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sumptions that aim to account for the way deci-sions are made in simple settings. In the proposedmodel, like in the �ndings of [Sha�r et al., 1993;Hogarth and Kunreuther, 1995], the reasons for de-cisions play a central role. The result is an e�cient,`anytime' decision procedure, which is easy to justifyand explain.The paper is organized as follows. First we introducethe representation language (Section 2), the decisionprocedure (Section 3) and the semantics (Section 4).Then we discuss the relation to Decision Theory (Sec-tion 5), sensitivity issues (Section 6), extensions (Sec-tion 7), and related work (Section 8).2 LANGUAGEModels in the proposed framework contain four parts(see Fig. 1).1) a set of input propositions and observations de�n-ing the possible input situations,2) a set of goals and goals priorities de�ning the out-put situations,3) a set of actions and action rules de�ning how inputsituations are mapped to output situations, and4) plausibility measures de�ning the plausibility ofthe input situationsFor example, a situation in which one has to decidewhether to study for an exam or go to the beach canbe modeled as:study^ get-it ) pass-examgo-beach^ :rain ) enjoy-beachunlikely rain ; plausible get-itHere study and go-beach are the possible actions,rain and get-it are the input propositions andpass-exam and enjoy-beach are the positive goals inthat order of importance.



InputSituations OutputSituations-ActionsInputPlausibilities GoalPriorities6 6Figure 1: The Decision Situation2.1 INPUT SITUATIONSThe input situations or states stand for the possi-ble truth assignments to the input propositions andrepresent the context of the decision. With each in-put proposition y we associate a boolean variable Ysuch that y stands for Y = true and :y stands forY = false. We also use the notation Y to denote anyof the literals y or :y associated with the variable Y ,and �Y to denote its complement. The observationsare input literals that have been found to be true.2.2 GOALSThe goals stand for states of a�airs that we care about.The positive goals are the ones that we want to achieve:getting a good job, enjoying a good day at the beach,watching a good movie, etc. The negative goals are theones that we want to avoid: being dead, being thirsty,hurting people, missing an appointment, etc.In this model, the goals are represented by literals (dif-ferent from the input literals; yet see Section 7) de-noted by symbols like X, X0, : : : . The set of all goalsis denoted by the letter G while the set of positiveand negative goals by G+ and G� respectively. Weuse the words goal literals to refer to goals or theircomplements.As the example above suggests, some goals are moreimportant than others: getting a good job is more im-portant than watching a good movie, being not deadis more important than missing an appointment, etc.We represent the relative importance of goals by inte-gers: the higher the integer, the higher the importanceof the goal. We call such integers the priority of thegoals, and write X 2 Gi to say that the priority of goalX is i (we will also write X 2 G+i or X 2 G�i when wewant to make explicit the polarity of the goal as well).Schank and Abelson [1977] and Slade [1992] provide aninteresting analysis of di�erent types of goals (e.g., sat-isfaction, enjoyment, achievement, preservation, etc.)and their relative priorities.Goal priorities are related to goal utilities, yet as de-

