
Solving Stochastic Shortest-Path Problems with RTDP

Blai Bonet
Cognitive Systems Laboratory

Deptartment of Computer Science
University of California, Los Angeles

Los Angeles, CA 90024

Héctor Geffner
Departamento de Computación

Universidad Simón Boĺıvar
Aptdo. 89000, Caracas 1080-A

Venezuela

Abstract

We present a modification of the Real-Time Dy-
namic Programming (rtdp) algorithm that makes
it a genuine off-line algorithm for solving Stochas-
tic Shortest-Path problems. Also, a new domain-
independent and admissible heuristic is presented for
Stochastic Shortest-Path problems. The new algo-
rithm and heuristic are compared with Value Itera-
tion over benchmark problems with large state spaces.
The results show that the modified rtdp algorithm
can beat standard Value Iteration by several orders of
magnitude in problems with large state space.

Introduction

The class of Stochastic Shortest-Path (ssp) problems
is a subset of Markov Decision Processes (mdps) that is
of central importance to AI: they are the natural gen-
eralization of the classic search model to the case of
stochastic transitions and general cost functions. ssps
had been recently used to model a broad range of
problems going from robot navigation and control of
non-deterministic systems to stochastic game-playing
and planning under uncertainty and partial informa-
tion (Bertsekas & Tsitsiklis 1996; Sutton & Barto 1998;
Bonet & Geffner 2000). The theory of mdps had re-
ceived great attention from the AI community for three
important reasons. First, it provides an easy frame-
work for modeling complex real-life problems that have
large state-space (even infinite) and complex dynamics
and cost functions. Second, mdps provide mathemat-
ical foundation for independently-developed learning
algorithms in Reinforcement Learning. And third, gen-
eral and efficient algorithms for solving mdps had been
developed, the most important being Value Iteration
and Policy Iteration.

As the name suggests, an ssp problem is an mdp
problem that has positive costs and an absorbing goal
state. A solution for an ssp is a strategy that leads to
the goal with minimum expected cost from any other
state. Quite often, we are only interested in how to
get to the goal from a fixed initial state instead of
knowing the general solution; the reason being that
the state space usually contains many states that are
irrelevant. Real-Time Dynamic Programming (rtdp)
(Barto, Bradtke, & Singh 1995) is an algorithm for

finding such partial solutions. However, rtdp is a prob-
abilistic algorithm that only converges asymptotically.
Hence, although there has been experimental results
showing that rtdp converges faster than other algo-
rithms, it cannot be used as a off-line algorithm.

The contribution of this paper is threefold. First, we
present a simple method for terminating the rtdp al-
gorithm in finite time while preserving optimality guar-
antees. The method is formally described, its correct-
ness is proved and a simple implementation is given.
Second, we show how to define a general domain-
independent and admissible heuristic function for ssps
problems that can be used with rtdp (and other search
algorithms). The term domain-independent refers to
the fact that the definition and computation method
are general and work for all ssps. Finally, we show
that the modified rtdp algorithm with the proposed
heuristic outperforms the standard Value Iteration al-
gorithm by orders of magnitude in some benchmark
problems that have large state spaces.

The paper is organized as follows. The next sec-
tion contains formal descriptions of the mdp and ssp
model, and the rtdp algorithm. In the third sec-
tion, we show the modification of the rtdp algorithm,
prove its correctness and describe a simple implemen-
tation. The domain-independent heuristic function is
defined in the fourth section along with an explanation
of how to incrementally compute it within the rtdp
algorithm. Then, in the fifth section, the new algo-
rithm and heuristic are tested against Value Iteration.
The paper finishes with discussion that includes related
work, a summary and future work.

Markov Decision Processes

This section contains a brief review of the mdp, ssp,
and rtdp algorithm. We use notation and presentation
style as in (Bertsekas 1995); the reader is referred there
for a good exposition of the field.

