (open devices, e.g. SD19, are
white in the £gure). Circuit-breakers are viewed as power
sources. When closed, they feed power into the network,
and that power ¤ows through the various lines up to the point
where it is stopped by an open device. The positions of the
devices are initially set so that each circuit-breaker feeds a
different area of the network (the area fed by CB4 is boxed
in the £gure; Adjacent areas fed by different circuit-breakers
are distinguished using dark and gray). The current network
con£guration can be modi£ed by opening or closing devices.
Closing and opening are the only available actions in PSR.

Faults, Supply Restoration Under bad weather, lines are
often affected by permanent faults. When a line is faulty, the
circuit-breaker feeding it opens to prevent overloads. This
leads not just the faulty line but the entire area the breaker
was feeding to be out of power. Supply restoration consists
in recon£guring the faulty network so as to minimize break-
down costs: ideally we want to open and close devices in
such a way as to isolate the faulty lines and resupply a maxi-
mum of the non-faulty lines on the lost areas. PSR would be
relatively easy to solve if we knew the exact locations of the
faulty lines and the current network con£guration. For in-
stance, in case of a fault on l20 leading CB4 to open and the
boxed area to be left without power, an adequate restoration
plan, provided complete knowledge of the network state,

would be to open SD16 and SD17 to isolate the fault, close
CB4 to resupply l22 and l21, and close SD15 to have CB7
resupply l19. Unfortunately, PSR is much more complicated,
because as we explain below, the sensors used to locate the
faults and determine the devices’ positions, as well as the
actuators used to open/close devices, are unreliable.

Sensors Each device is equipped with a fault detector
and a position detector, both continuously providing action-
independent sensing information. The role of the position
detector is to indicate the device’s current position. Position
detectors have two modes: “normal” in which the informa-
tion they provide is correct, and “out of order” in which they
do not provide any information at all. The role of the fault
detectors is to help locate faults. Fault detectors have one
“normal” mode and two failure modes: “out of order” and
“liar”. In normal mode, the fault detector of a fed device in-
dicates whether or not it is upstream of a faulty line located
on the same area – upstream is to be taken in relation to the
¤ow of current whose source is a circuit-breaker feeding the
area. When not fed, a normal fault detector indicates the
same information as when it was last fed. For instance, if
only l20 is faulty, only the fault detectors of SD17 and SD18
should indicate that they are upstream of a fault; Then CB4
will open and the information provided by the fault detec-
tors of the devices in the lost area should remain the same
until they are fed again. In “liar” mode, fault detectors re-
turn the negation of the correct fault status, and in “out of
order” mode, they do not return any information at all.

Actuators Each device is also equipped with an actuator
whose role is to execute opening/closing actions and report
on their execution status. Actuators also have a “normal”,
“out of order” and “liar” modes. In normal mode, the ac-
tuator of the prescribed device execute the requested action
and sends a positive noti£cation. In “out of order” mode, the
actuator fails to execute the action (the position remains un-
changed) and sends a negative noti£cation. In “liar” mode, it
also fails to execute the action but still sends a positive noti-
£cation. We take all sensor/actuator modes to be permanent
across a supply restoration episode.

Minimizing Cost under Uncertainty Under sensor and
actuator uncertainty, PSR takes another dimension. Many
fault location and network con£guration hypotheses are con-
sistent with the observations, and each of them corresponds
to an hypothesis about the behavior modes (normal, liar)
of the sensors and actuators. Since observations can only
change when a device is operated, there is no non-intrusive
way of gathering information to eliminate hypotheses. Of-
ten, decisive information comes at the price of an increase in
breakdown costs: our best option to determine whether a line
is faulty may be to resupply it via an healthy circuit-breaker,
and check whether that breaker opens, yet leading a new area
to be temporarily lost! Minimizing breakdown costs there-
fore amounts to trading off the need to act to resupply lines
against that of acting to reduce uncertainty. This optimiza-
tion problem is extremely challenging. To the best of our
knowledge, even domain-speci£c solvers compute subopti-
mal solutions, see e.g. (Thiébaux et al. 1996).



Contingent Planning Problems
Classical planning and its generalizations can be understood
in terms of a state model consisting of a set of states, a set of
actions, and transition and observability functions. Different
planning models correspond to state models with different
types of transition and observability functions. In this paper,
we consider contingent planning, whose state model com-
bines a possibly non-deterministic transition function with a
partial observation function, as this is the class into which
PSR falls. Contingent planning models are characterized by:
(M1) A state space S,
(M2) an initial situation given by a state1 s0 ∈ S,
(M3) goal situations given by a non-empty SG ⊆ S,
(M4) actions A(s) applicable in each state s ∈ S,
(M5) a dynamics in which each action a ∈ A(s) non-

deterministically maps s into the set F (s, a) ⊆ S of
successor states,

(M6) positive costs c(s, a) of performing action a in s such
that c(s, a) = 0 for each s ∈ SG, and

(M7) observations o ∈ O(s, a) received when the actual
state after the execution of a is s.

As is well-known, a solution for such a model is not a se-
quence of states but a policy which, at each decision stage,
needs to consider the full history of observations and actions.

A simple characterization of such policies is achieved by
considering belief states. In its simplest form, the term be-
lief state refers to sets of states that the agent executing the
policy deems possible at some point. Thus, the initial belief
state b0 is the singleton {s0}, and if b denotes the belief state
prior to performing an action a, the belief state ba describing
the possible states after the execution of a is

ba

def
= ∪{F (s, a) : s ∈ b}.

The actions A(b) that can safely be applied in a situation
described by belief state b are those that are applicable in all
states compatible with b, i.e.

A(b)
def
= ∩{A(s) : s ∈ b}.

The (worst-case) cost of performing action a ∈ A(b) in be-
lief state b and the observations that may result are

c(b, a)
def
= max {c(s, a) : s ∈ b},

O(b, a)
def
= ∪{O(s, a) : s ∈ ba}.

After performing action a ∈ A(b) in belief state b, only one
observation o ∈ O(b, a) is received, and upon receipt of o,
the next possible situations are characterized by the belief bo

a

de£ned as

bo

a

def
= {s ∈ ba : o ∈ O(s, a)},

An interesting property of belief states—see e.g. (Bonet &
Geffner 2000)—is that there is a straightforward equivalence
between model M1–M7 and the following non-deterministic
and fully observable state model in belief space:

1There is no loss of generality in assuming a single initial state:
multiple initial states can be encoded as non-deterministic effects
of a start action constrained to be the only action applicable in
the initial state.

