
Linear Programming in Optimal Classical
Planning

Blai Bonet

Universidad Simón Boĺıvar, Venezuela

UC3M. June 2019

Model for classical planning

Simplest model: full information and deterministic operators (actions):

• (finite) state space S

• (finite) operator space O

• initial state sinit ∈ S

• goal states SG ⊆ S

• applicable operators O(s) ⊆ A

• deterministic transition function f such that f(s, o) is state that
results of applying o ∈ O(s) in s

• operator cost c(o) for each o

Solution is sequence of applicable operators that map initial state to goal

Solution 〈o0, o1, . . . , on−1〉 is optimal if its cost
∑

0≤i<n c(oi) is minimum

2 of 46

Planning as search in the space of states

Computation of plans (solutions) as search in space of states of path that
goes from initial state to a goal state

Search can be done efficiently in explicit graphs

Main obstacle: implicit model specified with factored language is typically
of exponential size

Work around: search in implicit graph with guiding information

Algorithm: (in optimal classical planning) A* with admissible heuristic

3 of 46

Specification of models

Models specified using representation language

These languages are factored languages that permit specification of very
large problems using few symbols

Instance in factored
representation Planner Controller (Plan)

4 of 46

STRIPS: Propositional language

Representation language based on propositions

Propositions evaluate to true/false at each state (e.g. light is on, package is in
Madrid, elevator is in second floor, etc)

STRIPS task P = (F, I,G,O):

– Set F of propositions used to describe states

– Initial state I is subset of propositions: those true at initial state

– Goal description G is subset of propositions: those we want to hold at goal

– Operators in O change truth-value of propositions

Each operator o characterized by three F -subsets:

– Precondition pre(o): things that need to hold for o to be “applicable”

– Positive effects add(o): things that become true when o is applied

– Negative effects del(o): things that become false when o is applied

5 of 46

Example: Gripper

B

A

1 2 3

– Bunch of balls in room B

– Robot with left and right gripper, each one may hold a ball

– Goal: move all balls to room A

Robot may:

– move between rooms A and B; e.g. Move(A,B)

– use grippers to pick and drop balls from rooms; e.g. Pick(left, b3, B)

6 of 46

Example: Gripper

B

A

1 2 3

Variables:

– robot’s position: room A or B

– position of each ball bi: either room A or B, or left or right gripper

States: valuation for vars (#states > 2n+1 for problem with n balls)

Actions:

– deterministic transition function: from state to next state

– may have preconditions; e.g. can drop 1 in A only if at A and holding it
6 of 46

Example: Gripper in PDDL

(define (domain gripper)
(:predicates (room ?r) (ball ?b) (gripper ?g) (at-robby ?r) (at ?b ?r)

(free ?g) (carry ?o ?g))

(:action move
:parameters (?from ?to)
:precondition (and (room ?from) (room ?to) (at-robby ?from))
:effect (and (at-robby ?to) (not (at-robby ?from))))

(:action pick
:parameters (?b ?r ?g)
:precondition (and (ball ?b) (room ?r) (gripper ?g) (at ?b ?r) (at-robby ?r) (free ?g))
:effect (and (carry ?b ?g) (not (at ?b ?r)) (not (free ?g))))

(:action drop
:parameters (?b ?r ?g)
:precondition (and (ball ?b) (room ?r) (gripper ?g)
(carry ?b ?g) (at-robby ?r))
:effect (and (at ?b ?r) (free ?g) (not (carry ?b ?g))))

)

(define (problem p1)
(:domain gripper)
(:objects A B left right b1 b2 b3)
(:init (room A) (room B) (gripper left) (gripper right) (ball b1) (ball b2) (ball b3)

(at-robby A) (at b1 B) (at b2 B) (at b3 B) (free left) (free right))
(:goal (and (at b1 A) (at b2 A) (at b3 A))))

7 of 46

Heuristic functions in search

Provide information to A* to make search more efficient

Difference in performance may be important (exponential speed up)

Heuristic is function h that for state s returns non-negative estimate h(s) of
cost to go from s to goal state

Properties:

• Goal-aware: h(s) = 0 if s is goal

• Admissible: h(s) ≤ “min cost to reach goal from s”

• Consistent: h(s) ≤ c(o) + h(f(s, o)) where o ∈ O(s) (triangular ineq.)