grees of importance, we assume that goal prioritiescombine as follows:Assumption 1 Higher priority positive (negative)goals should be pursued (avoided) |even at expenseof lower priority goals| except when success is deemedunlikely.This is a fundamental assumption in the model andsays to focus on the actions that serve the most im-portant goals, ignoring unlikely possibilities. This isnot always a reasonable thing to do (see Section 6) butseems appropriate in the context of simple, everydaydecisions. As we will see, this assumption will allow uscast the decision process as an argumentation processwhere reasons for and against decisions interact.Because goals are important, we also assume that goalsthat are not said to be true explicitly,1, are not true:2Convention 1 Goals are assumed not true by default.Due to this convention, there is a di�erence in thismodel between declaring X as a positive goal and itscomplement �X as a negative goal. Even though inboth cases we will try to achieve X and avoid �X, inthe �rst case �X will be assumed true by default whilein the second X will. In line with this convention werequire that if X is a goal, �X is not.2.3 ACTIONS AND ACTION RULESThe third component of the model are the actions andthe action rules. Action rules map input situations(truth assignments to the input literals) to output si-tuations (truth assignments to the goal literals). Theyare expressed by means of expressions of the form:A ^C ) X, where A is an action symbol, C is a con-junction of input literals, and X is a goal literal (actionsymbols are distinct from input and output symbols).Action rules are default rules in the sense that X isnormally true after doing A when C is true. Each ac-tion rule has a priority or strength measure representedby a non-negative integer; the higher the number, thehigher the priority. These priorities will be used to dis-ambiguate conicts among rules; e.g., to make a ruleA ^C ) X override a conicting rule A ^C 0 )�X oflower priority. Unless otherwise speci�ed, all rules areassumed to have priority zero (lowest priority).Action rules which do not involve any actions, likeknows-a-lot ) pass-exam, will be interpreted as1Actually, there is no way to explicitly say that a goal istrue in this language, yet see Section 7 for extensions thatdo.2We distinguish `assumptions' from `conventions' to em-phasize that the latter are just a matter of convenience;they are not built into the model like the former.



abbreviations of rules involving the special actiondo-nothing, e.g., do-nothing ^ knows-a-lot )pass-exam. The action do-nothing is assumed al-ways present and represents the choice of not takingany (other) action. As for other actions, we can alsohave rules involving the symbol do-nothing explicitly(e.g., if a person is seriously injured and you do noth-ing, the person may die, etc.).2.4 INPUT PLAUSIBILITIESThe last component of the model are the plausibili-ties of the input propositions. For that we allow thefollowing type of statements for any input literal Y:`likely Y', `plausible Y' and `unlikely Y'. Intu-itively, these statements rank the prior probability ofY in decreasing order, with the �rst and last denotingprobabilities that are very close to 1 and 0 respectively.The meaning of these statements will be made precisein terms of Spohn's [1988] �-functions. For the user'sconvenience we assume that:Convention 2 When the input statements do notcontain information about the plausibility of an inputliteral Y, Y is assumed plausible.2.5 EXAMPLEThe situation of going for the newspaper with or with-out the umbrella can be modeled in this language bymeans of action rules like:go-without-umbrella ) newspapergo-with-umbrella ) newspapergo-without-umbrella^ rain ) wetgo-with-umbrella ) carryWe also have to say that the possible actions arego-with-umbrella and go-without-umbrella andthat the goals (and their polarities and priorities) arecarry 2 G�1 , wet 2 G�2 and newspaper 2 G+3 (i.e.,getting the newspaper is the most important goal, andavoiding getting wet is more important than avoidinghaving to carry an umbrella).From the conventions above, it is implicit that rainis plausible (Convention 2), that each of the goalsnewspaper, wet and carry are true only when a ruleasserting the goal is applicable (Convention 1), andthat the action do-nothing does not achieve any goal.3 REASONS FOR DECISIONSWe present now amechanism for deciding which actionto choose in a given context. The mechanism is basedon the interplay of reasons. The procedure is e�cient

