
Belief Tracking for Planning with Sensing

Blai Bonet

Universidad Simón Boĺıvar

2nd Brazilian Conf. on Intelligent Systems (BRACIS)

Fortaleza, Brazil 2013

(joint work with Hector Geffner)

Recap on Early Days of AI: Programming and Methodology

Many of the contributions had to do with:

– programming

– representation and use of knowledge in programs

It was common to find dissertations in AI that:

– pick up a task and domain X

– analyze how the task is solved

– capture this reasoning in a program

The dissertation was

– a theory about X, and

– a program implementing the theory, tested on a few examples

Great ideas came out . . . but there was a problem . . .

[Intro based on slides by H. Geffner]

Methodological Problem: Generality

Theories expressed as programs are not falsifiable:

� when program fails, the blame is on ‘missing knowledge’

Three approaches to this problem:

– narrow the domain (expert systems)

� problem: lack of generality

– accept the program as an illustration, a demo

� problem: limited scientific value

– fill up the missing value (using intuition, commonsense, . . .)

� problem: not clear how to do; not successful so far

AI Research Today

Recent works in AIJ, JAIR, AAAI or IJCAI are on:

– SAT and Constraints

– Search and Planning

– Probabilistic Reasoning

– Probabilistic Planning

– Multi-Agent Systems

– Inference in First-Order Logic

– Machine Learning

– Natural Language

– Vision and Robotics

– . . .

First four areas often deemed as techniques, but it is more accurate to
think about them in terms of models and solvers

Example: Solver for Linear Equations

Problem Solver Solution

Problem: the age of John is 3 times the age of Peter. In 10 years, it will be
only 2 times. How old are John and Peter?

Expressed as: J = 3P ; J + 10 = 2(P + 10)

Solver: Gauss-Jordan (Variable Elimination)

Solution: P = 10 ; J = 30

Solver is general as deals with any instance of the model (linear equations)

The linear equations model is tractable; AI models are not . . .

Example from AI: Solvers for SAT

CNF instance SAT Solver Solution

SAT is the problem of determining whether there is a truth assignment
that satisfies a set of clauses

x ∨ y ∨ ¬z ∨ ¬w ∨ · · ·

Problem is NP-Complete: this means worst-case behavior of SAT
algorithms is exponential in number of variables (2100 = 1030)

Current SAT solvers tackle problems with thousands of variables and
clauses, and are used widely (circuit design, verification, planning, etc)

AI Models and Solvers

Problem Solver Solution

Some basic models and solvers currently considered in AI:

– CSP/SAT: find state that satisfies constraints

– Bayesian Networks: find probability over variable given observations

– Planning: find action sequence or policy that produces desired state

� Solvers for these models are general; not tailored to specific instances

� Models are all intractable

� Solvers all have a clear and crisp scope: instances of the model

� Challenge is mainly computational: how to scale up

� Methodology is empirical: benchmarks and competitions

How SAT solvers do it?

Two types of efficient (polytime) inference at every node of search tree:

– unit resolution

– conflict-based clause learning and backtracking

Other ideas are possible but don’t work (i.e. don’t scale up):

– generate and test each possible assignments (pure search)

– apply general resolution (pure inference)

Basic Planning Model and Task

Planning is the model-based approach to autonomous behavior:

– a system can be in one of many states

– states assign values to a set of variables

– actions change the values of certain variables

Basic task: find action sequence to drive initial state into goal state

Model instance Planner Action sequence

Complexity: NP-hard; i.e., exponential in number of vars in worst case

Box is generic: should work on any instance no matter what it is about

Example: Blocksworld

A

B C

A B C

A

B

C

A

CB

· · · · · ·

A B

C

A C

BA

B C

A

CB A

B

C A B

C

A B

C

A B CA

C

B· · · · · · · · · · · · · · ·

Init

Goal

Task: given actions that move a ‘clear’ block to the table or onto another
‘clear’ block, find a plan to achieve given goal

Question: how to find a path in graph of exponential size in # blocks?

