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Abstract

We develop a qualitative model of decision
making with two aims: to describe how peo-
ple make simple decisions and to enable com-
puter programs to do the same. Current ap-
proaches based on Planning or Decision The-
ory either ignore uncertainty and tradeoffs,
or provide languages and algorithms that are
too complex for this task. The proposed
model provides a language based on rules,
a semantics based on high probabilities and
lexicographical preferences, and a transpar-
ent decision procedure where reasons for and
against decisions interact. The model is no
substitute for Decision Theory, yet for deci-
sions that people find easy to explain it may
provide an appealing alternative.

1 INTRODUCTION

In this paper we develop a qualitative model of deci-
sion making with two aims: to describe how people
make simple, everyday decisions and to enable com-
puter programs to do the same. Current approaches
based on Planning [Weld, 1994] or Decision Theory
[Raiffa, 1970] either ignore uncertainty and tradeoffs,
or provide languages and algorithms that are too com-
plex for this task. The model proposed provides a
simple language based on rules, a semantics based on
high probabilities and lexicographical preferences, and
a transparent decision procedure where reasons for and
against decisions interact.

The model is closely related to other qualitative
abstractions of Decision Theory (e.g., [Pearl, 1993;
Boutilier, 1994; Wilson, 1995]), yet it introduces as-
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sumptions that aim to account for the way deci-
sions are made in simple settings. In the proposed
model, like in the findings of [Shafir et al, 1993;
Hogarth and Kunreuther, 1995], the reasons for de-
cisions play a central role. The result 1s an efficient,
‘anytime’ decision procedure, which is easy to justify
and explain.

The paper is organized as follows. First we introduce
the representation language (Section 2), the decision
procedure (Section 3) and the semantics (Section 4).
Then we discuss the relation to Decision Theory (Sec-
tion 5), sensitivity issues (Section 6), extensions (Sec-
tion 7), and related work (Section 8).

2 LANGUAGE

Models in the proposed framework contain four parts
(see Fig. 1).

1) aset of input propositions and observations defin-
ing the possible input situations,

2) aset of goals and goals priorities defining the out-
put situations,

3) aset of actions and action rules defining how input
situations are mapped to output situations, and

4) plausibility measures defining the plausibility of
the input situations

For example, a situation in which one has to decide
whether to study for an exam or go to the beach can
be modeled as:

study A get-it = pass—exam
go-beach A —rain = enjoy-beach

unlikely rain ; plausible get-it

Here study and go-beach are the possible actions,
rain and get-it are the input propositions and
pass—exam and enjoy-beach are the positive goals in
that order of importance.
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Figure 1: The Decision Situation

2.1 INPUT SITUATIONS

The input situations or states stand for the possi-
ble truth assignments to the input propositions and
represent the context of the decision. With each in-
put proposition y we associate a boolean vartable Y
such that y stands for Y = true and —y stands for
Y = false. We also use the notation vy to denote any
of the literals y or —y associated with the variable Y,
and ~v to denote its complement. The observations
are input literals that have been found to be true.

2.2 GOALS

The goals stand for states of affairs that we care about.
The positive goals are the ones that we want to achieve:
getting a good job, enjoying a good day at the beach,
watching a good movie, etc. The negative goals are the
ones that we want to avoid: being dead, being thirsty,
hurting people, missing an appointment, etc.

In this model, the goals are represented by literals (dif-
ferent from the input literals; yet see Section 7) de-
noted by symbols like x, X, .... The set of all goals
is denoted by the letter GG while the set of positive
and negative goals by GT and GG~ respectively. We
use the words goal literals to refer to goals or their
complements.

As the example above suggests, some goals are more
important than others: getting a good job is more im-
portant than watching a good movie, being not dead
is more important than missing an appointment, etc.
We represent the relative importance of goals by inte-
gers: the higher the integer, the higher the importance
of the goal. We call such integers the priority of the
goals, and write x € (G; to say that the priority of goal
x is ¢ (we will also write x € G;" or X € G; when we
want to make explicit the polarity of the goal as well).
Schank and Abelson [1977] and Slade [1992] provide an
interesting analysis of different types of goals (e.g., sat-
isfaction, enjoyment, achievement, preservation, etc.)
and their relative priorities.