and easy to justify and explain. We start de�ning thereasons for decisions.Basically, we will say that a positive (negative) goalX provides a reason for (against) action A when theaction A contributes to the truth of X. The polarityof this reason is the polarity of the goal (positive ornegative); the importance of the reason is the priorityof the goal (0, 1, : : : , N ); and the strength of the reasonis the measure to which the action contributes to thetruth of the goal.More formally, let us say that a literal Y is likely whenY is an observation or when the information providedby the user contains likely Y or unlikely �Y, andthat Y is unlikely when its complement is likely, andplausible when Y is neither likely nor unlikely. Simi-larly, let us say that a rule A ^C ) X is likely wheneach conjunct in C is likely, that is unlikely when someconjunct in C is unlikely, and that is plausible whenit is neither likely nor unlikely. Then, the reasons fordecisions and their strengths are de�ned as follows:De�nition 1 A positive (negative) goal X provides astrong reason for (against) an action A when somerule A ^ C ) X is likely and no rule of the form A ^C 0 )�X with equal or higher priority is either likelyor plausible.De�nition 2 A positive (negative) goal X provides aweak reason for (against) an action A when it doesnot provide a likely reason for A and yet some ruleA ^C ) X is either likely or plausible, and no higherpriority rule A ^C 0 )�X is likely.De�nition 3 A positive (negative) goal X provides aempty reason for (against) an action A when it doesnot provide a strong or weak reason for (against) A.As an illustration, the goal newspaper providesa strong reason for go-with-umbrella and forgo-without-umbrella; wet provides a weak reasonagainst go-without-umbrella, and carry providesa weak reason against go-with-umbrella. Likewise,each of these goals provide empty reasons for or againstdo-nothing.Clearly, decisions over a single goal can be taken byconsidering the strength and polarity of the reasonsinvolved.De�nition 4 An action A is better than an actionB over a positive goal X when X provides a strongerreason for A than for B.3 Likewise, A is better than Bover a negative goal X if X provides a stronger reasonagainst B than against A.3Strong reasons are stronger than weak reasons, andweak reasons are stronger than empty reasons.



When there are many goals involved, the more impor-tant goals are considered �rst:De�nition 5 An action A is better than an actionB, written A > B, when A is better than B over agoal X and B is no better than A over any goal X0 asimportant as or more important than X.The overall best actions are the actions that are noworse than any other action. We can test whetheran action A is better than an action B by invokingthe procedure better?(A;B; i) that iteratively checkswhether A gets more compelling reasons than B fromgoals in Gi, where i is a priority level initially set tothe top priority N . Indeed, better? must return nowhen some positive (negative) goal provides a strongerreason for B (A) than for A (B); yes when the oppo-site is true, and must call itself with the value of idecreased when neither condition holds, returning nowhen i < 0. In the worst case, the complexity of thismethod is:Proposition 1 The best actions can be computed inthis way in time proportional to A2 � R, where A isthe number of actions and R is the total number ofrules.This complexity of this method is moderate, yet amore e�cient procedure can be used when goals arelinearly ordered (i.e., when no pair of goals have thesame priority). IfA stands for the set of all actions andi is a priority level (initially set to N ), select(A; i)can compute the best actions by retaining in A, ineach iteration, only the actions that get the strongest(weakest) reason from the single positive (negative)goal in Gi. This iteration terminates when i < 0 orwhen A becomes a singleton.In the example above, do-nothing is pruned fromA inthe �rst iteration because it only gets an empty reasonfrom the positive goal newspaper. In the second itera-tion, go-without-umbrella is also pruned as it gets astrong negative reason from the goal wet. The actiongo-with-umbrella then is the single best action as itis the only action left in A.3.1 EXAMPLEConsider whether to approach some animal, e.g., adog, that we don't know whether it is aggressive ornot: approach ) satisfy-curiosityapproach^ aggressive ) get-hurtIn this case, satisfy-curiosity is a low prioritypositive goal and get-hurt is a high priority nega-tive goal. Given no other information, aggressive