Plan Found with Heuristics Derived Automatically

A

B C

A B C

A

B

C

A

CB

· · · · · ·

A B

C

A C

BA

B C

A

CB A

B

C A B

C

A B

C

A B CA

C

B· · · · · · · · · · · · · · ·

Init

Goal

h = 3

h = 3 h = 2 h = 3

h = 3
h = 3 h = 2 h = 1 h = 2 h = 2

h = 0 h = 2 h = 2

Heuristic evaluations h(s) provide ‘focus’ and ‘sense of direction’

Heuristic functions are calculated automatically and efficiently in a
domain-independent manner from high-level description of problem

Summary

� Research agenda is clear: develop solvers for a class of models

� Solvers unlike other programs are general: they don’t target individual
problems but families of problems (models)

� Main challenge is computational: how to scale up

� Structure of problems must be recognized and exploited

� Progress is measured empirically

Agenda for the Rest of the Talk

� Introduction to planning models and languages

� Planning under uncertainty: non-det actions and incomplete information

� Belief tracking in planning

� Discussion

Planning Models and Languages

Autonomous Behavior in AI

The key problem is to select the action to execute next. This is the
so-called control problem.

Three approaches to the control problem:

– Programming-based: specify control by hand

� Advantage: domain-knowledge easy to express
� Disadvantage: cannot deal with situations not anticipated by programmer

– Learning-based: learn control from experience
� Advantage: does not require much knowledge in principle
� Disadvantage: in practice, right features needed, incomplete information is

problematic, and unsupervised learning is slow

– Model-based: specify problem by hand, derive control automatically
� Advantage: flexible, clear, and domain-independent
� Disadvantage: need a model; computationally intractable

Model-based approach to intelligent behavior called Planning in AI

Classical Planning: Simplest Model

– finite state space S

– known initial state s0 ∈ S

– subset SG ⊆ S of goal states

– actions A(s) ⊆ A executable at state s

– deterministic transition function f : S ×A→ S such that f(s, a) is state
after applying action a ∈ A(s) in state s

– non-negative costs c(s, a) for applying action a in state s

Solution is sequence of actions (path) that map initial state into goal

Its cost is the sum of costs of the actions in the sequence

Abstract model that works at ‘flat’ representation of problem

Probabilistic Planning: Markov Decision Processes (MDPs)

– finite state space S

– known initial state s0 ∈ S

– subset SG ⊆ S of goal states

– actions A(s) ⊆ A executable at state s

– transition probabilities P (s′|s, a) of reaching state s′ after applying
action a in state s

– non-negative costs c(s, a) for applying action a in state s

Solution can’t be linear; it is function (policy) that maps states to actions

Cost of solution is expected cost to reach goal from initial state

Partially Observable MDPs (POMDPs)

POMDPs are probabilistic models that are partially observable

– finite state space S

– initial distribution (belief) b0 over states

– subset SG ⊆ S of goal states

– actions A(s) ⊆ A executable at state s

– transition probabilities P (s′|s, a) for each states s, s′ and action a ∈ A(s)

– finite set of observable tokens O

– sensor model given by probabilities P (o|s′, a) for observing token o ∈ O
after reaching s′ when last action done is a

Solution is policy mapping belief states (distributions) into actions

Cost of solution is expected cost to reach goal from initial distribution

Planners

A planner is a solver over a class of models

– input is a model description

– output is a controller (solution)

Instance Planner Controller

Different models and solution forms: uncertainty, feedback, costs, . . .

Instance described with planning language (Strips, PDDL, PPDDL, . . .)