The mdp model assumes the existence of a physical
system that evolves in discrete time and that is con-
trolled by an agent. The system dynamics is governed
by probabilistic transition functions that maps states
and controls to states. At every time, the agent incurs
in a cost that depends in the current state of the sys-
tem and the applied control. Thus, the task is to find a

control strategy (also known as policy) that minimize
the expected total cost over the infinite horizon time
setting. Formally, an mdp is defined by

(M1) A finite state space S = {1, . . . , n},

(M2) a finite set of controls U(i) for each state i ∈ S,

(M3) transition probabilities p(i, u, j) for all u ∈ U(i)
that are equal to the probability of the next state
being j after applying control u in state i, and

(M4) a cost g(i, u) associated to u ∈ U(i) and i ∈ S.

A strategy or policy π is an infinite sequence
(µ0, µ1, . . .) of functions where µk maps states to con-
trols so that the agent applies the control µk(i) in
state xk = i at time k; the only restriction being that
µk(i) ∈ U(i) for all i ∈ S. If π = (µ, µ, . . .), the policy
is called stationary (i.e., the control does not depend
on time) and it is simply denoted by µ. The cost asso-
ciated to policy π when the system starts at state x0

is defined as

Jπ(x0) = lim
N→∞

E

{

N−1
∑

k=0

αkg(xk, µk(xk))

}

(1)

where the expectation is taken with respect to the
probability distribution induced by the transition
probabilities, and where the number α ∈ [0, 1], called
the discount factor, is used to discount future costs at a
geometric rate. The mdp problem is to find an optimal
policy π∗ satisfying

J∗(i)
def
= Jπ∗(i) ≤ Jπ(i), i = 1, . . . , n, (2)

for every other policy π. Although there could be none
or more than one optimal policy, the optimal cost vec-
tor J∗ is always unique. The existence of π∗ and how
to compute it are non-trivial mathematical problems.
However, when α < 1 the optimal policy always exists
and, more important, there exists a stationary policy
that is optimal. In such case, J∗ is the unique solution
to the Bellman Optimality equations:

J∗(i) = min
u∈U(i)

g(i, u) + α

n
∑

j=1

p(i, u, j)J∗(j). (3)

Also, if J∗ is a solution for (3) then the greedy station-
ary policy µ∗ with respect to J∗:

µ∗(i) = argmin
u∈U(i)







g(i, u) + α

n
∑

j=1

p(i, u, j)J∗(j)







(4)

is an optimal stationary policy for the mdp. Therefore,
solving the mdp problem is equivalent to solving (3).

The Value Iteration algorithm computes J∗ itera-
tively by using (3) as an update rule. Indeed, starting
from any vector J , Value Iteration computes a succes-
sion of vectors {Jk} as

J0(i) = J(i) (5)

Jk+1(i) = min
u∈U(i)

g(i, u) + α

n
∑

j=1

p(i, u, j)Jk(j). (6)

The algorithm stops when Jk+1 = Jk, or when the
residual maxi∈S |Jk+1(i) − Jk(i)| is sufficiently small.
In the latter case, when α < 1, the suboptimality of the
resulting policy is bounded by a constant multiplied by
the residual.

Stochastic Shortest-Path Problems

A Stochastic Shortest-Path problem is an mdp prob-
lem in which the state space S = {1, . . . , n, t} is such
that t is a goal (target) state that is absorbing (i.e.,
p(t, u, t) = 1 and g(t, u) = 0 for all u ∈ U(t)), and the
discount factor α = 1. In this case, the existence of
optimal policies (and optimal stationary policies) is a
major mathematical problem. However, the existence
is guarantee under the following reasonable conditions:

(A1) There exists a policy that achieves the goal with
probability 1 from any starting state.

(A2) All costs are positive.

The first assumption just expresses the fact that the
problem admits a well-behaved solution. Such policies
are known as proper policies. The second assumption,
in the other hand, guarantees that all improper policies
incurs in infinite cost for at least one state. Thus, both
assumptions preclude cases where the optimal solution
might “wander” around without never getting to the
goal. For example, a problem having a zero-cost cycle
(in state space) violates the second assumption.