Goal priorities are related to goal utilities, yet as de-

grees of importance, we assume that goal priorities
combine as follows:

Assumption 1 Higher priority positive (negative)
goals should be pursued (avoided) —even at expense
of lower priority goals— except when success is deemed
unlikely.

This is a fundamental assumption in the model and
says to focus on the actions that serve the most im-
portant goals, ignoring unlikely possibilities. This is
not always a reasonable thing to do (see Section 6) but
seems appropriate in the context of simple, everyday
decisions. As we will see, this assumption will allow us
cast the decision process as an argumentation process
where reasons for and against decisions interact.

Because goals are important, we also assume that goals
that are not said to be true explicitly,!, are not true:?

Convention 1 Goals are assumed not true by default.

Due to this convention, there is a difference in this
model between declaring X as a positive goal and its
complement ~x as a negative goal. Even though in
both cases we will try to achieve x and avoid ~X, in
the first case ~x will be assumed true by default while
in the second x will. In line with this convention we
require that if X is a goal, ~x is not.

2.3 ACTIONS AND ACTION RULES

The third component of the model are the actions and
the action rules. Action rules map input situations
(truth assignments to the input literals) to output si-
tuations (truth assignments to the goal literals). They
are expressed by means of expressions of the form:
AANC = X, where A is an action symbol, C' is a con-
junction of input literals, and x is a goal literal (action
symbols are distinct from input and output symbols).

Action rules are default rules in the sense that x 1s
normally true after doing A when C'is true. Each ac-
tion rule has a priority or strength measure represented
by a non-negative integer; the higher the number, the
higher the priority. These priorities will be used to dis-
ambiguate conflicts among rules; e.g., to make a rule
AN C = x override a conflicting rule A A C' =~x of
lower priority. Unless otherwise specified, all rules are
assumed to have priority zero (lowest priority).

Action rules which do not involve any actions, like
knows-a-lot = pass-exam, will be interpreted as

! Actually, there is no way to explicitly say that a goal is
true in this language, yet see Section 7 for extensions that
do.

2We distinguish ‘assumptions’ from ‘conventions’ to em-
phasize that the latter are just a matter of convenience;
they are not built into the model like the former.



abbreviations of rules involving the special action
do-nothing, e.g., do-nothing A knows-a-lot =
pass-exam. The action do-nothing is assumed al-
ways present and represents the choice of not taking
any (other) action. As for other actions, we can also
have rules involving the symbol do-nothing explicitly
(e.g., if a person is seriously injured and you do noth-
ing, the person may die, etc.).

2.4 INPUT PLAUSIBILITIES

The last component of the model are the plausibili-
ties of the input propositions. For that we allow the
following type of statements for any input literal v:
‘likely Y’, ‘plausible Y’ and ‘unlikely Y’. Intu-
itively, these statements rank the prior probability of
Y in decreasing order, with the first and last denoting
probabilities that are very close to 1 and 0 respectively.
The meaning of these statements will be made precise
in terms of Spohn’s [1988] k-functions. For the user’s
convenience we assume that:

Convention 2 When the input statements do not
contain information about the plausibility of an input
literal v, Y 1s assumed plausible.

2.5 EXAMPLE

The situation of going for the newspaper with or with-
out the umbrella can be modeled in this language by
means of action rules like:

go-without-umbrella = newspaper
go-with-umbrella = newspaper
go-without-umbrellaArain = wet
go-with-umbrella = carry

We also have to say that the possible actions are
go—with-umbrella and go-without-umbrella and
that the goals (and their polarities and priorities) are
carry € Gy, wet € G5 and newspaper € G (ie.,
getting the newspaper is the most important goal, and
avoiding getting wet is more important than avoiding
having to carry an umbrella).