Factored Languages

Model specified in compact form using high-level language

Language based on propositional variables:

– finite set F of propositional variables (atoms)

– an initial state I ⊆ F

– a goal description G ⊆ F

– finite set A of operators; each operator a ∈ A given by

I precondition that tell action applicable at each state

I effects that define transition function (i.e. f(s, a) or F (s, a))

– non-negative costs c(a) for applying actions a ∈ A

Language based on multi-valued variables: instead of boolean variables,
uses variables X with finite domain DX

Example: Blocksworld

B

A

C A

C

B

initial state goal state

Atoms: Clear(?x), On(?x,?y), OnTable(?x)

Actions: Move(?x,?y,?z), MoveToTable(?x), MoveFromTable(?x,?y)

Example: Blocksworld in PDDL

(define (domain BLOCKS)
(:requirements :strips)
(:predicates (clear ?x) (on ?x ?y) (ontable ?x))

(:action move
:parameters (?x ?y ?z)
:precondition (and (clear ?x) (clear ?z) (on ?x ?y))
:effect (and (not (clear ?z)) (not (on ?x ?y)) (on ?x ?z) (clear ?y)))

(:action move_to_table
:parameters (?x ?y)
:precondition (and (clear ?x) (on ?x ?y))
:effect (and (not (on ?x ?y)) (clear ?y) (ontable ?x)))

(:action move_from_table
:parameters (?x ?y)
:precondition (and (ontable ?x) (clear ?x) (clear ?y))
:effect (and (not (ontable ?x)) (not (clear ?y)) (on ?x ?y)))

)

(define (problem BLOCKS_3_1)
(:domain BLOCKS)
(:objects A B C)
(:init (clear A) (clear C) (on A B) (ontable B) (ontable C))
(:goal (and (on B C) (on C A))))

From Language to Model

Problem P = 〈F,A, I,G, c〉 mapped into model S(P) = 〈S,A, f, s0, SG, c〉:

– states S are all the 2n truth-assignments to atoms in F , |F | = n

– initial state s0 assigns true to all p ∈ I and false to all p /∈ I

– goal states are assignments satisfying the goals in G

– executable actions at state s are A(s) = {a : s |= pre(a)}

– outcome f(s, a) defined by action’s effects (in standard way)

– costs c(a)

Size of state model is exponential in size of problem P (e.g. blocksworld)

State of the Art in Classical Planning

Solution is path from initial state to goal in an exponential graph

State-of-the-art algorithms do search in implicit graph using heuristics to
guide the search

Powerful heuristics automatically extracted from problem description

Approach is general and sucessful: able to solve large problems quickly

Planners: LAMA-11, FF, ... (publicly available)

Benchmarks: thousands ... IPC repository (over 80 domains / 3,500 problems)

Finding Solutions: Blocksworld

A

B C

A B C

A

B

C

A

CB

· · · · · ·

A B

C

A C

BA

B C

A

CB A

B

C A B

C

A B

C

A B CA

C

B· · · · · · · · · · · · · · ·

Init

Goal

h = 3

h = 3 h = 2 h = 3

h = 3
h = 3 h = 2 h = 1 h = 2 h = 2

h = 0 h = 2 h = 2

Planning under Uncertainty

Motivation

Classical planning works: able to solve very large problems

Model is simple, but useful:

� operators may be non-primitive; abstractions of policies

� closed-loop replanning is able to cope with uncertainty sometimes

There are some limitations, though:

� can’t model uncertainty on outcome of actions

� can’t deal with incomplete information (partial sensing)

� . . .

Two ways of handling limitations:

� extend scope of current classical solvers (translations / compilation)

� develop new solvers for extended models

(Fully Observable) State Model with Non-Det Actions

– finite state space S

– known initial state s0

– goal states SG ⊆ S

– actions A(s) ⊆ A executable at state s

– non-deterministic transition function F : S ×A→ 2S such that F (s, a)
is subset of states that may result after executing a at s

– non-negative costs c(s, a) of applying action a in state s

Current state is always fully observable to agent

Example: Simple Problem (AND/OR Graph)

s0

s1

s2

s3a0

a1

a1

a2

a3

a4

– 4 states: S = {s0, . . . , s3}
– 5 actions: A = {a0, a1, a2, a3, a4}
– 1 goal: SG = {s3}
– A(s0) = {a0, a1}; A(s1) = {a1, a2}

– F (s0, a0) = {s0, s2, s3}
– F (s1, a1) = {s0, s1, s2}
– F (s0, a1) = {s2}
– . . .