(B1) A space of belief states B,
(B2) an initial belief state b0 ∈ B,
(B3) goal belief states given by a non-empty BG ⊆ S where

b ∈ BG iff b ⊆ SG,
(B4) actions A(b) applicable in each belief state b ∈ B,
(B5) a dynamics in which every action a ∈ A(b) non-

deterministically maps b into the set F (b, a) = {bo
a :

o ∈ O(b, a)}, and
(B6) positive costs c(b, a) of performing action a in b.

A solution to state model B1–B6 is a policy mapping be-
lief states to actions. In order to characterize valid solu-
tions, we need to de£ne the set of π-trajectories, for policy
π, as the collection of all £nite tuples (b0, . . . , bn) where
bk+1 ∈ F (bk, π(bk)). Then, π is a solution to B1–B6 iff the
number of π-trajectories is £nite and every π-trajectory can
be extended to a π-trajectory ending in a goal belief state.
This ensures that the policy reaches the goal and that its cost
is well-de£ned, as

costworst(π)
def
= max {cost(τ) : τ is π-trajectory}

where cost(τ) is the cost of trajectory τ de£ned as the sum
of the costs of individual transitions within the trajectory. As
usual, an (overall) optimal policy is one of minimum cost.

The above model targets the worst-case scenario. Later
on, we will also be interested in minimizing the expected
policy cost. In that case, the non-deterministic transition
function and observation are enriched with transition and ob-
servation probabilities, so belief states are probability distri-
butions over states rather than sets of states. The correspond-
ing model in belief space is grounded in similar de£nitions
for ba and bo

a which consider such probabilities, costs are ex-
pectations rather than maxima, and £niteness is not required,
see (Bonet & Geffner 2000) for details.

General Planning Tool
As demonstrated in (Bonet & Geffner 2000; 2001), contin-
gent planning problems can be solved optimally using al-
gorithms based on heuristic search in belief space. In par-
ticular, (Bonet & Geffner 2001) presented a novel off-line
version the RTDP algorithm which solves such problems in
£nite time.2 This version of RTDP is at the core of the GPT
planner where it is used to solve a range of planning models.

The GPT planner is a domain-independent planning sys-
tem which works by converting the description of a plan-
ning problem into an appropriate state model (either in state
space or belief space) and then applying an heuristic search
algorithm. The term domain-independent refers to the fact
that GPT only uses the description of the problem in order
to solve it. Thus, for example, no domain-speci£c control
knowledge and/or heuristic functions are allowed.

Before starting the search, GPT performs a precompila-
tion step in which, among other things, it generates the part
of the state space that is reachable from s0 and computes an
admissible domain-independent heuristic estimate for each

2The standard RTDP algorithm is a learning algorithm that only
converges asymptotically.



reachable state. This heuristic, called hQMDP, is used to de-
£ne a heuristic function over belief states for the worst-case
or expected-case scenario as follows:

hworst(b)
def
= max {hQMDP(s) : s ∈ b },

hexp(b)
def
=

∑

s∈S

hQMDP(s) · b(s).

where, in the expected case, b(s) is the probability of s in
belief state b. It is not hard to show that hworst(b) and hexp(b)
are admissible heuristics for the respective contingent plan-
ning problems. Therefore, armed with these heuristics, the
search algorithm over belief states is guaranteed to return
optimal solutions.

In our benchmarks, we £nd that GPT spends almost all
its time in this precompilation step and even runs out of
memory due to the huge number of reachable states. This
limits its applicability to challenging problems such as PSR.
One way to avoid this bottleneck is to generate states and
compute the heuristic incrementally, as the search algo-
rithm explores the belief state space. In principle, comput-
ing hQMDP without necessarily generating the entire reach-
able state space is feasible using algorithms such as labeled
RTDP or LAO* (Bonet & Geffner 2001; Hansen & Zilber-
stein 2001). However, in the restricted case of our contingent
planning models, we are able to devise a more ef£cient ap-
proach by considering a slightly different admissible heuris-
tics hDYN and using classical heuristic search to dynamically
compute the estimates for the states as they are required.3

Incremental state computation and dynamic computation
of heuristic estimates are two domain-independent tech-
niques and have been implemented in the GPT system. We
empirically demonstrate their bene£ts later on in the paper.

The idea of incremental generation of the state space is
easy to implement. Simply, whenever a belief state b is ex-
panded, GPT checks if all states s ∈ b have already been
compiled (incorporated) into the model. If not, GPT expands
such states and compiles the new information. The dynamic
computation of the heuristic, however, is more subtle.

Dynamic Computation of the Heuristic
We de£ne hDYN(s) as the cost of the shortest path from state
s to a goal state. It turns out that in the worst-case scenario,
hQMDP(s) equals hDYN(s), and that in the expected-case sce-
nario, hDYN(s) is a lower bound on hQMDP(s). hDYN can be
computed with algorithms such as Dijkstra or Uninformed
cost search but in our case, where many searches will be
performed for different states, we are able to do better.

The basic idea behind the algorithm is to collect the in-
formation found in previous searches for its reuse in future
searches. This is achieved by using an IDA* search (Korf
1985) with transposition tables (Slate & Atkin 1977). In the
following discussion, we assume a deterministic transition
function; a problem with non-deterministic transitions can

3The use of classical heuristic search methods as for hDYN (or
even of RTDP or LAO* as for hQMDP) raises the question of which
heuristic function to use in such a search, i.e. which heuristic to use
for computing the heuristic. An interesting possibility is to extract
information from the problem encoding as it is done in state-of-
the-art STRIPS planners. However, we just take h = 0 here.

IDA(s : state)
begin

t = 0
while¬goal found ∧ t < ∞ do

t = boundedDFS(t, s, 0)

return t

end

boundedDFS(t : real, s : state, g : real)
begin

// base cases
f = g + TTABLE[s].v
if TTABLE[s].solved then

if f ≤ t then
goal found = true

return f

else if f > t then
return f

else if isGoal(s) then
goal found = true

return g

// expand state
new t = ∞
for a ∈ A(s) do

f = boundedDFS(t, res(s, a), g + c(s, a))
if goal found then

new t = f

break

new t = min{new t, f}

// update transposition table
v = new t− g

if TTABLE[s].v < v then
TTABLE[s].v = v

if goal found then
TTABLE[s].solved = true

return new t

end

Algorithm 1: IDA* algorithm for hDYN.

be mapped onto a deterministic one by adding actions for
the different non-deterministic effects.

The standard IDA* algorithm performs a series of cost-
bounded depth £rst searches with successively increasing
cost thresholds. As usual, the total value f of a node is com-
posed of the cost g already spent in reaching that node and of
the estimated cost h of reaching the goal. At each iteration,
the search only expands nodes whose value is below the cur-
rent threshold t, cutting off all other nodes. The threshold is
initialized to the estimated cost h of the start state (0 in our
case), and is increased at each iteration to the minimum path
value that exceeds the previous threshold.