As mentioned in the Introduction, often we are only
interested in knowing how to go from a fixed initial
state, say 1, to the goal state. The optimal solution in
this case is an partial optimal stationary policy µ such
that µ(i) = µ∗(i) for all states i that are reachable
from 1 when using the optimal policy µ∗; the so-called
relevant states when starting from 1.1

Finding a partial optimal policy can be consider-
ably simpler, the extreme case when the set of relevant
states is finite and the complete state space is infinite.
Thus, the question of how to find partial optimal poli-
cies is of great relevance. One algorithm for that is
Real-Time Dynamic Programming.

Real-Time Dynamic Programming

The rtdp algorithm is the stochastic generalization
of Korf’s lrta* algorithm for heuristic search (Korf
1990). rtdp is a probabilistic algorithm that computes
a partial optimal policy by performing successive walks
(also called trials) on the state space. Each trial starts
at the initial state 1 and finishes at the goal state t.
At all times k, the rtdp algorithm maintains an ap-
proximation Jk to J∗ that is used to greedly select a
control uk to apply in the current state xk. Initially, J0

is implicitly stored as an heuristic function h(·). Then,
every time a control uk is selected in state xk, a new

1Note that the relevant states are defined with respect to
µ∗ so any two optimal policies might generate different sets
of relevant states. A (stronger) unique definition could in-
volve all optimal policies simultaneously but we don’t need
that for our purposes.

1. Initialize current state x = 1,

2. Evaluate each control u ∈ U(x) as

Q(x, u) = g(x, u) +
∑

i∈S

p(x, u, i)J(i)

where J(i) = H(i) (resp. h(i)) if i ∈ H (resp. i 6∈ H).

3. Choose control u that minimizes Q(x, u) breaking
ties randomly (or in a systematic way),

4. Update H(x) to Q(x,u),

5. Generate next state i with probability p(x,u, i),

6. Exit if i = t, else set x = i and go to 2.

Figure 1: A trial of the rtdp algorithm.

approximation Jk+1 is computed as Jk+1(x) = Jk(x)
if x 6= xk, and

Jk+1(xk) = g(xk, uk) +

n
∑

i=1

p(xk, uk, i)Jk(i). (7)

Since Jk differs from J0 at most in k states, Jk can be
stored efficiently into a hash-table H. Initially, H is
empty and the value H(x) is given by h(x), then every
time a control is selected an update (7) is applied to H
such that Jk can be recovered from H and h. Figure 1
shows a description of an rtdp trial.

It is known that under assumptions A1 and A2, the
rtdp trials eventually transverse minimum-cost paths
from the initial state to the goal state if the heuristic
function is admissible; i.e. if 0 ≤ h(i) ≤ J∗(i) for all
i ∈ S (see (Barto, Bradtke, & Singh 1995; Bertsekas &
Tsitsiklis 1996)).

The goodness of rtdp had been noted by different
researchers in experimental results in which rtdp usu-
ally converge faster than Value Iteration in problem
withs large state spaces (Barto, Bradtke, & Singh 1995;
Hansen & Zilberstein 2001). Unfortunately, the con-
vergence for rtdp holds only asymptotically so rtdp
is not an authentic off-line algorithm. To make it off-
line, we need a method for terminating the trials while
preserving some guarantees.

An Off-line RTDP Algorithm
In this section, we present a modification of the rtdp
algorithm that terminates the trials when a given pre-
cision had been achieved. The modification is called
the stopping rule and uses a single parameter ε > 0.
In order to convey the idea, we give two definitions for
the method. The first definition is in terms of a global
condition that is easy to understand but difficult to
implement. The second, in the other hand, is a condi-
tion that is more difficult to understand but suggests
an easy implementation.

Plainly, the idea is to stop the trials when the value
for all relevant states are off from satisfying Bellman
equations by at most ε; i.e., when

∣

∣

∣

∣

∣

∣

Jk(i)− min
u∈U(i)

g(i, u) +

n
∑

j=1

p(i, u, j)Jk(j)

∣

∣

∣

∣

∣

∣

< ε (8)

is satisfied for all relevant states i. The difficulty in
testing (8) lies in computing the set of relevant states.