8 of 46

Basic facts about heuristics

1. Goal-aware + Consistent =⇒ Admissible

2. A* returns optimal path if h is admissible

3. A* is optimal algorithm if h is consistent

4. If h1 ≤ h2 and both consistent, A* with h2 is “better” than A* with h1

9 of 46

Domain-independent planning

Instance in factored
representation Planner Controller (Plan)

Heuristic function must be computed automatically from input

– For effective planner, heuristic must be informative (i.e. must provide
good guidance)

– For computing optimal plans, heuristic must be admissible

– This is the main challenge in optimal classical planning

10 of 46

Recipe for admissible heuristics

As proposed by Judea Pearl, best way to obtain admissible estimate h(s) for
task P :

– Relax task P from s into “simpler” task P ′(s)

– Solve P ′(s) optimally to obtain cost h∗P ′(s) of reaching goal in P ′ from s

– Set h(s) := h∗P ′(s)

Often, either

– P ′(s) is solved each time its value is needed, or

– P ′ is solved entirely and the estimates h∗P ′(s) are stored in a table.
Computing h(s) is just a lookup operation into table (constant time)

11 of 46

Fundamental task: Combine multiple heuristics

Given admissible heuristics H = {h1, h2, . . . , hn} for task P , how do we
combine them into a new admissible heuristic?

– Pick one (fixed or random): H(s) = hi(s)

– Take maximum: hmax
H (s) = max{h1(s), h2(s), . . . , hn(s)}

– Take sum: hsumH (s) = h1(s) + h2(s) + · · ·+ hn(s)

First two guarantee admissibility, last doesn’t. However, hmax
H ≤ hsumH

We would like to use hsumH but need admissibility

12 of 46

Cost relaxation

Given:

– Task P (either STRIPS or other) with operator costs c, denoted by Pc

– Method to relax Pc into P ′c

Additional relaxation:

– Before calculating relaxation P ′c, change cost function from c to c′

– Relaxed task is P ′c′ of original task Pc

Result:

– If relaxation method yields admissible (resp. consistent) estimates, relaxed
task Pc′ also yields admissible (resp. consistent) estimates when c′ ≤ c

– That is, h∗P ′′(s) ≤ h∗P ′(s) ≤ h∗P (s) for P ′′ = P ′c′ when c′ ≤ c

13 of 46

Cost partitioning

A task P with costs c(·) can be decomposed into P = {Pc1 , Pc2 , . . . , Pcn}
where each cost function ci(·) satisfies ci(o) ≤ c(o) for all operators o

Given heuristics H = {h1, h2, . . . , hn} where hi is for problem Pci

hmax
H (s) = max{h1(s), h2(s), . . . , hn(s)} ≤ h∗(s)

If c1(o) + c2(o) + · · ·+ cn(o) ≤ c(o) for each operator o,

hsumH (s) = h1(s) + h2(s) + · · ·+ hn(s) ≤ h∗(s)

We say that {c1, c2, . . . , cn} is a cost partitioning. The optimal cost
partitioning (OCP) maximizes hsumH (s) (it depends on s)

14 of 46

Linear programming

LP (or linear optimization) is method to optimize linear objective
(function) subject to linear constraints on variables

Standard forms:

Minimize cTx

subject to

Ax ≥ b

x ≥ 0

Maximize cTx

subject to

Ax ≤ b

x ≥ 0

15 of 46

Pseudo-LP for optimal cost partitioning

Decision variables: (heuristic value) hi(s), (cost partition) ci(o)