A transposition table TTABLE is a table indexed by states
that is used to store the result of previous searches, thereby
preventing IDA* from re-exploring previously visited nodes.
Upon visiting state s with cost g and having completed
the cost-bounded search below it with result f , the trans-
position table for s is updated as TTABLE[s] = f − g.
Then, whenever s is re-visited with a cost g such that f =
g + TTABLE[s] exceeds the current threshold t, the algo-
rithm can safely increase the threshold to f without further
exploration. Otherwise the search below s is performed and
the transposition table is updated as explained above.

It is not hard to see that TTABLE[s] is always a lower
bound on hDYN(s). Thus, if the goal is found when search-
ing below s, the lower bound becomes exact and no future
searches below s are necessary. A description of this IDA*
search is given in Algorithm 1. As can be seen, the trans-
position table has two £elds: TTABLE[s].v which contains



the current lower bound on hDYN(s), and TTABLE[s].solved
which says whether this bound is exact. The table is ini-
tialized with TTABLE[s].v = h(s) (i.e. 0 in our case) and
TTABLE[s].solved = false.

PDDL-like encodings of PSR
GPT’s input language is a variant of PDDL based on the func-
tional version of STRIPS (Geffner 2000) in which states are
not merely sets of atoms but £rst-order models over £nite
domains. Terms with arbitrary nesting of function symbols
are allowed and actions may modify functional ¤uents. Like
PDDL, the language enables a clear separation of the do-
main de£nition from that of the problem instances. Figure 2
shows our encoding of the full PSR domain, together with
that of a problem instance with 4 faulty lines at unknown
locations for the simple network in Figure 3. We now de-
scribe the most important elements of the encoding.

States
A domain de£nition £rst speci£es the class of planning mod-
els the domain belongs to (keyword :model), and declares
the types, function, predicate and object symbols used.

We need types DEVICE and LINE, a type SIDE and ob-
jects side1 and side2 to distinguish between the two
sides of each device to which lines can connect, as well as
a type MODE and objects ok, out, and liar denoting the
possible fault detector and actuator modes (for a position de-
tector mode, a simple boolean suf£ces).

We represent a state of PSR as follows. The ¤uents
closed, and faulty have the obvious readings. The
functional ¤uents ac mode and fd mode return the modes
of the actuator and fault detector of a device, while pd ok
tells whether its position detector behaves normally, and
fault status tells whether the device was upstream of
a fault when last fed. Other ¤uents refer to the topology of
the network: ext tells whether a given line is connected to
a given side of a device, breaker tells whether a device is
a circuit-breaker, and opposite maps side1 to side2
and vice versa. The initial values of functions and predicates
are given in the problem instance de£nition. Some values
may not be completely known. For our example in Figure 2,
all values are known, except that of faulty: there is just
a constraint that the number of faulty lines equals 4. Note
that propositions not mentioned at all in the initial state are
taken to be false. By inspecting the domain and problem
de£nitions, GPT is able to identify and compile away those
propositions with a £xed value across the entire set of states.

Axioms
One of the dif£culties of PSR is that actions have relatively
complex effects: e.g. when we close a device, a faulty
line may become fed and affect devices upstream of it in
some way (breakers open, and switches have their fault sta-
tus changed). Being upstream is a dynamic notion which
depends on the current network con£guration, and so needs
to be computed after each action execution. Furthermore,
computing it requires an iterative or recursive traversal of
the network’s paths, and there is no intuitive way of doing
this in the body of a PDDL-style action. Consequently, to

model PSR actions while keeping the encoding independent
of a particular network, we need to axiomatize upstream as
a derived predicate. Such a predicate is one whose value is
derived from the current value of other predicates and func-
tions and cannot be directly modi£ed by actions.

We found that the best option to de£ne derived predicates
such as upstream was to use directional recursive ax-
ioms of the form (:predicate (name arguments)
condition), much as in the original version of PDDL
(McDermott 1998). The meaning is that when the condition
is true, we should infer that the value of the predicate at the
speci£ed arguments is true. Note that these inferences can-
not be contraposed and that what cannot be inferred as true
is false. This closed world assumption is a crucial strength
of PDDL axioms. Were we to use £rst order logic axioms
instead, we would be unable to axiomatize upstream (which
is the transitive closure of a relation) since transitive closure
is not £rst-order axiomatizable in general. Upstream can be
axiomatized in £rst order logic under assumptions such as
that the network is loop-free and each device is fed only by
one breaker (i.e., the closure is irre¤exive and the base rela-
tion is a function), but even under these restrictions, it is not
trivial as in the absence of the closed world assumption we
need to specify when upstream does not hold.

In our encoding, (upstream ?x ?sx ?y ?sy)
means that the current produced by some circuit-breaker
¤ows from side sx of device x to side sy of device y. It
is necessary to speak of devices’ sides rather than devices
in order to keep proper track the direction of the current
¤ow. The three conjuncts respectively ensures that the cur-
rent ¤ows (1) up to side sx of x, (2) through x, and (3) on
as far as side sy of y.4 For readability, we de£ne four other
derived predicates: con which tells whether two devices’
sides are connected via a given line, affected which tells
whether a device is upstream of a faulty line, fed which
tells whether a device is fed by checking that there is a side
of a device upstream of one of its sides (or that the device is
a closed breaker), and fed line which tells whether a line
is fed by checking that it is connected to a closed fed device.

If a pure PDDL encoding (without axioms) is required, it
is possible to automatically compile axioms into additional
context-dependent effects of existing actions or into addi-
tional actions. However, this leads to gross inef£ciency, and
in the worst-case, to exponentially larger domain descrip-
tions or exponentially longer plans (Thiébaux et al. 2003).

Actions, Observations
With the help of the derived predicates and GPT’s rami£ca-
tion rules (keyword :ramification), PSR actions can be
expressed very concisely. The syntax of a rami£cation rule
is similar to that of an action, except that the :observa-
tion and :cost £elds do not apply. While the effects of
an action become true at the next time step, those of a rami-
£cation rule become true immediately. These rules are use-
ful to specify indirect action effects and domain constraints.
When an action is executed, it effects are computed, then the

4In our experiments, we in fact use a more ef£cient but longer
encoding of upstream and other derived predicates, which is
omitted on grounds of readability and space.