From the conventions above, it is implicit that rain
is plausible (Convention 2), that each of the goals
newspaper, wet and carry are true only when a rule
asserting the goal is applicable (Convention 1), and
that the action do-nothing does not achieve any goal.

3 REASONS FOR DECISIONS

We present now a mechanism for deciding which action
to choose in a given context. The mechanism is based
on the interplay of reasons. The procedure is efficient

and easy to justify and explain. We start defining the
reasons for decisions.

Basically, we will say that a positive (negative) goal
x provides a reason for (against) action A when the
action A contributes to the truth of x. The polarity
of this reason is the polarity of the goal (positive or
negative); the importance of the reason is the priority
of the goal (0, 1, ..., N); and the strength of the reason
is the measure to which the action contributes to the
truth of the goal.

More formally, let us say that a literal v is likely when
Y is an observation or when the information provided
by the user contains likely Y or unlikely ~vY, and
that v 1s unlikely when its complement is likely, and
plausible when v is neither likely nor unlikely. Simi-
larly, let us say that a rule A A C' = x 18 likely when
each conjunct in C'is likely, that is unltkely when some
conjunct in C' is unlikely, and that is plausible when
it 1s neither likely nor unlikely. Then, the reasons for
decisions and their strengths are defined as follows:

Definition 1 A positive (negative) goal X provides a
strong reason for (against) an action A when some
rule ANC = x 1s likely and no rule of the form AN
C" =~x with equal or higher priority is either likely
or plaustble.

Definition 2 A positive (negative) goal x provides a
weak reason for (against) an action A when it does
not provide a likely reason for A and yet some rule
ANC = x is either likely or plausible, and no higher
priority rule AN C' =~Xx s likely.

Definition 3 A positive (negative) goal x provides a
empty reason for (against) an action A when it does
not provide a strong or weak reason for (against) A.

As an illustration, the goal newspaper provides
a strong reason for go-with-umbrella and for
go—without-umbrella; wet provides a weak reason
against go-without-umbrella, and carry provides
a weak reason against go-with-umbrella. Likewise,
each of these goals provide empty reasons for or against
do-nothing.

Clearly, decisions over a single goal can be taken by
considering the strength and polarity of the reasons
involved.

Definition 4 An action A s better than an action
B over a positive goal x when X provides a stronger
reason for A than for B.® Likewise, A is better than B
over a negative goal X if X provides a stronger reason
against B than against A.

®Strong reasons are stronger than weak reasons, and
weak reasons are stronger than empty reasons.



When there are many goals involved, the more impor-
tant goals are considered first:

Definition 5 An action A s better than an action
B, written A > B, when A is better than B over a
goal x and B is no betler than A over any goal X' as
important as or more important than Xx.

The overall best actions are the actions that are no
worse than any other action. We can test whether
an action A 1s better than an action B by invoking
the procedure better?( A4, B, ¢) that iteratively checks
whether A gets more compelling reasons than B from
goals in (;, where ¢ is a priority level initially set to
the top priority N. Indeed, better? must return no
when some positive (negative) goal provides a stronger
reason for B (A4) than for A (B); yes when the oppo-
site i1s true, and must call itself with the value of ¢
decreased when neither condition holds, returning no
when ¢ < 0. In the worst case, the complexity of this
method is:

Proposition 1 The best actions can be computed in
this way in time proportional to A2 x R, where A is
the number of actions and R s the total number of
rules.

This complexity of this method is moderate, yet a
more efficient procedure can be used when goals are
linearly ordered (i.e., when no pair of goals have the
same priority). If A stands for the set of all actions and
i is a priority level (initially set to N), select(A,4)
can compute the best actions by retaining in A4, in
each iteration, only the actions that get the strongest
(weakest) reason from the single positive (negative)
goal in G;. This iteration terminates when 7 < 0 or
when A becomes a singleton.