To identify the convergence described by (8), we
define a recursive labeling that suggests a procedure.
The idea is to label states into {solved,unsolved} such
that rtdp terminates when the initial state is la-
beled as solved. Initially, the goal state is labeled as
solved and all other states as unsolved. Let us con-
sider the moment in time just after the end of a trial
(x0 = 1, . . . , xm = t), and let J be the current approx-
imation function and µ the greedy policy with respect
to J . Define the set of states {Kj ⊆ S : j = 0, . . . ,m}
such that Kj is a minimal set containing xj and all
states reachable from xj using µ; i.e., Kj is the mini-
mum set of states such that xj ∈ Kj and

(∀x ∈ Kj)(∃y ∈ Kj)
[

p(x, µ(x), y) > 0
]

. (9)

Observe that K0 ⊇ K1 ⊇ · · · ⊇ Km = {t}. Then,
all states in the sets Kj are labeled as solved in the
order j = m − 1, . . . , 0 until one of the following two
conditions fails:

(i) all states in sets Kj+1 are solved, or

(ii) for all x ∈ Kj

∣

∣

∣

∣

J(x)−g(i, µ(x))−

n
∑

i=1

p(x, µ(x), i)J(x)

∣

∣

∣

∣

< ε. (10)

This labeling is repeated infinitely often at the end of
trials until the initial state is labeled as solved. Below
we give the proofs that the procedure always finishes
for all ε > 0 and, more important, that when ε is suffi-
ciently small the resulting partial policy is optimal and
J is within ε distance from J∗ for all relevant states.

It is important to note that the rtdp trials do not
have to go all the way up to the goal: they can be
terminated as soon as a solved state is visited. From
now on, when we speak of using the stopping rule we
refer to the rtdp algorithm with the stopping rule and
trial termination at solved states.

Theorem 1 For all ε > 0 the rtdp algorithm with
the stopping rule labels the initial state as solved in a
finite amount of time.

Theorem 2 There exists ε0 > 0 such that if the rtdp
algorithm with the stopping rule is applied with 0 <
ε < ε0, then the resulting approximation J satisfies
|J(x) − J∗(x)| < ε for all relevant states x, and the
resulting partial policy is optimal. Here, J(x) refers to
the value for x in the hash-table after termination or
h(x) if there is no entry for x in the hash-table.

Sketches for the proofs are in the Appendix. The label-
ing procedure can be implemented by different meth-
ods: as a time-oriented recursion, as a space-oriented
iteration, etc. The following describes the implemen-
tation used in the experiments.

Implementation

We decided to implement the stopping rule as an itera-
tive procedure that is applied at the end of a trial each
3 trials. The number 3 is arbitrary and was chosen to
reduce the overhead; yet any other frequency will be
fine as soon as the procedure is applied infinitely often.

To keep track of the visited states during a trial T =
(x0, . . . , xm), rtdp pushes the states into a stack as
they are visited. At the end of the trial, the states are
processed in reverse visit order as they are popped out
from the stack. For each such state xj , rtdp calls the
function check-solved(xj) that returns true or false
whether conditions (i) and (ii) above are satisfied or
not. In the affirmative case, check-solved(xj) also
returns the set Kj of states that need to be labeled as
solved. Otherwise, the stack is cleaned and the process
is terminated.

The function check-solved(xj) works by applying
a breadth-first search that keeps two queues: open and
closed. At the beginning open contains only xj and
closed is empty. The function then iterates by remov-
ing the front state x from open, inserting the possible
µ(x) successors of x back into open and pushing x into
closed. Two exceptions are considered:

(a) if the state x is solved, then it is ignored and a new
state is removed from open, and

(b) if x has never been visited (i.e., it is not in the hash-
table) or (10) does not hold for x, then a sequence
of hash-table updates (as in Step 4 of Figure 1) is
done for state x until (10) is satisfied.

The procedure is applied until open becomes empty.
Thereafter, check-solved(xj) returns true or false
whether exception (b) did not occur or did occur re-
spectively. In the former case, the set Kj is the set
of states in closed. Note that the updates in (b) are
only for speeding up the convergence of the algorithm
and so they are not necessary for the correctness of the
procedure.