Maximize
∑

1≤i≤n

hi(s)

subject to

[linear constraints that “calculate” hi(s)]∑
1≤i≤n ci(o) ≤ c(o) (for each operator o)

0 ≤ ci(o) (non-negative operator costs)

Exact LP will depend on the relaxation method. Optimal cost-partitioning
heuristic for state s denoted by hOCP

H (s) or hOCP
C (s)

16 of 46

(Action) Landmarks

(Disjunctive action) landmark for task P (s) is subset L ⊆ O of operators
such that any plan for state s must execute at least some operators in L

STRIPS Task P = (F, I,G,O) where:

– F = {i, p, q, r, g}, I = {i}, G = {g}, O = {o1, o2, o3, o4}
– o1[3] : i→ p, q

– o2[4] : i→ p, r

– o3[5] : i→ q, r

– o4[0] : p, q, r → g

Optimal plan: (o1, o2, o4) with cost 7

Landmarks for I: L1 = {o1, o2}, L2 = {o1, o3}, L3 = {o2, o3}, L4 = {o4}, . . .
Non-landmarks for I: {o1}, {o2}, {o3}

There are efficient methods to compute landmarks

17 of 46

Landmark heuristic

Given landmark L = {o1, o2, . . .} for state s, hL(s) = min{c(o) : o ∈ L}

In example, L = {L1 = {o1, o2}, L2 = {o1, o3}, L3 = {o2, o3}, L4 = {o4}} is
collection of landmarks for initial state. The associated heuristics are
H = {hL1 , hL2 , hL3 , hL4}

– hmax
H (I) = max{hL1(I), hL2(I), hL3(I), hL4(I)} = max{3, 3, 4, 0} = 4

– hsumH (I) = 3 + 3 + 4 + 0 = 10 (non-admissible since h∗(I) = 7)

– For cost partitioning given by

c1 c2 c3 c4
∑

o1[3] 1 2 3
o2[4] 1 3 4
o3[5] 2 3 5
o4[0] 0

cost-partitioning for hsum
H yields 1 + 2 + 3 + 0 = 6 (admissible)

18 of 46

Optimal cost-partitioning for landmarks

Optimal cost-partitioning hOCP
L for collection L may be computed efficiently:

Decision variables: (heuristic value) hi, (cost partition) ci(o)

Maximize
∑
Li∈L

hi

subject to

hi ≤ ci(o) (for each Li ∈ L and o ∈ Li)∑
i[[o ∈ Li]]ci(o) ≤ c(o) (for each operator o)

0 ≤ ci(o) (for each Li ∈ L and o ∈ Li)
0 ≤ hi (for each Li ∈ L)

19 of 46

Optimal cost-partitioning for landmarks

Optimal cost-partitioning hOCP
L for collection L may be computed efficiently:

Decision variables: (heuristic value) hi

Maximize
∑
Li∈L

hi

subject to∑
i[[o ∈ Li]]hi ≤ c(o) (for each operator o)

0 ≤ hi (for each Li ∈ L)

19 of 46

Another way to exploit landmarks: Hitting sets

From L = {L1 = {o1, o2}, L2 = {o1, o3}, L3 = {o2, o3}, L4 = {o4}}:

– any plan must execute at least two operators in U = {o1[3], o2[4], o3[5]}

– cheapest 2-subset is to select o1 and o2 for cost of 7

– Therefore, 7 is admissible estimate on cost of any plan (exact in example)

– Formally, we say that {o1, o2} is minimum-cost hitting set for U

Hitting sets:

– Classical problem in CS (in Karp’s original list of NP-Complete problems)

– Task: Given family F of subsets of universe U , costs c(u) for each u ∈ U ,

and bound K, determine whether there is subset H ⊆ U such that:

• S ∩H 6= ∅ for every S ∈ F
• c(H) ≤ K where c(H) =

∑
u∈H c(u)