(define (domain psr)
(:model (:dynamics :deterministic) (:feedback :partial))
(:types DEVICE SIDE LINE MODE)
(:functions
(ac_mode DEVICE MODE)
(fd_mode DEVICE MODE)
(opposite SIDE SIDE))

(:predicates
(ext LINE DEVICE SIDE)
(breaker DEVICE)
(closed DEVICE)
(faulty LINE)
(fault_status DEVICE)
(pd_ok DEVICE))

(:objects side1 side2 - SIDE
ok out liar - MODE
done - :boolean)

(:predicate (con ?x - DEVICE ?sx - SIDE ?y - DEVICE ?sy - SIDE)
(:and (:or (:not (= ?x ?y))

(:not (= ?sx ?sy)))
(:exists ?l - LINE

(:and (ext ?l ?x ?sx) (ext ?l ?y ?sy)))))

(:predicate (upstream ?x - DEVICE ?sx - SIDE ?y - DEVICE ?sy - SIDE)
(:and (:or (breaker ?x)

(:exists ?z - DEVICE
(:exists ?sz - SIDE

(:and (con ?z (opposite ?sz) ?x ?sx)
(upstream ?z ?sz ?x ?sx)))))

(closed ?x)
(:or (con ?x (opposite ?sx) ?y ?sy)

(:exists ?z - DEVICE
(:exists ?sz - SIDE

(:and (closed ?z)
(con ?z (opposite ?sz) ?y ?sy)
(upstream ?x ?sx ?z ?sz)))))))

(:predicate (affected ?x - DEVICE)
(:exists ?l - LINE

(:and (faulty ?l)
(:exists ?y - DEVICE

(:exists ?sy - SIDE
(:and (ext ?l ?y ?sy)

(:exists ?sx - SIDE
(upstream ?x ?sx ?y ?sy))))))))

(:predicate (fed ?x - DEVICE)
(:or (:and (breaker ?x) (closed ?x))

(:exists ?y - DEVICE
(:exists ?sy - SIDE

(:exists ?sx - SIDE
(upstream ?y ?sy ?x ?sx))))))

(:predicate (fed_line ?l - LINE)
(:exists ?x - SWITCH

(:exists ?sx - SIDE
(:and (ext ?l ?x ?sx) (closed ?x) (fed ?x)))))

(:ramification status_ramification
:parameters ?x - DEVICE
:effect (:when (fed ?x)

(:set (fault_status ?x) (:formula (affected ?x)))))

(:ramification open_ramification
:parameters ?x - DEVICE
:effect (:when (:and (breaker ?x) (affected ?x))

(:set (closed ?x) false)))

(:action open
:parameters ?x - DEVICE
:effect (:when (= (ac_mode ?x) ok) (:set (closed ?x) false))
:observation
(= (ac_mode ?x) out)
(:vector ?y - DEVICE

(:if (pd_ok ?y) (:formula (closed ?y)) false))
(:vector ?y - DEVICE

(:if (= (fd_mode ?x) ok) (:formula (fault_status ?x))
(:if (= (fd_mode ?x) liar)

(:formula (:not (fault_status ?x)))
false))))

(:action close
:parameters ?x - DEVICE
:effect (:when (= (ac_mode ?x) ok) (:set (closed ?x) true))
:observation

(= (ac_mode ?x) out)
(:vector ?y - DEVICE

(:if (pd_ok ?y) (:formula (closed ?y)) false))
(:vector ?y - DEVICE

(:if (= (fd_mode ?x) ok) (:formula (fault_status ?x))
(:if (= (fd_mode ?x) liar)

(:formula (:not (fault_status ?x)))
false))))

(:action finish
:effect (:set done true)
:cost (:sum ?l - LINE

(:if (:or (faulty ?l) (fed_line ?l)) 0 5))))

(define (problem simple)
(:domain psr)
(:objects l1 l2 l3 l4 l5 l6 l7 - LINE

cb1 cb2 cb3 sd1 sd2 sd3 sd4 sd5 sd6 sd7 - DEVICE)
(:init

(:set (opposite side1) side2) (:set (opposite side2) side1)
(:set done false)

(:set (breaker cb1) true)
(:set (breaker cb2) true)
(:set (breaker cb3) true)

(:set (ext l1 cb1 side2) true) (:set (ext l1 sd6 side1) true)
(:set (ext l2 sd6 side2) true) (:set (ext l2 sd5 side1) true)
(:set (ext l2 sd7 side2) true) (:set (ext l3 sd5 side2) true)
(:set (ext l3 sd1 side1) true) (:set (ext l4 sd1 side2) true)
(:set (ext l4 sd2 side2) true) (:set (ext l4 sd3 side2) true)
(:set (ext l5 cb2 side2) true) (:set (ext l5 sd4 side1) true)
(:set (ext l6 sd2 side1) true) (:set (ext l6 sd4 side2) true)
(:set (ext l6 sd7 side1) true) (:set (ext l7 cb3 side2) true)
(:set (ext l7 sd3 side1) true)

(:foreach ?x - DEVICE
(:set (closed ?x) true)
(:set (fd_mode ?x) ok)
(:set (pd_ok ?x) true)
(:set (ac_mode ?x) ok))

(:set (closed sd3) false)
(:set (closed sd5) false)
(:set (closed sd7) false)
(:foreach ?l - LINE (:set (faulty ?l) :in { true false }))
(= (:sum ?l - LINE (:if (faulty ?l) 1 0)) 4))

(:goal (= done true)))

Figure 2: Encoding of the Full PSR & Simple Problem

rami£cation rules are applied to the resulting state in the or-
der they appear, and only then the action’s observations and
cost are evaluated. Note that the rami£cation rules are also
applied in the initial state, before any action takes place.

In our encoding of the full PSR, PSR actions have no pre-
condition. Their effect is simply to change the position of
the device unless the actuator is abnormal. Then the rami£-
cation rules take care of setting the fault status of fed devices
appropriately (if a device is affected its status is set and oth-
erwise unset), and of opening affected breakers. The obser-
vations include the noti£cation of the operated device which
is positive iff the device’s actuator is not out of order, the
position of the devices whose position detector is normal, as
well as the fault status of the devices whose fault detector is
normal, or their negation for those whose fault detector lies.5

A pure PDDL encoding of the actions can be obtained by
simulating GPT’s rami£cation rules via an extra action treat-
ing fed devices and affected breakers, which we can easily
constrain to interleave with the other actions. Another op-
tion is to add a parameter ?c to the derived predicates, and
make their value conditional upon device c being closed.
This is achieved by replacing (closed ?x) in the present
de£nitions with (Cclosed ?c ?x) de£ned to be true
when x is closed or c = x. The actions’ effects are then eas-
ily described using the conditional version of affected.