is assumed plausible by convention, and hence, theaction approach gets a strong positive reason fromsatisfy-curiosity and a weak negative reason fromget-hurt. Yet since get-hurt is the most importantgoal, the action approach is rejected for do-nothingwhich gets no (weak or strong) negative reasons. Note,however, that if observations lead to us revise thechances of aggressive to unlikely, the preferenceswould get reversed.4 SEMANTICSThe semantics will make precise the meaning of allthe constructs in the model and will provide an inde-pendent criterion for assessing the decision proceduresabove. In Decision Theory, actions A are ranked bytheir expected utility:EU (A) =Xs P (s) Xs0 PA(s0js) U (s0) (1)where the s and s0 denote the input and output statesrespectively. Here we use an approximation of thiscriterion with Spohn's [1988] �-functions in place ofprobabilities, and lexicographical orderings in place ofutility functions.4.1 BELIEFSSpohn [1988] describes a model for uncertain reasoningthat combines the main intuitions underlying proba-bility theory (context dependence, conditionalization,etc.) with the notion of plain beliefs (see also [Gold-szmidt and Pearl, 1992]). Beliefs in Spohn's modelare represented by means of a function � that assignsa non-negative integer measure to each world w andthat satis�es the following calculus:4�(p) 2 [0;1] ; �(p) = minwj=p �(w) (2)�(p _:p) = 0 ; �(pjq) = �(p ^ q) � �(q) (3)This calculus is structurally similar to the calculus ofprobabilities with products replaced by sums and sumsreplaced by minimizations. Spohn indeed showed thatthe �rst can be understood as an abstraction of the sec-ond with � measures standing for order-of-magnitudeprobabilities.Lower � measures stand for higher probabilities andhigher �measures stand for lower probabilities. Spohnindeed refers to the � measures as degrees of surpriseor disbelief, hence regarding a proposition p as plau-sible or believable when �(p) = 0 and as unlikely ordisbelieved when �(p) > 0. In particular, since theaxioms rule out two complementary propositions from4�(p) =1 when p is unsatis�able.



being disbelieved at the same time, a proposition p isaccepted or believed when its negation is disbelieved(i.e., when �(:p) > 0).4.1.1 INPUT BELIEFSWe use Spohn's � functions to formalize the beliefs�(Y) in the inputs propositions and the beliefs �A(Xjs)in the output propositions given an input state andaction. For the inputs beliefs, we assume that:5Assumption 2 Input variables are assumed to be in-dependent.This means that, in analogy to probabilities, the beliefin an input state is the aggregation of the beliefs in theinput literals true in that state:�(Y1; : : : ;Yn) = nXi=1 �(Yi) (4)These beliefs in turn are provided by the user or as-sumed by default (Convention 2):�(Yi) = � 1 if unlikely Yi or likely �Yi0 otherwise (5)These two equations determine the prior plausibility�(s) of any input state s completely. The posteriorplausibility �(sjobs) given a set of observations (inputliterals) can be derived from (3) as �(sjobs) = �(s) ��(obs) if s satis�es obs, and 1 otherwise.4.1.2 GOAL BELIEFSFor any goal literal X, the plausibility of X given anaction A and an input state s is expressed by the equa-tion: �A(X) = mins (�(s) + �A(Xjs)) (6)which is the qualitative version of the equationPA(X) =Ps P (s)PA(Xjs).From Equations 4 and 5, we know how to determinethe plausibilities �(s); we are thus left to determine theconditional plausibilities �A(Xjs). These plausibilitieswill be extracted from the rules that are applicable inthe state s that relate A to X.Let r(A) denote the set of action rules involving theactionA. Then we say that the input state s supports aliteral X when there is a rule in r(A) whose consequentis X, whose conditions are true in s, and for which allconicting rules in r(A) whose conditions are true ins have equal or lower priority.The plausibilities �A(Xjs) are then de�ned to captureConvention 1 (goals are assumed false by default) and5We will show how to relax this assumption in Section 7.