In the example above, do-nothing is pruned from .4 in
the first iteration because it only gets an empty reason
from the positive goal newspaper. In the second itera-
tion, go—without-umbrellais also pruned as it gets a
strong negative reason from the goal wet. The action
go—with—umbrella then is the single best action as it
is the only action left in A.

3.1 EXAMPLE

Consider whether to approach some animal, e.g., a
dog, that we don’t know whether it is aggressive or
not:

approach = satisfy-curiosity

approach A aggressive = get-hurt

In this case, satisfy-curiosity is a low priority
positive goal and get-hurt is a high priority nega-
tive goal. Given no other information, aggressive

is assumed plausible by convention, and hence, the
action approach gets a strong positive reason from
satisfy-curiosity and a weak negative reason from
get-hurt. Yet since get-hurt is the most important
goal, the action approach is rejected for do-nothing
which gets no (weak or strong) negative reasons. Note,
however, that if observations lead to us revise the
chances of aggressive to unlikely, the preferences
would get reversed.

4 SEMANTICS

The semantics will make precise the meaning of all
the constructs in the model and will provide an inde-
pendent criterion for assessing the decision procedures
above. In Decision Theory, actions A are ranked by
their expected utility:

EU(A) = P(s) Y Pa(s'ls) U(s) (1)

where the s and s’ denote the input and output states
respectively. Here we use an approximation of this
criterion with Spohn’s [1988] s-functions in place of
probabilities, and lexicographical orderings in place of
utility functions.

4.1 BELIEFS

Spohn [1988] describes a model for uncertain reasoning
that combines the main intuitions underlying proba-
bility theory (context dependence, conditionalization,
etc.) with the notion of plain beliefs (see also [Gold-
szmidt and Pearl, 1992]). Beliefs in Spohn’s model
are represented by means of a function « that assigns
a non-negative integer measure to each world w and
that satisfies the following calculus:*

k(p) € 0,00] , k(p) = mingp k(w) (2)
k(pV-p) =0, k(plg) =wpAg) —krlg) ()

This calculus is structurally similar to the calculus of
probabilities with products replaced by sums and sums
replaced by minimizations. Spohn indeed showed that
the first can be understood as an abstraction of the sec-
ond with xk measures standing for order-of-magnitude
probabilities.

Lower x measures stand for higher probabilities and
higher k measures stand for lower probabilities. Spohn
indeed refers to the x measures as degrees of surprise
or disbelief, hence regarding a proposition p as plau-
stble or believable when k(p) = 0 and as unlikely or
disbelieved when k(p) > 0. In particular, since the
axioms rule out two complementary propositions from

*k(p) = oo when p is unsatisfiable.



being disbelieved at the same time, a proposition p is
accepted or believed when its negation is disbelieved
(i.e., when k(=p) > 0).

4.1.1 INPUT BELIEFS

We use Spohn’s & functions to formalize the beliefs
£(Y) in the inputs propositions and the beliefs & 4 (x|s)
in the output propositions given an input state and
action. For the inputs beliefs, we assume that:®

Assumption 2 Input variables are assumed to be in-
dependent.

This means that, in analogy to probabilities, the belief
in an input state is the aggregation of the beliefs in the
input literals true in that state:

n

oY) = Y k(i) (4)

i=1

K?(Yl, ..

These beliefs in turn are provided by the user or as-
sumed by default (Convention 2):

K?(YZ') =

()

1 if unlikely v; or likely ~v;
0 otherwise

These two equations determine the prior plausibility
k(s) of any input state s completely. The posterior
plausibility x(s|obs) given a set of observations (input
literals) can be derived from (3) as k(s|obs) = &(s) —
k(obs) if s satisfies obs, and oo otherwise.

4.1.2 GOAL BELIEFS

For any goal literal x, the plausibility of x given an
action A and an input state s i1s expressed by the equa-
tion:

ka(%) = min (x(s) + ra(x]s) (6)

which is the qualitative version of the equation
Pa(x) =32, P(s)Pa(x]s).