Example: Solution

s0

s1

s2

s3a0

a3

Controller π:

– initial state s0

– π(s0) = a0

– π(s2) = a3

Agent with Partial Information

Agent has partial information when it doesn’t fully see current state

Different ways to model sensing; most frequent based on POMDP model:

– finite set O of observable tokens

– environment produces one such token after action is applied

– agent receives token (it doesn’t see state directly)

– token may depend on current state and action leading to it

Example: Collecting Colored Balls

R

B

G

Agent senses presence of balls (and their colors) in current cell

Observable tokens O = {000, 001, 010, . . . , 111} (i.e. 3 bits of information)

– First bit tells whether there is a red ball in same cell of agent

– Second bit tells whether there is a green ball in same cell of agent

– Third bit tells whether there is a blue ball in same cell of agent

Model for Non-Det Planning with Sensing (Logical POMDPs)

– finite state space S

– subset of possible initial states SI ⊆ S

– subset of goal states SG ⊆ S

– actions A(s) ⊆ A executable at state s

– non-deterministic transition function F : S ×A→ 2S

– finite set of observable tokens O

– sensor model O(s′, a) ⊆ O where O(s′, a) is non-empty set of possible
tokens after a leading to state s: i.e.

transition s
a; s′ generates observable token from O(s′, a)

– non-negative costs c(s, a) for applying action a in state s

Belief States and Belief Tracking

Agent must keep track of possible current states in the form of a subset
of states; such subsets are called belief states

The initial belief state is b0 = SI (possible initial states)

When agent has belief state b, then

– after executing action a,

ba = {s′ : s′ ∈ F (s, a) and s ∈ b} (progression)

– after executing action a and receiving token o,

boa = {s′ ∈ ba : o ∈ O(s′, a)} (filtering)

Beliefs states depend on history of actions and observations!

Example: Belief Tracking on Collecting Colored Balls

R

B

G

� Initial belief b0 = {states w/ agent at (0, 0) and no balls at (0, 0)} |b0| ≈ 1010

� For belief b = b0 and action a = up,

ba = {states w/ agent at (0, 1) and no balls at (0, 0)} |ba| ≈ 1010

� Then, agent receives the observation o = 100,

boa = {states w/ agent at (0, 1), no balls at (0, 0), and red balls at (0, 1)} |boa| ≈ 109

POMDPs as Non-Deterministic Planning in Belief Space

From model P = 〈S,A, F, SI , SG, O, c〉, construct fully observable
non-deterministic model in belief space B(P) = 〈S′, A′, F ′, s′0, S

′
G, c

′〉

– states S′ are all the belief states

– initial state s′0 is initial belief

– goal states S′
G are beliefs that only deem possible goals in SG

– actions A′(b) = {a : a ∈ A(s) for states s deemed possible by b}

– non-deterministic transitions F ′(b, a) = {boa : o is possible after a in b}

– action costs c′(b, a) = maxs∈b c(s, a)

Akin to determinization of Non-det. Finite Automata (NFA)

Language for Planning with Sensing

– V is finite set of variables X, each with finite domain DX

– initial states given by clasues I

– goal description G that is partial valuation

– finite set A of actions with prec. and non-deterministic cond. effects

– observable variables V ′ (not necessarily disjoint from V)

– sensing formulas Wa(Y = y) for each action a and literal Y = y

– non-negative costs c(a) for applying action a

Observable tokens are full valuations over observable variables V ′

Algorithms: Finding Solutions

Algorithms perform some type of search in either

– state space

– belief space

deterministic non-deterministic
full obs. state space / OR graph state space / AND/OR graph
no obs. belief space / OR graph belief space / OR graph
partial obs. belief space / AND/OR graph belief space / AND/OR graph