Goal
As we want to address the full scope of the benchmark for
which there is no speci£ed goal but the request to minimize

5For space reasons the encoding in Figure 2 sloppily identi£es
the absence of information with false. However, it is possible to
create a three valued type OBS and return observations of that type.



breakdown costs, we formulate the problem as a pure opti-
mization problem. We declare a proposition done initially
false, and an action finish which makes done true and
whose cost is linear in the number of unsupplied healthy
lines. Note that all other actions have the default cost of
1. Setting the goal to done allows GPT to £nish the plan
at any step by paying the price corresponding to the current
breakdown costs. Therefore, any optimal policy found by
GPT for the goal done minimizes breakdown costs.

It is important to understand that minimal breakdown
costs cannot be achieved by supplying GPT with a restora-
tion goal such as “supply all lines that can be supplied”. The
reason is that partial observability sometimes prevents the
existence of a policy satisfying such a goal, even though ac-
tions can still be taken to reduce breakdown costs.6

Comparison with AR encodings

Our encoding of PSR differs substantially from the AR en-
codings used by MBP (Bertoli et al. 2002), which are propo-
sitional in nature and are automatically generated for a given
network by a custom procedure. The procedure computes all
minimal acyclic paths in the network and uses those to deter-
mine all the conditions on device positions and line modes
under which a given device is affected by an action. Unfortu-
nately, the number of these conditions and consequently the
action description can grow exponentially large in the num-
ber of devices in the network. This together with the propo-
sitional character of AR leads to huge descriptions (over 8
MB for the rural network in Figure 1), which is to be con-
trasted with our concise network-independent encoding. On
the other hand, the number of propositions in the AR en-
coding is smaller than that induced by the present one, and
this positively impacts on the ef£ciency of BDD-based plan-
ners such as MBP. Indeed, we found that a propositional
expansion of our encoding into AR caused computational
dif£culties for MBP and that vice-versa the AR encoding
generated by the procedure was unmanageable for GPT.

The goal constitutes another difference between the two
encodings. Since MBP does not reason about plan cost,
(Bertoli et al. 2002) treats PSR as the problem of £nding
a contingent plan achieving the goal of supplying all suppli-
able lines, under various additional assumptions (D1-D3) to
be discused below. As deciding which lines are suppliable
in a given state is a non-trivial problem, the AR encoding
identi£es suppliable with a stricter condition of existence of
a “safe path” between a breaker and the line, that is a path
consisting entirely of non-faulty lines and maneuverable de-
vices (i.e. with normal actuators). As we argued above, GPT
is able to act optimally even when no such plan exists. We
wish to emphasize that our encoding is targeted at solving a

6For a small example, consider a linear network with 3 lines,
one breaker at each end and two switches. From left to right, let
us call those CB1, SD1, SD2, CB2. All are initially closed, except
SD2 which is open. There is at least one fault on the area fed
by CB1, all fault detectors are out of order, the position detector of
CB2 is out of order, and everything else is correct. We leave it as an
exercise to the reader to show that no policy can decide whether it
has supplied all suppliable lines, and that on the other hand opening
SD1 and closing CB1 reduces the expected breakdown costs.

typically much harder problem, requiring optimization.

Experimental Results
Domains, Algorithms, and Optimization Criteria
Our experiments involve several variants of the full PSR
given above, the comparison of several heuristics and algo-
rithms for computing them, and two optimization criteria.

Domains We consider the following modi£cations to the
full PSR domain in Figure 2.

(D1) We prevent closing actions to power loops or cre-
ate areas fed by multiple breakers by setting the pre-
condition of (close ?x) to (:not (bad ?x)),
where bad is true for switches fed on two sides, and
for breakers connected to a loopy part of the network.

(D2) We prevent GPT to open a device which is currently
fed by setting the precondition of (open ?x) to
(:not (fed ?x)), and favor closing over open-
ing when breaking ties.

(D3) We give GPT the goal of supplying all lines than can
be supplied, where we identify suppliable with the
stricter notion of safe path existence explained above.

(D4) We make the fault detector of a unfed device return no
information rather than the same information it was
returning when last fed.

Modi£cations D1-D3 lead GPT to address essentially the
same domain as MBP, under the same assumptions as the
experiments reported in (Bertoli et al. 2002). This enables a
somewhat fairer comparison of the strength and weaknesses
of both planners, although GPT still attempts to minimize
action costs while MBP does not. D1 is useful on its own, as
no loops and no double feeding is a standard assumption in
supply restoration. D4 enables us to address larger problem
instances than would be normally possible: it obviates the
need to remember fault status and make them state variables,
which signi£cantly reduces the number of states.

We experiment with the following domain variations,
standard (std): the full PSR domain with modi£cation D1,
mbp: the full domain with modi£cations D1–D3, as well
as std* and mbp*, which result from applying modi£cation
D4 to std and mbp, respectively.

Algorithms For each domain, we experiment with the fol-
lowing 3 algorithms, org.: the original implementation of
RTDP with precompilation step and hQMDP heuristic, incr.:
RTDP with incremental state space generation and dynamic
computation of hDYN, and h=0: RTDP with incremental state
space generation seeded with h(b) = 0 for all belief states b.

Optimization Criteria We produce policies with minimal
expected (exp) or worst-case (wst) cost. For mbp and mbp∗

domains, where the supply restoration goal is given, the cost
only includes (unit) action costs, not breakdown costs. For
the exp criteria, we take all initial states in each problem
instance to be equiprobable, as this avoids making up fault
probabilities. In principle, however, GPT can handle any dis-
tribution. In particular, it would be straightforward to spec-
ify independent fault and mode probabilities and consider
the corresponding distribution.



SD3

SD7

l5 l6 l4

l1

l7

l3l2

CB1

CB2

CB3

SD6

SD4

SD5

SD2

SD1

l4

l1 l3l2

CB1

CB2 l5

SD1 SD2 SD3

SD4

CB SD1

l1 lm

SDm−1

simple basic

linear (m)
SDm

Figure 3: Small Test Networks

Networks, Problems and Results

Small Networks We £rst tested GPT on the small net-
works basic, simple and linear in Figure 3. For ba-
sic, we considered 5 problem instances b1–b5, where bn
has at most n faulty lines at unknown locations. For sim-
ple, we considered 7 instances s1–s7, where sn has ex-
actly n faulty lines at unknown locations (e.g. the PDDL
encoding of s4 is shown in Figure 2). Similarly, lm en is
an instance of the linear network with m lines and exactly n
faulty lines – we considered 12 such instances. All experi-
ments with small networks were run on a standalone Ultra-
10 with 300MB of memory and a clock speed of 440MHz.

Figures 4 and 5 show the results obtained by GPT with in-
cremental state space generation and the hDYN heuristic (incr.
algorithm) for the various domain versions and optimization
criteria. The left-hand sides of the tables refer to domains
mbp and std, and the right hand-sides to the * versions mbp*
and std*. The tables show the run time (sec.), the number of
states generated, and the optimal policy cost. Note that the
cost of mbp(*) and std(*) policies are incomparable. A dash
(–) means that GPT ran out of memory.