Heuristics
The standard technique for getting admissible heuris-
tics for a problem P is to solve a relaxation P ′ of the
problem, and then use the solution for P ′ to compute
estimates for P . A good relaxation is one that provides
informative estimates and is not too difficult to solve.
If the estimates are computed carefully, the resulting
heuristic is guarantee to be admissible (Pearl 1983).

In our case, we consider the deterministic relaxation
of the ssp problem defined as the ssp that results by
splitting each stochastic control u with m outcomes
intom deterministic controls. That is, the ssp problem
that corresponds to the Bellman equations:

J̃(t) = 0, (11)

J̃(i) = min
u∈U(i)

g(i, u) + min{J̃(j) : p(i, u, j) > 0}. (12)

The solution J̃ is used to define an admissible heuristic:

h(x) = min
u∈U(x)

g(x, u) +

n
∑

i=1

p(x, u, i)J̃(i). (13)

The heuristic h(x) can be computed before applying
rtdp by the standard Bellman-Ford algorithm (Cor-
men, Leiserson, & Rivest 1990). However, this method
may take long time to finish for problems with large
state spaces. Thus, instead of computing the heuristic
before applying rtdp, the rtdp trials are interlaced
with the computation of the heuristic in the follow-
ing manner: whenever the value h(x) is needed, it is
computed by a recursive application of the lrta* algo-
rithm with the stopping rule over the relaxed problem
started at x. The lrta* procedure uses a separate
hash-table and stops when the label for x is solved. Its
hash-table is preserved between calls so that if h(x)
is needed again, no trials are performed and h(x) is
promptly returned. The heuristic for lrta* is the zero-
heuristic. In the next section, we evaluate the new al-
gorithm and heuristic function over some benchmark
problems.

Experiments

We tested the algorithm and heuristic vs. the Value
Iteration algorithm in a modification of the racetrack
domain due to (Barto, Bradtke, & Singh 1995). A
problem instance in this domain is defined by a grid-
map of a racetrack and a reliability parameter in [0, 1]
for the controls. In all the experiments, the reliabil-
ity was fixed to 0.9. The task consists in driving a
car from a set of possible initial states to a set of goal
states. Each state in the system is a tuple (x, y, dx, dy)
that represents the position and speed of the car in the
x, y dimensions. The controls are pairs u = (ax, ay) of
instantaneous accelerations where ax, ay ∈ {−1, 0, 1}.
Thus, the car has momentum and the task is to ap-
ply the correct accelerations in order to move the car
from the start state to the goal state. When the car
hits a wall, the velocities are set to zero and its po-
sition is left intact; this is the modification with re-
spect to the original domain in which the car is “magi-
cally” translated to the start position after a crash. To
give a description of the dynamics, consider the map
proj(s, u) from states and controls to states defined by
proj(s, u) = (x+dx+ax, y+dy+ay, dx+ax, dy+ay)
where s = (x, y, dx, dy) and u = (ax, ay). Then, the
transition probabilities are given by

p(s, u, s′) =











1 if s′ = s ∧ s = proj(s, u),
0.9 if s 6= s′ ∧ s′ = proj(s, u),
0.1 if s = s′ ∧ s′ 6= proj(s, u),
0 otherwise.

We considered the racetracks used in (Barto, Bradtke,
& Singh 1995) plus a third one by us. They are shown
in Figure 2. In each case, the initial positions corre-
spond to the light-shaded squares while the goal states
are the dark-shaded ones.

We made two experiments. In the first, we ran Value
Iteration and the rtdp algorithm with the stopping
rule using the zero-heuristic (denoted with h0) and the
h heuristic from above. To run Value Iteration, we re-
stricted the possible infinite state space to the states of
the form (x, y, dx, dy) where dx ∈ [−Rx/2, Rx/2] and

1) 2) 3)

Figure 2: Different racetracks. In each case, the light-shaded squares are the initial states and the dark-shaded
ones the goal states.