the intuition that supported literals should be eitherlikely or plausible (they have a justi�cation):�A(Xjs) = 8<: 0 when X is supported by s, or when�X is a goal not supported by s1 otherwise (7)Equations 4{7 determine the measures �A(X) for anyvalue X and any action A. When input observationsobs are gathered, the conditional measure �A(Xjobs)can be obtained by replacing the prior plausibility �(s)in Equation 6 by the posterior plausibility �(sjobs).4.1.3 EXAMPLEWe illustrate these de�nitions in the newspaper exam-ple. Because the only input variable is rain, whichis assumed plausible by default, the input states ares = fraing and s0 = f:raing with �(s) = �(s0) = 0.If A, B and C denote the actions go-without-umbrella, go-with-umbrella and do-nothing, theliterals supported by each action in each input situa-tion are: s = rain s0 = :rainA fnews,wet,:carryg fnews,:wet,:carrygB fnews,:wet,carryg fnews,:wet,carrygC f:news,:wet,:carryg f:news,:wet,:carrygFrom this table and Equations 4{7, the plausibilitiesof all goal literals can be computed; e.g., �A(wet) =minf�(s) + �A(wetjs); �(s0) + �A(wetjs0)g = minf0 +0; 0 + 2g = 0.4.2 PREFERENCES OVER ACTIONSTo rank the actions, we de�ne the qualitative utility ofa goal X, written u(X), as:u(X) = polarity(X) � priority(X) (8)Namely, for wet 2 G�2 , u(wet) = �2, while fornewspaper 2 G+3 , u(newspaper) = 3.Provided with these measures, we could de�ne thequalitative expected utility of actions relative to a goalX, following the methods in [Pearl, 1993] or [Wilson,1995], e.g., setting it to max(0; u(X)��A(Xjobs)) whenX is positive. The problem with these schemes is thatthey impose a very strong requirement on the way util-ity measures are encoded so they can be added up, inthe same scale, with � measures (see [Wilson, 1995]).Here we take a di�erent approach which does not re-quire goal priorities and plausibility judgements to beso calibrated. In the proposed scheme, only two thingsmatters: the ordinal ranking of goals, and whether



goals are deemed likely, unlikely or plausible. This isdone by de�ning the qualitative belief in a goal literalX as: bA(X) = �A(:Xjobs) � �A(Xjobs) (9)and de�ning the qualitative rank of an actionA relativeto a goal X as:6QX(A) = sign(u(X)) � sign(bA(X)) (10)In other words, an action has a positive rank relativeto a goal X (QX(A) = 1) when it's likely to makethe positive (negative) goal X true (false); it has anegative rank (QX(A) = �1) when it's likely to makethe positive (negative) goal X false (true); and it hasan null rank otherwise (QX(A) = 0). Clearly,De�nition 6 An action A is preferred to an action Bover a goal X if QX(A) > QX(B).In the presence of multiple goals, this ordering is ex-tended by considering more important goals �rst:De�nition 7 An action A is preferred to an actionB, written A � B, if A is preferred to B over somegoal X, and B is not preferred to A over any goal X0with equal to or higher priority than X.The overall optimal actions determined by this prefer-ence relation are closely related to the actions that re-sult from the decision procedures based on rules (Sec-tion 3). Indeed, if we say that a theory is positivewhen the rules do not involve negative literals in theirbodies we get that:Proposition 2 The decision procedures based on in-teraction of reasons are sound and complete for posi-tive theories.The condition of positivity is required because theprocedures do not reason by cases and thus cannotproperly handle pairs of rules like A ^ p ) X andA^:p) X. Under this condition, Proposition 1 guar-antees that the problem of identifying the best actionscan be computed e�ciently.4.2.1 EXAMPLEThe table below summarizes the qualitative rank ofthe actions relative to each of the goals newspaper,wet and carry:Action h n; w; c igo-without-umbrella: h+1;+0;+1igo-with-umbrella: h+1;+1;�1ido-nothing: h�1;+1;+1i6The function sign maps positive numbers into 1, neg-ative numbers into �1, and 0 into 0.