From Equations 4 and 5, we know how to determine
the plausibilities «(s); we are thus left to determine the
conditional plausibilities 4(x|s). These plausibilities
will be extracted from the rules that are applicable in
the state s that relate A to x.

Let r(A) denote the set of action rules involving the
action A. Then we say that the input state s supports a
literal x when there is a rule in 7(4) whose consequent
1s X, whose conditions are true in s, and for which all
conflicting rules in r(A) whose conditions are true in
s have equal or lower priority.

The plausibilities £ 4(x|s) are then defined to capture
Convention 1 (goals are assumed false by default) and

®We will show how to relax this assumption in Section 7.

the intuition that supported literals should be either
likely or plausible (they have a justification):

0 when x is supported by s, or when
~X 18 a goal not supported by s
1 otherwise

ra(X|s) =

(7)
Equations 4-7 determine the measures k4(x) for any
value X and any action A. When input observations
obs are gathered, the conditional measure & 4(x|obs)
can be obtained by replacing the prior plausibility &(s)
in Equation 6 by the posterior plausibility &(s|obs).

4.1.3 EXAMPLE

We illustrate these definitions in the newspaper exam-
ple. Because the only input variable is rain, which
is assumed plausible by default, the input states are
s = {rain} and s’ = {—rain} with &(s) = x(s’) = 0.

If A, B and C denote the actions go-without-
umbrella, go-with-umbrella and do-nothing, the
literals supported by each action in each input situa-
tion are:

s = rain s’ = —rain
A {news,wet,~carry} {news,—wet,~carry}
B {news,—wet,carry} {news,—wet,carry}
C' | {-news,—wet,—carry} | {—-news,—wet,~carry}

From this table and Equations 4-7, the plausibilities
of all goal literals can be computed; e.g., ka(wet) =
min{&(s) + ka(wet|s), k(s') + Ka(wet|s')} = min{0 +
0,0+ 2} =0.

4.2 PREFERENCES OVER ACTIONS

To rank the actions, we define the qualitative utility of
a goal x, written u(x), as:

u(x) = polarity(x) x priority(x) (8)

Namely, for wet € G5, u(wet) = —2, while for
newspaper € G, u(newspaper) = 3.

Provided with these measures, we could define the
qualitative expected utility of actions relative to a goal
x, following the methods in [Pearl, 1993] or [Wilson,
1995], e.g., setting it to max(0, u(x)— x4 (x|obs)) when
X 1s positive. The problem with these schemes is that
they impose a very strong requirement on the way util-
ity measures are encoded so they can be added up, in
the same scale, with x measures (see [Wilson, 1995]).

Here we take a different approach which does not re-
quire goal priorities and plausibility judgements to be
so calibrated. In the proposed scheme, only two things
matters: the ordinal ranking of goals, and whether



goals are deemed likely, unlikely or plausible. This is
done by defining the qualitative belief in a goal literal
X as:

ba(x) = ka(—x|obs) — k4 (x|obs) (9)

and defining the qualitative rank of an action A relative
to a goal x as:®

Qx(A) = sign(u(x)) x sign(ba(x)) (10)

In other words, an action has a positive rank relative
to a goal x (@x(A) = 1) when it’s likely to make
the positive (negative) goal x true (false); it has a
negative rank (Qx(A) = —1) when it’s likely to make
the positive (negative) goal x false (true); and it has
an null rank otherwise (@x(A) = 0). Clearly,

Definition 6 An action A is preferred to an action B

over a goal X if Qx(A4) > Qx(B).

In the presence of multiple goals, this ordering is ex-
tended by considering more important goals first:

Definition 7 An action A is preferred to an action
B, written A = B, if A is preferred to B over some
goal x, and B is not preferred to A over any goal X’
with equal to or higher priority than x.