20 of 46

Hitting sets as (integer) LP

Calculation of hitting sets can be done with LP with integer variables

Task: universe U with costs c(u), and family F of U -subsets

Decision variables: (binary variable) xu for each u ∈ U

Minimize
∑
u∈U

c(u) · xu

subject to∑
u∈S xu ≥ 1 (for each S ∈ F)

xu ∈ {0, 1} (for each u ∈ U)

Unfortunately, we don’t know if ILPs can be solved in polynomial time

21 of 46

Duality

For any linear optimization problem, called primal problem, there is a
related LP problem called dual problem:

– objective in dual is maximization (resp. minimization) if objective in
primal is minimization (resp. maximization)

– each variable in dual corresponds to constraint in primal, and vice versa

– each constraint in dual corresponds to variable in primal, and vice versa

Many algorithms, like Simplex, work with both problems simultaneously

Often theoretical insight is gained by studying the dual problem

22 of 46

Primal and dual problems

Dual of minimization primal in standard form:

Primal

Minimize cTx

subject to

Ax ≥ b

x ≥ 0

Dual

Maximize bT y

subject to

AT y ≤ c

y ≥ 0

Weak duality: primal objective is lower bounded by dual objective

Strong duality: both problems have same objective value if primal is
feasible and bounded

23 of 46

Primal and dual problems

Dual of maximization primal in standard form:

Primal

Maximize cTx

subject to

Ax ≤ b

x ≥ 0

Dual

Minimize bT y

subject to

AT y ≥ c

y ≥ 0

Weak duality: primal objective is upper bounded by dual objective

Strong duality: both problems have same objective value if primal is
feasible and bounded

23 of 46

Hitting sets vs. optimal cost partitionings

For L = {L1 = {o1, o2}, L2 = {o1, o3}, L3 = {o2, o3}, L4 = {o4}}

Let us begin with LP for hitting sets for L

Minimize
∑
oi∈O

c(oi) · xi

subject to∑
oi∈L xi ≥ 1 (for each L ∈ L)

xi ∈ {0, 1} (for each oi ∈ O)

24 of 46

Hitting sets vs. optimal cost partitionings

For L = {L1 = {o1, o2}, L2 = {o1, o3}, L3 = {o2, o3}, L4 = {o4}}

Let us begin with LP for hitting sets for L

Minimize 3x1 + 4x2 + 5x3 + 0x4

subject to

x1 + x2 ≥ 1 (for landmark L1)

x1 + x3 ≥ 1 (for landmark L2)

x2 + x3 ≥ 1 (for landmark L3)

x4 ≥ 1 (for landmark L4)

xi ∈ {0, 1} (for each oi ∈ O)

24 of 46

Hitting sets vs. optimal cost partitionings

For L = {L1 = {o1, o2}, L2 = {o1, o3}, L3 = {o2, o3}, L4 = {o4}}

Relaxation of integer variables

Minimize 3x1 + 4x2 + 5x3 + 0x4

subject to

x1 + x2 ≥ 1 (for landmark L1)

x1 + x3 ≥ 1 (for landmark L2)

x2 + x3 ≥ 1 (for landmark L3)

x4 ≥ 1 (for landmark L4)

0 ≤ x1, x2, x3, x4 ≤ 1 (for each oi ∈ O)

24 of 46

Hitting sets vs. optimal cost partitionings

For L = {L1 = {o1, o2}, L2 = {o1, o3}, L3 = {o2, o3}, L4 = {o4}}

Calculate dual LP (it has same objective value)

Maximize y1 + y2 + y3 + y4

subject to∑
j [[o ∈ Lj]]yj ≤ c(o) (for each operator o)

0 ≤ yj (for each Lj ∈ L)

24 of 46

Hitting sets vs. optimal cost partitionings

For L = {L1 = {o1, o2}, L2 = {o1, o3}, L3 = {o2, o3}, L4 = {o4}}

Calculate dual LP (it has same objective value)

Maximize y1 + y2 + y3 + y4

subject to

y1 + y2 ≤ 3 (operator o1)

y1 + y3 ≤ 4 (operator o2)

y2 + y3 ≤ 5 (operator o3)

y4 ≤ 0 (operator o4)

0 ≤ y1, y2, y3, y4

This is LP for optimal-cost partitioning!