The preferences among the actions are easy to visualizeas they correspond to the lexicographical preferencesamong their corresponding vectors (in this case, nopair of goals have the same priority). The table makesevident that go-with-umbrella is the best action inthis case. On the other hand, if rain were unlikely,the �rst entry below wet would become +1, and thebest action would become go-without-umbrella.5 RELATION TO DECISIONTHEORYThe optimal action A from a decision theoretic point ofview is the action that maximizes the expected utility(Equation 1). The model can be understood as assum-ing that the utility function U (s) is additively decom-posable as U (s) = PX2s U (X), where X is the valueof variable X in the output situation s, and that theutility of positive (negative) goals X is a �xed positive(negative) value UX and the utility for the negation ofa goal is 0. From these assumptions, it is possible toshow that Equation 1 can be expressed as:EU (A) = XX2GUX PA(X) (11)Furthermore, the model assumes that terms UXPA(X)make terms UX0PA(X0) negligible when PA(X) �PA(X0) (`unlikely scenarios are ignored') and thatjUXj � jUX0 j when the priority of X is higher thanthe priority of X0 (`low priority goals are traded byhigher priority goals').6 SENSITIVITY ISSUESIt is not hard to think of cases where the assumptionsembedded in this model are not reasonable. Considerfor example a situation in which a patient has a veryserious disease which if not treated will result in hisdeath. Moreover, there is only one possible treatmentand such treatment does not always work, and in allcases it has undesirable side-e�ects like loosing hair,vomiting, etc. do-nothing ) deathtreatment^ :effective ) deathtreatment ) side-effectsHere the goals death and side-effects are both neg-ative and the �rst is signi�cantly more important thanthe second.The atom effective provides the condition underwhich the treatment works. If the prior plausibilitymeasure of effective is 0 (the treatment can plau-sibly work) the model recommends treatment. Yet if



the prior plausibility measure of effective is 1 (thetreatment most likely will not work) the model willrecommend to do nothing (i.e., the action do-nothingwill be preferred to treatment).One way to look at the second scenario is that themodel prefers the lottery `certain death' to the lottery`certain side-e�ects and very likely death'. This pref-erence, which is not reasonable, results from regardingunlikely scenarios as impossible ones. This assump-tion, in cases where important goals are at stake, isactually far from appropriate.We can measure though how robust an optimal deci-sion is by considering how it is a�ected by changes inthe input parameters (goal priorities and input plau-sibilities).Let us say that a goal X justi�es the preference ofaction A over action B if A is preferred to B over Xand yet A and B are equally preferred over all goalswith higher priority than X.For example, when the treatment is unlikely to work,the goal that justi�es the decision do-nothing overtreatment is side-effects. On the other hand,when the treatment can plausibly work, do-nothingbecomes inferior to treatment because of the goaldeath. Since death is considerably more importantthan side-effects the proper selection of the param-eter �(effective) in this case is critical. More gener-ally, when minimal changes in an input parameter leadto abrupt changes in the importance of the goals thatare obtained the optimality of the decisions need tobe reconsidered. This critical tradeo� can be detectedin this model, yet the same model is not su�cientlyexpressive to resolve them. Often, however, there maybe no reasonable ways for resolving such tradeo�s.7 EXTENSIONSThe expressive power of the model is limited yet thereare a number of extensions that can be accommodated.First, we can relax the assumptions that input vari-ables be independent by accommodating input rulesin addition to action rules. These input rules will im-pose a causal structure on the input variables whichcan be interpreted as in [Goldszmidt and Pearl, 1992]or [Ge�ner, 1996a]. Semantically the only di�erence isin the determination of the plausibilities of the inputstate �(s).Second, we can interpret the input and output situa-tions as referring to the state of the world before andafter the action. The values of variables that occur inboth the inputs and the outputs can then be assumedto persist by default [Gelfond and Lifschitz, 1993;