The original version of GPT (org. algorithm) run out of
memory during the precompilation step for basically all but
the tiniest instances. As shown in the £gures, the incr. algo-
rithm is at least able to cope with all instances of the * do-
main versions which lack the additional exponential growth
of the number of reachable states. The price to pay for the
time and memory gain provided by the * versions is a re-
duction in policy quality. For instance, even in a very sim-
ple instance such as l4 e2, the cost of the optimal policy
for mbp/exp (resp. std/exp) is 2.50 (resp. 9.16), and that for
mbp*/exp (resp. std*/exp) is 3.00 (resp. 9.50).

Another observation is that the run times for simple and
linear, for which we know the exact number of faults,
exhibit an easy-hard-easy pattern. The same phenomenon
was observed in (Bertoli et al. 2002), and was attributed to
the ability of MBP’s symbolic algorithm to exploit problem
structure. Since GPT’s algorithm enumerates states and is
unable to exploit such structure, it appears that the real cause
for the pattern is that the number of states is dictated by the
number of ways of choosing n faulty lines among m, which
peaks at n = m/2. We also note that critically constrained
std worst-case instances are much easier to solve optimally
than their expected-case counterpart. This is because when
there are at least as many faults as breakers, in the worst
case nothing is resuppliable and so the optimal policy is to
do nothing, while in the expected case the policy must still
prescribe what to do for other situations besides the worst.

Sticking with incremental state generation and * versions,

regular versions * versions
prob. time cost states time cost states

mbp/wst/incr mbp*/wst/incr
l4 e0 0.14 0.00 2 0.15 0.00 2
l4 e2 0.34 4.00 507 0.30 4.00 310
l4 e4 0.14 0.00 7 0.15 0.00 7
l6 e0 0.14 0.00 2 0.15 0.00 2
l6 e2 4.15 5.00 5838 2.74 5.00 3152
l6 e4 3.20 4.00 6073 1.60 4.00 2418
l6 e6 0.14 0.00 9 0.17 0.00 9
l8 e0 0.14 0.00 2 0.19 0.00 2
l8 e2 57.40 5.00 42167 30.43 5.00 20880
l8 e4 – – – 139.04 6.00 55383
l8 e6 26.54 4.00 30020 12.47 4.00 12255
l8 e8 0.19 0.00 11 0.19 0.00 11

mbp/exp/incr mbp*/exp/incr
l4 e0 0.26 0.00 2 0.32 0.00 2
l4 e2 0.55 2.50 525 0.52 3.00 316
l4 e4 0.27 0.00 7 0.28 0.00 7
l6 e0 0.27 0.00 2 0.29 0.00 2
l6 e2 6.71 3.20 6950 4.31 3.66 3316
l6 e4 7.67 2.86 10716 4.69 3.20 3056
l6 e6 0.27 0.00 9 0.31 0.00 9
l8 e0 0.28 0.00 2 0.32 0.00 2
l8 e2 100.89 3.57 56126 52.59 4.00 24902
l8 e4 – – – 236.28 3.97 59376
l8 e6 278.88 2.75 136024 47.79 2.92 22334
l8 e8 0.34 0.00 11 0.32 0.00 11

std/wst/incr std*/wst/incr
l4 e0 0.15 0.00 53 0.17 0.00 53
l4 e2 0.51 10.00 1399 0.30 10.00 549
l4 e4 0.14 0.00 42 0.18 0.00 42
l6 e0 0.17 0.00 86 0.16 0.00 86
l6 e2 18.22 20.00 25360 3.35 20.00 5110
l6 e4 24.26 10.00 46695 2.15 10.00 4526
l6 e6 0.16 0.00 72 0.16 0.00 72
l8 e0 0.23 0.00 123 0.22 0.00 123
l8 e2 – – – 60.11 30.00 37718
l8 e4 – – – 109.97 20.00 85452
l8 e6 – – – 22.41 10.00 31157
l8 e8 0.23 0.00 110 0.19 0.00 110

std/exp/incr std*/exp/incr
l4 e0 0.28 0.00 53 0.30 0.00 53
l4 e2 0.97 9.16 1726 0.64 9.50 626
l4 e4 0.28 0.00 42 0.30 0.00 42
l6 e0 0.29 0.00 86 0.29 0.00 86
l6 e2 30.37 16.53 30809 8.37 17.00 6627
l6 e4 32.13 10.00 51569 3.34 10.00 5385
l6 e6 0.29 0.00 72 0.29 0.00 72
l8 e0 0.37 0.00 123 0.35 0.00 123
l8 e2 – – – 151.65 24.00 50538
l8 e4 – – – 521.30 19.42 118752
l8 e6 – – – 24.11 10.00 31907
l8 e8 0.37 0.00 110 0.33 0.00 110

Figure 4: Results for linear (incr. algorithm)

Figure 6 evaluates the bene£ts of the hDYN heuristic (incr.
algorithm) in comparison to h = 0. The run time improve-
ment is dramatic, up to the point where even some std*/exp
instances are not solvable with the zero heuristic. Similar
results are obtained with the other domains and criteria.

Larger Networks After testing GPT on small instances,
we considered the challenging rural network instance
solved (non-optimally) by MBP. In the original instance, see
(Bertoli et al. 2002), everything about the rural network in
Figure 1 is known to be correct, except the mode of lines l3
and l15, the mode of the fault detectors of SD1, SD2, SD3,
S26, as well as the mode of the position detector and actu-
ator of SD26 which are unknown. This leads to 1944 initial
states and to a myriad of reachable states (' 1020 for std).

Unfortunately, even equipped with hDYN, GPT was unable
to solve this instance. To identify the largest scaled down
version of this problem that GPT could solve, we consid-
ered two variations of the rural network. simplified-
rural is like rural except that we remove all interme-
diate switches on areas other than that fed by CB1. On



regular versions * versions
prob. time cost states time cost states

mbp/wst/incr mbp*/wst/incr
b1 0.58 5.00 1065 0.34 5.00 445
b2 2.16 5.00 3992 1.00 5.00 1341
b3 4.31 6.00 7091 1.85 6.00 2115
b4 4.77 6.00 7952 2.07 6.00 2452
b5 4.40 6.00 7862 2.05 6.00 2510
s1 46.86 5.00 28987 9.28 5.00 5552
s2 – – – 42.72 8.00 22720
s3 – – – 105.72 9.00 36689
s4 – – – 107.89 8.00 31489
s5 354.60 6.00 198621 26.30 6.00 14909
s6 7.51 4.00 10935 2.35 4.00 2862
s7 0.17 0.00 13 0.18 0.00 13