24 of 46

SAS+: Finite-domain variables

Representation language based on finite-domain variables rather than
propositional variables

SAS+ task is tuple Π = (V, O, sI , s?, cost) where

– V is set of variables; each variable V has finite domain Dom(V)

– sI is complete valuation of variables defining initial state

– s? is partial valuation of variables defining (set of) goal states

– O is set of operators; each operator given by (partial valuation)
precondition pre(o) and (partial valuation) effect eff(o)

– operator costs given by function cost : O → R≥0

25 of 46

Transition Normal Form (TNF)

General format of SAS+ problems in which:

– task Π = (V, O, sI , s?, cost)

– s? is complete state (i.e. unique goal state)

– vars(pre(o)) = vars(eff(o)) for every operator o

A SAS+ task may be transformed into TNF in linear time (small overhead)

Practical transformation implemented in planners (e.g. FastDownward)

From now on, assume tasks in TNF as it makes presentation simpler

26 of 46

Transition systems and abstractions

Task Π = (V, O, sI , s?, cost) induces transition system TS = (S, T, sI , sG):

– S is set of states

– sI is initial state

– sG = {s?}

– transitions (s, o, s′) where o is applicable in s, and s′ is resulting state

Abstraction α : S → Sα maps Π into abstract Πα = (Sα, Tα, sαI , s
α
G):

– Sα = {α(s) : s ∈ S}

– Tα = {(α(s), o, α(s′)) : (s, o, s′) ∈ T}

– sαI = α(sI)

– sαG = {α(s) : s ∈ G}. If TNF, G = {s?} and sαG = {α(s?)}

Heuristic hα(s) = “cost of optimal path from α(s) to α(s?)”
27 of 46

DTGs and SEQ heuristic

DTG for variable V is directed graph with vertices v for each value v of V ,
and edges (v, o, v′) for each o such that pre(o)[V] = v and eff(o)[V] = v′

State-equation (SEQ) heuristic hSEQ(s) for state s is defined by:

Decision variables: Counto (#times o is applied)

Minimize
∑
o

cost(o) · Counto

subject to∑
v′
o→v

Counto −
∑
v
o→v′

Counto = ∆s(V, v) (for each 〈V, v〉)

0 ≤ Counto (for each o)

where ∆s(V, v) = [[s?[V] = v]]− [[s[V] = v]] (net change)

28 of 46

SEQ vs. OCP heuristics

Abstraction α is atomic projection if there is variable V such that
α(s) = (V, s[V]) (i.e. s is projected into V). Such α is denoted by αV

Let Atom = {αV : V ∈ V} be all the atomic projections, and let hOCP
Atom

denote the optimal cost-partitioning for the collection {hαV : V }

Then, hOCP
Atom(s) ≤ hSEQ(s)

We can close the gap by:

– removing non-negativity constraints, 0 ≤ ci(a), from OCP model
(i.e., allow negative operator costs in the cost partitioning)

– removing “dead-end” states in the atomic transitions systems

29 of 46

Network flows

Consider transition system TS = (S, T, sI , {s?}) with single goal state.
Following LP is standard formulation of min-cost network flow problem:

Decision variables: Countt (#times transition t is traversed)

Minimize
∑
o

∑
t has label o

cost(o) · Countt

subject to∑
t∈IN(s)

Countt −
∑

t∈OUT(s)

Countt = ∆(s′) (for each s′ ∈ S)

0 ≤ Countt (for each t ∈ T)

where ∆(s′) = [[s′ = s?]]− [[s = s]] (net change)

For abstraction TSα, fα(s) denotes value of this LP for TSα

Known: hOCP
{fαV :V }(s) ≤ h

SEQ(s) (but may bridge gap with simple transf.)
30 of 46

Strengthening of heuristics

LP-based heuristics can be strengthened by adding more constraints, often
coming from different ideas or known heuristics