The overall optimal actions determined by this prefer-
ence relation are closely related to the actions that re-
sult from the decision procedures based on rules (Sec-
tion 3). Indeed, if we say that a theory is positive
when the rules do not involve negative literals in their
bodies we get that:

Proposition 2 The decision procedures based on in-
teraction of reasons are sound and complete for posi-
tive theories.

The condition of positivity is required because the
procedures do not reason by cases and thus cannot
properly handle pairs of rules like A A p = x and
AA-p = x. Under this condition, Proposition 1 guar-
antees that the problem of identifying the best actions
can be computed efficiently.

4.2.1 EXAMPLE

The table below summarizes the qualitative rank of
the actions relative to each of the goals newspaper,
wet and carry:

Action (n, w, c)
go-without-umbrella: (+1,40,+1)
go-with-umbrella: (+1,+1,—1)
do-nothing: (—1,+1,+1)

6The function sign maps positive numbers into 1, neg-
ative numbers into —1, and 0 into 0.

The preferences among the actions are easy to visualize
as they correspond to the lexicographical preferences
among their corresponding vectors (in this case, no
pair of goals have the same priority). The table makes
evident that go-with-umbrella is the best action in
this case. On the other hand, if rain were unlikely,
the first entry below wet would become +1, and the
best action would become go-without-umbrella.

5 RELATION TO DECISION
THEORY

The optimal action A from a decision theoretic point of
view is the action that maximizes the expected utility
(Equation 1). The model can be understood as assum-
ing that the utility function U(s) is additively decom-
posable as U(s) = ) x., U(x), where x is the value
of variable X in the output situation s, and that the
utility of positive (negative) goals x is a fixed positive
(negative) value Ux and the utility for the negation of
a goal 18 0. From these assumptions, it is possible to
show that Equation 1 can be expressed as:

EU(A)= ) Ux Pa(x) (11)

Furthermore, the model assumes that terms Ux P4(x)
make terms Ux/Pa(x') negligible when P4(x) >
Pa(x') (‘unlikely scenarios are ignored’) and that
|Ux| > |Ux'| when the priority of x is higher than
the priority of x’ (‘low priority goals are traded by
higher priority goals’).

6 SENSITIVITY ISSUES

It is not hard to think of cases where the assumptions
embedded in this model are not reasonable. Consider
for example a situation in which a patient has a very
serious disease which if not treated will result in his
death. Moreover, there 1s only one possible treatment
and such treatment does not always work, and in all
cases it has undesirable side-effects like loosing hair,
vomiting, etc.

do-nothing = death

treatment A meffective = death

treatment = side-effects

Here the goals death and side-effects are both neg-
ative and the first is significantly more important than
the second.

The atom effective provides the condition under
which the treatment works. If the prior plausibility
measure of effective is 0 (the treatment can plau-
sibly work) the model recommends treatment. Yet if



the prior plausibility measure of effective is 1 (the
treatment most likely will not work) the model will
recommend to do nothing (i.e., the action do-nothing
will be preferred to treatment).

One way to look at the second scenario is that the
model prefers the lottery ‘certain death’ to the lottery
‘certain side-effects and very likely death’. This pref-
erence, which is not reasonable, results from regarding
unlikely scenarios as impossible ones. This assump-
tion, in cases where important goals are at stake, is
actually far from appropriate.

We can measure though how robust an optimal deci-
sion 1s by considering how it is affected by changes in
the input parameters (goal priorities and input plau-
sibilities).

Let us say that a goal x justifies the preference of
action A over action B if A is preferred to B over X
and yet A and B are equally preferred over all goals
with higher priority than X.

For example, when the treatment is unlikely to work,
the goal that justifies the decision do-nothing over
treatment is side-effects. On the other hand,
when the treatment can plausibly work, do-nothing
becomes inferior to treatment because of the goal
death. Since death is considerably more important
than side-effects the proper selection of the param-
eter k(effective) in this case is critical. More gener-
ally, when minimal changes in an input parameter lead
to abrupt changes in the importance of the goals that
are obtained the optimality of the decisions need to
be reconsidered. This critical tradeoff can be detected
in this model, yet the same model is not sufficiently
expressive to resolve them. Often, however, there may
be no reasonable ways for resolving such tradeoffs.