mbp/exp/incr mbp*/exp/incr
b1 0.80 3.00 1065 0.52 3.16 466
b2 2.39 3.31 3689 2.22 3.87 1377
b3 6.15 3.38 6905 4.23 3.84 2178
b4 7.85 3.32 7825 4.16 3.74 2532
b5 8.67 3.31 8469 4.68 3.71 2599
s1 47.53 3.28 28987 8.70 3.42 5155
s2 – – – 42.25 5.04 22091
s3 – – – 103.28 5.42 36312
s4 – – – 247.63 5.31 32190
s5 – – – 115.31 4.42 16775
s6 30.14 2.42 31614 6.45 3.00 3967
s7 0.30 0.00 13 0.33 0.00 13

std/wst/incr std*/wst/incr
b1 1.13 5.00 2572 0.60 5.00 1096
b2 5.41 15.00 12200 0.89 15.00 2192
b3 10.21 15.00 24005 1.30 15.00 3378
b4 10.74 15.00 26011 1.45 15.00 3862
b5 10.96 15.00 26022 1.48 15.00 3916
s1 61.58 4.00 44412 16.68 5.00 11174
s2 – – – 75.74 9.00 37523
s3 – – – 58.48 20.00 44735
s4 – – – 45.87 15.00 39069
s5 – – – 17.79 10.00 20137
s6 29.69 5.00 48444 2.45 5.00 4736
s7 0.22 0.00 123 0.18 0.00 123

std/exp/incr std*/exp/incr
b1 1.12 3.00 2415 0.72 3.16 1039
b2 9.31 6.43 15894 3.17 7.00 2891
b3 26.87 7.23 33131 9.90 7.69 4522
b4 30.53 7.03 37691 7.97 7.32 5219
b5 33.48 6.90 39373 8.50 7.12 5252
s1 70.48 3.28 50222 13.14 3.42 9376
s2 – – – 62.86 5.28 36484
s3 – – – 175.24 8.85 61411
s4 – – – 379.12 10.68 60145
s5 – – – 40.96 8.09 28388
s6 29.95 4.28 48444 2.99 4.28 5288
s7 0.33 0.00 123 0.31 0.00 123

Figure 5: Results for basic and simple (incr. algorithm)

those areas, we only keep the breaker and open switches,
which leaves us with 7 breakers, 11 lines, and 11 switches.
small-rural is further reduced by removing all break-
ers except CB1, CB5 and CB6 as well as the area attached
to them, so are left with 3 breakers, 7 lines, and 6 switches.
For both networks, we considered 8 problem instances with
an increasing degree of uncertainty peaking at that of the
original. These instances comprise 2, 4, 8, 24, 72, 216, 648,
and 1944 initial states, respectively. Figure 7 shows the run
time (sec.), optimal policy cost, and number of states gener-
ated by the incr. algorithm for mbp* and std* under the two
optimization criteria. We used a time-shared server with a
similar processor as before and 4GB of memory, only half
of which GPT was allowed to use.

The incremental state generation and dynamic computa-
tion of hDYN pays off again: the org. and h = 0 algorithms
were unable to solve any of those instances within the allo-
cated memory. Although GPT is still not able to solve the
larger instances, it is worth noting that some of those it can
solve are big. Even the subset of states generated with hDYN

* version
prob. incr. h = 0

std*/exp
l4 e0 0.30 0.29
l4 e2 0.64 3.07
l4 e4 0.30 0.30
l6 e0 0.29 0.27
l6 e2 8.37 139.80
l6 e4 3.34 177.88
l6 e6 0.29 0.28
l8 e0 0.35 0.28
l8 e2 151.65 3683.23
l8 e4 521.30 –
l8 e6 24.11 –
l8 e8 0.33 0.31

* version
prob. incr. h = 0

std*/exp
s1 13.14 58.34
s2 62.86 1473.63
s3 175.24 12054.37
s4 379.12 14785.79
s5 40.96 3322.15
s6 2.99 194.88
s7 0.31 0.29

Figure 6: Run Times for incr. and h = 0 on Small Instances

grows near to a million, which is very signi£cant for optimal
planning in a partially observable domain. It is clear that we
are reaching the limits of what can be achieved with algo-
rithms based on explicit state representations, and that the
use of compact representations is the key to further improve-
ment of these results. Symbolic representations are indeed
one of the reasons behind the success of the MBP planner:
it solved the original rural network instance in a few sec-
onds following a 30mn compilation of the network descrip-
tion into ef£cient data structures. Another obvious reason
behind the discrepancy between the run-times of MBP and
GPT on similar problems is that GPT always optimizes cost.
E.g., on small networks, this causes the mbp* domain to be
only somewhat easier for GPT than its std* counterpart.

Conclusion, Future, and Related Work
We believe that the systematic (and even competitive) con-
frontation of realistic benchmarks by general-purpose plan-
ners is a key to further advance the £eld of contingent plan-
ning. This paper contributes to the demonstration of this
idea, explaining how the PSR benchmark motivated the de-
velopment of new techniques which are shown to increase
the ability of the GPT planner to cope with larger problem
instances. Our technical contribution to contingent plan-
ning, namely the incremental computation of an admissi-
ble domain-independent heuristic coinciding with hQMDP in
pure non-deterministic domains, is applicable in conjunction
with virtually any explicit heuristic search algorithm in be-
lief space, and is particularly useful when even the reachable
state space is too large to be entirely explored. For all but the
smallest PSR instances, the bene£ts of incremental computa-
tion are clear as the original version of GPT could not com-
plete the precompilation step. Yet, we plan to do a compre-
hensive comparison of hQMDP and hDYN over other domains.
(Bertoli & Cimatti 2002) presents another, perhaps better in-
formed, heuristic for contingent planning which does not re-
quire the complete generation of the state space. However,
it is not admissible and is therefore better suited to a hill-
climbing search than to the search for an optimal solution.