dy ∈ [−Ry/2, Ry/2] and Rx (resp. Ry) is the number
of columns (resp. rows) in the grid. Table 1 shows the
computer time (in seconds) and the number of DP up-
dates needed to achieve a given precision in the prob-
lems.2 The table also shows the size of the state space
for Value Iteration (column |S|) and the number of vis-
ited states for the rtdp algorithm (column |V |). As it
can be seen, the rtdp algorithms outperform Value It-
eration in both total time and number of dp updates by
several orders of magnitude. For example, in race-2,
rtdp is better in time by one order of magnitude and
better in dp updates by two orders of magnitude. The
situation is far better in race-3 since Value Iteration
can’t solve the problem in our machine. In the case
of rtdp with the zero-heuristic, we expect that rtdp
will visit a considerable portion of the reachable state
space; i.e., the set of states that can be reached us-
ing a finite sequence of controls. Thus, we computed
the reachable state space and applied Value Iteration
to it. The results are in Table 2. As it can be seen,
Value Iteration improves considerably but rtdp is still
competitive. For example, Value Iteration cannot beat
rtdp in race-3 even in the reduced state space. In all
cases, the number of dp updates is always less for rtdp
than for Value Iteration. It is interesting to note how
dramatic is the reduction in number of dp updates and
relevant states in race-3 for rtdp with h0 and h. This
result shows that h is a good heuristic for this prob-
lem. However, its computation is relatively expensive
and that explain the differences in time.

It is important to note that the improvement
achieved in Value Iteration by computing the reach-
able state space will not work in general since quite
often the full state space is reachable.

Discussion

The rtdp algorithm is the stochastic version of Korf’s
Learning Real-Time A* (lrta*) algorithm. Clearly,
the proposed stopping rule for rtdp also works for
the lrta* algorithm. Others variations of lrta* had
been proposed in the literature; e.g., for speeding up its

2The experiments were run in a Sun Ultra 10 worksta-
tion with 128Mb of memory and a clock rate of 440MHz.

Value Iteration
(reachable state space)

Problem ε updates time |S|

race-1 10−6 186240 8.4 9312
10−4 167616 7.2
10−2 148992 6.4

race-2 10−6 620906 25.5 23881
10−4 573144 22.6
10−2 525382 20.7

race-3 10−6 3788752 207.0 172216
10−4 3444320 190.3
10−2 2927672 163.1

Table 2: Results for the second experiment. The Table
shows the time (in seconds) and number of DP updates
for Value Iteration over the reachable state space.

convergence while preserving some optimality (Ishida
& Shimbo 1996), for minimizing worst-case scenarios
in multiple outcome decision making (Koenig 2001),
for classical planning in dynamic environments (Bonet,
Loerincs, & Geffner 1997), etc.

A related algorithm to rtdp for solving ssp prob-
lems is the lao* algorithm of (Hansen & Zilberstein
2001). lao* also finds partial optimal policies without
evaluating the entire space. It is a modification of the
standard ao* algorithm for AND/OR graphs (Nilsson
1980) that can cope with cycles and where the AND
nodes refer to stochastic transitions. Another recent
algorithm for standard AND/OR graphs with cycles is
the CFCREV∗ algorithm of (Jimenéz & Torras 2000).
It is an interesting algorithm that also performs a la-
beling procedure that (we believe) is very close to our
procedure. However, its description is more complicate
than ours. All other labeling procedures that we know
for ssps assume that the transition graph is acyclic; see
(Bertsekas 1995) and references in (Jimenéz & Torras
2000). The basic difference that allows our procedure
to cope with cycles is that it can label multiple states
simultaneously instead of one state at a time. Other
incremental algorithms for mdps are those based on
ideas of increasing envelopes (Dean et al. 1993).

Value Iteration rtdp rtdp
(full state space) (heuristic h0) (heuristic h)

Problem ε updates time |S| updates time |V | updates time |V |

race-1 10−6 2179480 173.1 108974 95510 8.3 9041 46696 9.4 2140
10−4 1961532 161.5 84583 7.6 9033 32416 8.1 2135
10−2 1743584 139.0 71671 5.0 9028 16280 5.7 2148

race-2 10−6 16012304 1151.5 571868 888118 181.6 23053 244398 117.5 7006
10−4 14868568 1021.4 593468 116.4 23097 148429 74.8 7011
10−2 12581096 865.8 357855 59.3 23068 62407 35.0 7005

race-3 10−6 – – ≥ 2639170 217312 11.4 94513 5130 38.0 372
10−4 – – 222367 11.1 96716 3785 37.9 368
10−2 – – 210866 10.6 93154 1943 37.5 372

Table 1: Results for the first experiment. The Table shows the time (in seconds) and number of DP updates for
the VI and the rtdp algorithm with stopping rule and two different heuristic functions. The columns |S| and |V |
refer to the size of the state space in the VI algorithm and the number of visited states in the rtdp algorithms. A
dash (–) indicates the algorithm failed due to memory limitations.