7 EXTENSIONS

The expressive power of the model is limited yet there
are a number of extensions that can be accommodated.

First, we can relax the assumptions that input vari-
ables be independent by accommodating mput rules
in addition to action rules. These input rules will im-
pose a causal structure on the input variables which
can be interpreted as in [Goldszmidt and Pearl, 1992]
or [Geffner, 1996a]. Semantically the only difference is
in the determination of the plausibilities of the input
state k(s).

Second, we can interpret the input and output situa-
tions as referring to the state of the world before and
after the action. The values of variables that occur in
both the inputs and the outputs can then be assumed
to persist by default [Gelfond and Lifschitz, 1993;

Geffner, 1996b]. This can enable us to express se-
quential decision problems, where the choice of opti-
mal actions is replaced by the choice of optimal action
sequences.

In many cases, we may also need a way for representing
and aggregating preferences among equally important
goals. That is, two goals may be equally important and
yvet one may be preferred to the other; e.g., going to
see the ‘Knicks’ vs. going to see the ‘Mets’. A possible
approach in this case is to express these preferences by
means of integers and to aggregate such preferences by
some form of weighted addition according to whether
the goals are rendered likely, plausible or unlikely by
the actions.

8 RELATED WORK

The proposed model for decisions is related to other
qualitative abstractions of decision theory and to in-
formal models of decisions based on the interplay of
reasons.

Qualitative models of decision making have received
considerable attention in recent years [Pearl, 1993;
Boutilier, 1994; Dubois and Prade, 1995; Wilson,
1995]. All of these proposals have in common the use of
qualitative measures for representing preferences and
beliefs, yet compared to this work, few have placed
emphasis on modeling (yet, see [Brewka and Gordon,
1995]) and in the mechanisms for computing and ex-
plaining decisions.

The work differs from [Pearl, 1993] and [Wilson, 1995]
in the way utility ranks and x measures are combined.
Pearl and Wilson assume that these measures are cali-
brated so that they can be added up in the same scale.
Thus, a likely world with utility rank 1 is deemed as
good as an unlikely world with utility measure 2. Qur
choice here is different: our priority measures are com-
pletely ordinal and represent the importance of goals.
Our criterion is that most important goals dominate
less important goals except when the former are un-
likely to be realized.

The two criteria can be usefully contrasted in the sim-
ple case in which there is a single positive goal x in-
volved. This scenario can be expressed in Pearl’s and
Wilson’s framework by partioning the set of worlds
into two sets: the worlds wT that satisfy x, which
get a utility rank g(wt) = 1, and the worlds w™ that
do not satisfy x, which get a utility rank p(w™) =
0. A weakness of Pearl’s and Wilson’s scheme is
that they fail to prefer actions A that make x likely
(ka(—x) > 0) to actions B that make x just plausi-
ble (kp(x) = kp(—x) = 0). Both actions get actually
the same expected utility rank in their scheme. Inter-



estingly this i1s not solved when the worlds w™ that
do not satisfy the goal are assigned a negative utility
rank p(w™) = —1. In that case, Pearl’s and Wilson’s
schemes will label the actions B that make the goal
X plausible, ambiguous. We, on the other hand, rank
such actions below the actions A that make x likely,
and above the actions C' that make x unlikely.

The procedures considered in Section 3 are related also
to informal models of decision based on the interplay
of reasons. For example, when one action A gets either
positive or negative (non-empty) reasons such that no
other action gets (non-empty) reasons of the same im-
portance, the action A can immediately be accepted,
if the reasons are positive, and rejected, if the reasons
are negative. These type of situations, where there are
clear and compelling reasons for accepting or rejecting
decisions, seem to be the ones people feel most com-
fortable with and have been studied in [Shafir et al.,
1993].
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