By presenting a PDDL-like encoding of PSR, this paper
contributes to its future as a benchmark. In particular, except
perhaps for the reintroduction of axioms into PDDL, there is
now no obstacle to PSR’s featuring in a planning competi-
tion. Ours is the £rst published network-independent en-
coding: (Thiébaux & Cordier 2001) only provides an in-
formal description, while the propositional AR encoding in



small rural simplified rural
rsm1 rsm2 rsm3 rsm4 rsm5 rsm6 rsm7 rsm8 rsp1 rsp2 rsp3 rsp4 rsp5

time 0.59 2.74 5.42 24.57 108.54 583.38 3950.55 36196.09 8.56 240.88 481.05 9339.97 –
mbp*/wst/incr cost 3.00 6.00 6.00 8.00 8.00 8.00 9.00 9.00 3.00 6.00 6.00 8.00 –

states 457 2096 4099 10082 30322 91015 273386 822475 729 20673 38646 639947 –
time 0.74 2.47 4.82 19.69 73.73 388.63 3153.21 81541.57 8.53 231.79 460.43 1922.22 15384.11

mbp*/exp/incr cost 2.00 3.75 3.75 4.17 4.17 4.17 4.40 5.19 2.00 3.75 3.75 4.17 4.17
states 457 1843 3679 9491 28666 84694 266034 822026 729 20103 37429 148129 890097
time 1.26 4.97 9.04 28.81 114.49 574.59 7076.00 – 80.86 2039.79 3794.65 – –

std*/wst/incr cost 3.00 6.00 6.00 11.00 11.00 11.00 12.00 – 3.00 6.00 6.00 – –
states 1138 4519 8225 19880 61427 183577 615771 – 6929 148631 279134 – –
time 1.458 3.86 7.23 33.53 132.28 647.39 6602.78 – 82.20 1836.27 3352.00 – –

std*/exp/incr cost 2.00 3.75 3.75 5.83 5.83 5.83 6.06 – 2.00 3.75 3.75 – –
states 1138 3414 6473 19587 56668 168541 528050 – 6929 131668 243421 – –

Figure 7: Results for small rural and simplified rural (incr. algorithm)

(Bertoli et al. 2002) is generated by a special-purpose pro-
cedure based on the analysis of the paths in the network of
interest. In a sense, this makes our experiments on PSR the
£rst 100% domain-independent ones, as knowledge of the
structure of particular networks was not even used in the
encoding, let alone in solving the problem. In the future,
we plan to encode the numeric aspects of the benchmark
(the constraints on the capacity of breakers and lines), and
study the impact on planner behavior and optimal policies.
A straightforward but also interesting variation would be to
assign a cost not just to the £nal states of a plan, but also to
intermediate states, and trade that extra cost against the need
to gain information by discounting costs along trajectories.

Finally, this paper is the £rst to report the generation of
optimal solutions for PSR – albeit still for rather small net-
works and in far longer than real-time. Special-purpose PSR
software such as SYDRE achieves real-time performance on
large networks (hundreds of devices and lines), but returns
suboptimal policies which do not attempt to gain informa-
tion (Thiébaux et al. 1996). We plan to compare the qual-
ity of the behaviors of GPT and SYDRE. Burton (Williams
& Nayak 1997) is a general-purpose planner based on the
compilation of a planning problem into a real-time execu-
tive, which has been applied to problems in spacecraft en-
gine recon£guration close to PSR. However, Burton as-
sumes total observability and deterministic actions: as in
the SyDRe system, uncertainty in the problem is handled by
a mode-identi£cation module, which determines the most
likely state of the system and passes it onto Burton. The
symbolic MBP planner was able to obtain extremely impres-
sive results with a simpler version of PSR for which the sup-
ply restoration goal is given and optimization is not required.
This leads to the conclusion that a combination of the fea-
tures of GPT and MBP i.e., admissible heuristic search in the
belief space, restriction to reachable (belief) states, and use
of compact BDD-like representations to obviate the need for
explicit state enumeration, could be a killer for PSR.

Acknowledgements Thanks to Erik Khoo and John
Slaney for their valuable input to the PDDL encoding of PSR.
Blai Bonet is supported by grants from NSF, ONR, AFOSR,
DoD MURI program, and by a USB/CONICIT fellowship
from Venezuela.

References
Barto, A.; Bardtke, S.; and Singh, S. 1995. Learning to act using
real-time dynamic programming. Art. Int. 72:81–138.

Bertoli, P., and Cimatti, A. 2002. Improving heuristics for plan-
ning as search in belief space. In AIPS, 143–152.
Bertoli, P.; Cimatti, A.; Roveri, M.; and Traverso, P. 2001. Plan-
ning in nondeterministic domains under partial observability. In
IJCAI, 473–478.
Bertoli, P.; Cimatti, A.; Slaney, J.; and Thiébaux, S. 2002. Solving
power supply restoration problems with planning via symbolic
model checking. In ECAI, 576–580.
Bonet, B., and Geffner, H. 2000. Planning with incomplete infor-
mation as heuristic search in belief space. In AIPS, 52–61.
Bonet, B., and Geffner, H. 2001. Gpt: A tool for planning with
uncertainty and partial information. In IJCAI Workshop on Plan-
ning under Uncertainty and Incomplete Information, 82–87.
Cassandra, A.; Kaelbling, L.; and Kurien, J. 1996. Acting under
Uncertainty: Discrete Bayesian Models for Mobile-Robot Navi-
gation. In IROS-96.
Geffner, H. 2000. Functional strips: a more ¤exible language for
planning and problem solving. In Minker, J., ed., Logic-Based
Arti£cial Intelligence. Kluwer.
Hansen, E., and Feng, Z. 2000. Dynamic programming for POM-
PDs using a factored state representation. In AIPS, 130–139.
Hansen, E., and Zilberstein, S. 2001. LAO∗: A heuristic search
algorithm that £nds solutions with loops. Art. Int. 129:35–62.
Karlsson, L. 2001. Conditional progressive planning under un-
certainty. In IJCAI, 431–436.
Korf, R. 1985. Iterative-deepening A*: An optimal admissible
tree search. In IJCAI, 1034–1036.
Majercik, S., and Littman, M. 1999. Contingent planning under
uncertainty via stochastic satis£ability. In AAAI, 549–556.
McDermott, D. 1998. PDDL – The Planning Domain De£nition
Language, Version 1.2. Technical Report CVC TR-98-003/DCS
TR-1165, Yale Center for Computational Vision and Control.
Slate, D., and Atkin, L. 1977. CHESS 4.5 – the Northwestern
University chess program. In Frey, P., ed., Chess Skill in Man and
Machine. Springer-Verlag. 82–118.
Thiébaux, S., and Cordier, M.-O. 2001. Supply restoration in
power distribution systems — a benchmark for planning under
uncertainty. In ECP, 85–95.
Thiébaux, S.; Cordier, M.-O.; Jehl, O.; and Krivine, J.-P. 1996.
Supply restoration in power distribution systems — a case study
in integrating model-based diagnosis and repair planning. In UAI,
525–532.
Thiébaux, S.; Hoffmann, J.; and Nebel, B. 2003. In de-
fense of PDDL axioms. Technical Report TR-ARP-01-03, ANU.
http : //csl.anu.edu.au/∼thiebaux/paper/trarp0103.pdf.

Williams, B., and Nayak, P. 1997. A reactive planner for a model-
based executive. In IJCAI, 1178–1185.