As of today, to the best of our knowledge, the lao*
algorithm and rtdp with the stopping rule are the only
efficient off-line algorithms for computing optimal par-
tial policies for ssps. We have deployed the new rtdp
algorithm into a general planning tool that is publicly
available (** the ref. will be put after review **).

In summary, we presented a new labeling proce-
dure for Stochastic Shortest-Path problems that makes
rtdp into an off-line algorithm. We also show a new
domain-independent heuristic for ssps that when used
with rtdp outperforms standard Value Iteration in
some problems with large state spaces. We believe
that, in presence of good heuristic functions, rtdp can
be applied to problems with large state spaces (e.g.,
> 1020). Future work will include a through compari-
son of lao* and rtdp across different domains and to
assess how good is the new heuristic.

References

Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning
to act using real-time dynamic programming. Artifi-
cial Intelligence 72:81–138.

Bertsekas, D., and Tsitsiklis, J. 1996. Neuro-Dynamic
Programming. Athena Scientific.

Bertsekas, D. 1995. Dynamic Programming and Op-
timal Control, (2 Vols). Athena Scientific.

Bonet, B., and Geffner, H. 2000. Planning with
incomplete information as heuristic search in belief
space. In Proceedings of AIPS-2000, 52–61.

Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A
robust and fast action selection mechanism for plan-
ning. In Proceedings of AAAI-97.

Cormen, T.; Leiserson, C.; and Rivest, R. 1990. In-
troduction to Algorithms. MIT Press.

Dean, T.; Kaebling, L.; Kirman, J.; and Nicholson, A.
1993. Planning with deadlines in stochastic domains.
In Proceedings AAAI93, 574–579.

Hansen, E., and Zilberstein, S. 2001. LAO*: A heuris-
tic search algorithm that finds solutions with loops.
Artificial Intelligence 129:35–62.

Ishida, T., and Shimbo, M. 1996. Improving the
learning efficiencies of realtime search. In Proceedings
of AAAI-96, 305–310.

Jimenéz, P., and Torras, C. 2000. An efficient al-
gorithm for searching implicit AND/OR graphs with
cycles. Artificial Intelligence 124:1–30.

Koenig, S. 2001. Minimax real-time heuristic search.
Artificial Intelligence 129:165–197.

Korf, R. 1990. Real-time heuristic search. Artificial
Intelligence 42:189–211.

Nilsson, N. 1980. Principles of Artificial Intelligence.
Tioga.

Pearl, J. 1983. Heuristics. Morgan Kaufmann.

Sutton, R., and Barto, A. 1998. Reinforcement Learn-
ing: An Introduction. MIT Press.

Appendix: Proofs
Proof of Theorem 1 (Sketch): For each relevant state
xj consider the set Kj of its reachable states when us-
ing the optimal policy µ∗. The collection K = {Kj} is
partially ordered by set inclusion. Since the rtdp algo-
rithm converges to the optimal policy and cost vector
over the relevant states, then the stopping rule will la-
bel as solved all states in a minimal element of K after
some time. After that, the rtdp algorithm with stop-
ping rule will be applying standard rtdp in a reduced
mdp consisting of all unsolved states and with termi-
nal costs given by the cost of the solved states. Then,
again, the rtdp algorithm converges in this mdp so
after some finite time it will label another non-empty
set of states as solved. Since the number of states is
finite and the initial state is visited infinitely often, the
algorithm will label the initial state in finite time. 2

Proof of Theorem 2 (Sketch): It is enough to let ε0 =
inf{‖Jµ − J∗‖ : µ non-optimal stat. policy}. 2