For example, we may combine SEQ constraints with landmark constraints
to obtain an improved heuristic function

It can be shown:

hLP
C1 ∪C2 ∪ ··· ∪ Cn = hOCP

H

where H = {hLP
C1 , h

LP
C2 , . . . , h

LP
Cn}

For example, for landmark collection L:

hLP
SEQ∪L = hOCP

{hSEQ,hLPL }
= hOCP

{hSEQ,hOCP
L }

31 of 46

Potential heuristics: Motivation

Previous heuristics require solving an LP for each evaluation h(s)

It requires polynomial time, yet we’d like more efficient computation

Recall that after simple transformations hOCP
Atom(s) becomes hSEQ(s). The

former is an optimal cost partitioning for H = {hαV : V ∈ V}

hαV (s) is cost of optimal path in DTG from V -value in s to V -value s?

New idea:

– Compute OCP for H for initial state sI (yet any state will do)

– For each V , using the costs in OCP, compute and store in table T [V, v]
optimal costs to go from any V -value v to V -value in s?[V]

– During search, let h(s) =
∑
V ∈V T [V, s[V]]. Observe h(s) ≤ h∗(s) (why?)

32 of 46

Potential heuristics

A potential heuristic is a non-negative state function of the form

ϕ(s) =
∑
f∈F

wf [[s � f]]

where F is set of features and wf is weight assigned to feature f

We want to have such heuristic functions because:

– “Small” F and fast-evaluation of [[s � f]] yields fast computation of ϕ(s)

– Potential heuristics may be quite informative

– How do we guarantee admissibility / consistency of ϕ?

Use LP to define admissible, consistent, and informative heuristics!

33 of 46

Fact-based features

Consider task Π = (V, O, sI , s?, cost) in TNF and let TS = (S, T, sI , {s?})
be its transition system

A fact is a pair 〈V, v〉. It holds in state s iff s[V] = v.

Facts may be used to construct features (n is number of facts):

– One-dimensional feature is fact (there are O(n) such features)

– Two-dimensional feature is conjunction of two facts (incl. 1d) (O(n2))

– Higher-dimensional feature is conjunction of three or more facts (O(nd))

34 of 46

Goal-aware and consistent potential heuristics

Potential heuristic ϕ is goal-aware and consistent (and thus admissible) iff

ϕ(s?) ≤ 0

ϕ(s)− ϕ(s′) ≤ cost(o) (for each s
o→ s′ in T)

Substituting ϕ(s) by its definition:∑
f∈F wf [[s? � f]] ≤ 0∑

f∈F wf
(
[[s � f]]− [[s′ � f]]

)
≤ cost(o) (for each s

o→ s′ in T)

This LP has exponential number of constraints: one for each transition

We’ll circumvent this obstacle for one- and two-dimensional features!

35 of 46

One-dimensional features

Let us consider a transition s
o→ s′ in T :

– Let ∆o(f, s) = [[s � f]]− [[s′ � f]]

– Each feature is of format f = 〈V, v〉, let var(f) = V

– (For operator o) partition F into F irr={f : var(f) /∈ vars(o)} and F ind = F\F irr:∑
f∈F

wf ∆o(f, s) =
∑

f∈F irr

wf ∆o(f, s) +
∑

f∈F ind

wf ∆o(f, s)

– For feature f in F irr: ∆o(f, s) = 0 since o doesn’t change its value

– For feature f in F ind: [[s � f]] = [[pre(o) � f]] and [[s′ � f]] = [[eff(o) � f]]

– Thus, ∆o(f, s) = [[s � f]]− [[s′ � f]] = [[pre(o) � f]]− [[eff(o) � f]] = ∆o(f)

For transition s
o→ s′,∑

f∈F

wf ∆o(f, s) ≤ cost(o) is equivalent to
∑

f∈F ind

wf ∆o(f) ≤ cost(o)

36 of 46

LP for one-dimensional potential heuristics

Decision variables: wf (weight of feature f)

[your choice of linear objective function]

subject to∑
f∈F

wf [[s? � f]] ≤ 0

∑
f∈F ind

wf ∆o(f) ≤ cost(o) (for each operator o)

where ∆o(f) ∈ {−1, 0, 1} and [[s? � f]] ∈ {0, 1} are constants

– F is any subset of one-dimensional features (includes atomic proj.)