Ge�ner, 1996b]. This can enable us to express se-quential decision problems, where the choice of opti-mal actions is replaced by the choice of optimal actionsequences.In many cases, we may also need a way for representingand aggregating preferences among equally importantgoals. That is, two goals may be equally important andyet one may be preferred to the other; e.g., going tosee the `Knicks' vs. going to see the `Mets'. A possibleapproach in this case is to express these preferences bymeans of integers and to aggregate such preferences bysome form of weighted addition according to whetherthe goals are rendered likely, plausible or unlikely bythe actions.8 RELATED WORKThe proposed model for decisions is related to otherqualitative abstractions of decision theory and to in-formal models of decisions based on the interplay ofreasons.Qualitative models of decision making have receivedconsiderable attention in recent years [Pearl, 1993;Boutilier, 1994; Dubois and Prade, 1995; Wilson,1995]. All of these proposals have in commonthe use ofqualitative measures for representing preferences andbeliefs, yet compared to this work, few have placedemphasis on modeling (yet, see [Brewka and Gordon,1995]) and in the mechanisms for computing and ex-plaining decisions.The work di�ers from [Pearl, 1993] and [Wilson, 1995]in the way utility ranks and � measures are combined.Pearl and Wilson assume that these measures are cali-brated so that they can be added up in the same scale.Thus, a likely world with utility rank 1 is deemed asgood as an unlikely world with utility measure 2. Ourchoice here is di�erent: our priority measures are com-pletely ordinal and represent the importance of goals.Our criterion is that most important goals dominateless important goals except when the former are un-likely to be realized.The two criteria can be usefully contrasted in the sim-ple case in which there is a single positive goal X in-volved. This scenario can be expressed in Pearl's andWilson's framework by partioning the set of worldsinto two sets: the worlds w+ that satisfy X, whichget a utility rank �(w+) = 1, and the worlds w� thatdo not satisfy X, which get a utility rank �(w�) =0. A weakness of Pearl's and Wilson's scheme isthat they fail to prefer actions A that make X likely(�A(:X) > 0) to actions B that make X just plausi-ble (�B(X) = �B(:X) = 0). Both actions get actuallythe same expected utility rank in their scheme. Inter-



estingly this is not solved when the worlds w� thatdo not satisfy the goal are assigned a negative utilityrank �(w�) = �1. In that case, Pearl's and Wilson'sschemes will label the actions B that make the goalX plausible, ambiguous. We, on the other hand, ranksuch actions below the actions A that make X likely,and above the actions C that make X unlikely.The procedures considered in Section 3 are related alsoto informal models of decision based on the interplayof reasons. For example, when one action A gets eitherpositive or negative (non-empty) reasons such that noother action gets (non-empty) reasons of the same im-portance, the action A can immediately be accepted,if the reasons are positive, and rejected, if the reasonsare negative. These type of situations, where there areclear and compelling reasons for accepting or rejectingdecisions, seem to be the ones people feel most com-fortable with and have been studied in [Sha�r et al.,1993].AcknowledgmentsWe want to thank the anonymous UAI reviewers foruseful comments.References[Boutilier, 1994] C. Boutilier. Toward a logic for qual-itative decision theory. In Proceedings KR-94, pages75{86, 1994.[Brewka and Gordon, 1995] G. Brewka and T. Gor-don. How to buy a porsche: An approach to defeasi-ble decision making (extended abstract). In Work-shops in Computational Dialectics, 1995.[Dubois and Prade, 1995] D. Dubois and H. Prade.Possibility theory as a basis for qualitative decisiontheory. In Proceedings of IJCAI-95, pages 1924{1930, 1995.[Ge�ner, 1996a] H. Ge�ner. A formal framework forcausal modeling and argumentation. In Proceedingsof Intl. Conf. on Formal and Applied Practical Rea-soning. Springer-Verlag, 1996.[Ge�ner, 1996b] H. Ge�ner. A qualitative model fortemporal reasoning with incomplete information. InProceedings AAAI-96, Portland, Oregon, 1996. MITPress.[Gelfond and Lifschitz, 1993] M. Gelfond and V. Lifs-chitz. Representing action and change by logic pro-grams. J. of Logic Programming, 17:301{322, 1993.[Goldszmidt and Pearl, 1992] M. Goldszmidt andJ. Pearl. Rank-based systems: A simple approach
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