– LP size = |F| decision variables, and 1 + |O| linear constraints

37 of 46

Choice of objective function

Room for different ideas:

– Max value at initial state sI : Maximize
∑
f∈F wf [[sI � f]]

– Max average value in sample M of states of size k:

Maximize 1
k

∑
s∈M

∑
f∈F wf [[s � f]]

– Max min value in sample M of states:

Maximize z

subject to

z ≤
∑
f∈F wf [[s � f]] (for each s ∈M)

– . . . others . . .

38 of 46

LP for two-dimensional potential heuristics

Decision variables: wf (weight of feature f), zoV (new auxiliary vars)

[your choice of linear objective function]

subject to∑
f∈F

wf [[s? � f]] ≤ 0

∆o +
∑

V ∈Vo

zoV ≤ cost(o) (for each operator o)

∑
f∈Fctx,f=fo∧〈V,v〉

wf∆o(fo) ≤ zoV (for each o, V ∈Vo, v∈Dom(V))

where Vo=V\vars(o), ∆o =
∑

f∈F ind wf∆o(f), F = F irr ∪ F ind ∪ F ctx

– F is any subset of two-dimensional features

– LP size = |F|+ |V| × |O| decision variables, and at most 1 + |O|(1 + |V|d)
linear constraints where d bounds domain size of variables

39 of 46

Higher-dimensional features

Intractable: reduction of non-3-colorability into testing if given ϕ is consistent

Let G = (V,E) be undirected graph: the one we’d like to test for non 3-colorability

Need construct Π and ϕ in p-time such that ϕ is consistent iff G is non 3-colorable

For the task Π = (V, O, sI , s?) in TNF:

– |V + 1| variables: one Cv for color of vertex v (rgb), and one master M (binary)

– For vertex v and c 6= c′, there is operator chg(v, c, c′) of zero cost to change
Cv from c to c′ when M = 0 (effects include M = 0 as well)

– For M , there is operator oM of zero cost to change M from 0 to 1

– sI [Cv] = s?[Cv] = red for all vertices v, sI [M] = 0, and s?[M] = 1

For potential ϕ(s) over 3-dimensional features f , all weights are zero except:

– wf=− 1 if vars(f)={M,Cu, Cv}, {u, v} is edge, f [M]=1, and f [Cu]6=f [Cv]

– wfM = |E| − 1 for feature fM = 〈M, 1〉 of dimension 1

Claim: ϕ is consistent iff G is non 3-colorable (e.g. no efficiently constructible LP)
40 of 46

Analysis of reduction

Analysis of values of ϕ at states s:

– If s[M] = 0, then ϕ(s) = 0 since wf = 0 when f [M] = 0

– If s[M] = 1, then ϕ(s) ≥ −1 since wfM = |E| − 1 and wf = −1 for
features f with vars(f) = {M,Cu, Cv} such that {u, v} is edge, f [M] = 1
and f [Cu] 6= f [Cv] (there are at most |E| such features f with s � f)

– ϕ(s)=− 1 iff s[M]=1 and s is 3-coloring: fM contributes |E| − 1, and
each edge {u, v} contributes −1 via f=〈M, 1〉 ∧ 〈Cu, s[Cu]〉 ∧ 〈Cv, s[Cv]〉

G is 3-colorable ⇔ there is operator sequence that achieves 3-coloring

G is 3-colorable ⇔ there is s
o→ s′ where s′ is 3-coloring and s′[M]=1

G is 3-colorable ⇔ there is s
o→ s′ where ϕ(s) = 0 and ϕ(s′) = −1

G is 3-colorable ⇔ ϕ isn’t consistent (since all operators have zero cost)

Theorem: Checking whether given ϕ is consistent is coNP-Complete
41 of 46

Higher-dimensional features: Parametrized tractability

Let F be a set of features, each of arbitrary dimension

We want LP for constructing goal-aware and consistent F-potentials

Theorem: There is set C of linear constraints that characterize the
goal-aware and consistent F-potential heuristics on task Π where

– number of decision variables is O(|O|(|F|+ ndw
∗
))

– number of constraints is O(|O|nd1+w∗)

where d bounds domain size of variables in Π, n is number of variables in Π,
and w∗ is maximum treewidth of context-dependency graphs

Computing linear constraints that characterize goal-aware and consistent
F-potentials is fixed-parameter tractable with parameter max{w∗, d}

42 of 46

Context-dependency graph and treewidth

Number of variables and constraints in LP for arbitrary feature set F is
exponential in maximum treewidth of context-dependency (CD) graphs

CD graph G(Π,F , o) for task Π, feature set F , and operator o has:

– one vertex for each variable V in Π

– one (undirected) edge e = {V, V ′}, V 6= V ′, iff there is f in F such that
vars(f) ∩ vars(o) 6= ∅ and e ⊆ vars(f) \ vars(o)

Treewidth of (undirected) graph G:

– parameter that measures how “complex” are cycles in G (larger means
more complex)

– treewidth of tree is 1, and treewidth of clique Kn is n− 1

– often appears in analysis of combinatorial algorithms

43 of 46

Wrap up

– Linear programming is a powerful practical and theoretical tool for
analysis, design, and implementation of heuristics for planning

– Most powerful and advanced state-of-the-art heuristics are formulated and
computed using LP (either during preprocessing before search starts or
during search)

– LP-based heuristics may go beyond delete-relaxation heuristics (like SEQ)

– Potential heuristics may be even more powerful and they offer interesting
computational tradeoffs

– LP should be considered a declarative language for heuristic functions
rather than just a computational model

44 of 46

References

Relevant references in chronological order:

1. M. van den Briel, J. Benton, S. Kambhampati and T. Vossen. An LP-based
heuristic for optimal planning. CP 2007.

2. B. Bonet and M. Helmert. Strengthening Landmark Heuristics via Hitting Sets.
ECAI 2010.

3. M. Katz and C. Domshlak. Optimal admissible composition of abstraction
heuristics. AIJ 2010.

4. H. Geffner and B. Bonet. A Concise Introduction to Models and Methods for
Automated Planning. Morgan & Claypool Publishers. 2013.

5. B. Bonet. An admissible heuristic for SAS+ planning obtained from the state
equation. IJCAI 2013.

6. B. Bonet and M. van den Briel, Flow-based heuristics for optimal planning:
Landmarks and merges. ICAPS 2014.

45 of 46

References

Relevant references in chronological order:

7. F. Pommerening, G. Röger, M. Helmert and B. Bonet. LP-based Heuristics for
Cost-optimal Planning. ICAPS 2014.

8. F. Pommerening and M. Helmert. A normal form for classical planning tasks.
ICAPS 2015.

9. F. Pommerening, M. Helmert, G. Röger and J. Seipp. From non-negative to
general operator cost partitioning. AAAI 2015.

10. J. Seipp, F. Pommerening and M. Helmert. New optimization functions for
potential heuristics. ICAPS 2015.

11. F. Pommerening, M. Helmert and B. Bonet. Abstraction Heuristics, Cost
Partitioning and Network Flows. ICAPS 2017.

12. F. Pommerening, M. Helmert and B. Bonet. Higher-Dimensional Potential
Heuristics for Optimal Classical Planning. AAAI 2017.

46 of 46