Belief Tracking

Motivation

Want to develop solvers for problems with non-det. and partial sensing

Two fundamental tasks to be solved (both intractable):

– tracking of belief states (i.e. representation of search space)

– action selection for achieving the goal (i.e. type of search)a

[B & Geffner, AAAI 2012; B & Geffner, IJCAI 2013]

Belief Tracking Pops Up Everywhere

• Simultaneous Localization and Mapping (SLAM) in robotics

• Adversarial games ; Partially Observable Stochastic Games (POSGs)

• Context-based disambiguation in NLP: Hidden Markov Models (HMMs)

• Target tracking and control theory: Kalman filter

• Activity recognition

• Gene prediction, protein folding

• . . .

Belief Tracking in Planning (BTP)

Definition (BTP)

Given execution τ = 〈a0, o0, a1, o1, . . . , an, on〉 determine whether

– the execution τ is possible, and

– whether bτ , the belief that results of executing τ , achieves the goal

Theorem

BTP is NP-hard and coNP-hard

Basic Algorithm: Flat Belief Tracking

Explicit representation of beliefs states as sets of states

Definition (Flat Belief Tracking)

Given belief b at time t, and action a (applied) and observation o (obtained),
the belief at time t+ 1 is the belief boa given by:

ba = {s′ : s′ ∈ F (s, a) and s ∈ b}

boa = {s′ : s′ ∈ ba and s′ |=Wa(`) for each ` s.t. o |= `}

� Flat belief tracking is sound and complete for every formula

� Time and space complexity is exponential in # of unknown variables

Example: Non-deterministic Windows with Key (Unobs.)

· · · W3

W1

W5

Wn W2

W6 W4

– windows W1, . . . , Wn that can be open, closed, or locked

– agent doesn’t know its position, windows’ status, or key position

– goal is to have all windows locked

– when unlocked, windows open/close non-det. when agent moves

– to lock window: must close and then lock it with key

– key must be grabbed to lock windows

– agent is blind: plan repeat n 〈Grab,Fwd〉 ; repeat n 〈Close,Lock,Fwd〉

Example: Non-deterministic Windows with Key (Unobs.)

· · · W3

W1

W5

Wn W2

W6 W4

Variables:

– Windows’ status: Wi ∈ {open, closed, locked}
– Position of agent Loc ∈ {1, . . . , n} and key KLoc ∈ {1, . . . , n, hand}

Flat belief tracking:

– single belief that initially contain n2 × 3n states

– each update operation (i.e. compute ba or boa) takes exponential time

Other Approaches for Logical POMDPs

Flat belief tracking doesn’t exploit structure of problem

Other options for states given in terms of variables:

– as CNF/DNF formulas:

� Advantage: economic updates, succinct representation
� Disadvantage: intractable query answering

– as OBDD formulas:

� Advantage: tractable query answering
� Disadvantage: size of representation may explode quickly

– knowledge compiled at propositional level:

� Advantage: tractable in parameter called width
� Disadvantage: scope is limited to deterministic planning

Want: Factored Algorithm for Belief Tracking

Algorithm must be general: applicable to any instance of the model

Three key facts about dynamic of information in planning:

– don’t need completeness for every formula. Only need to check validity of
literals ‘X = x’ appearing in preconditions and goals

– not every variable is “correlated” to each other

– uncertainty only propagates through conditional effects of actions

Can we exploit structure and “independence” among variables?

Insight!

Instead of tracking on one big problem P , track on several smaller
subproblems PX (simultaneously)

Hopefully, largest subproblem will be much smaller than P

Combined complexity: # subproblems × complexity largest PX

Example: Non-deterministic Windows with Key (Unobs.)

· · · W3

W1

W5

Wn W2

W6 W4

Subproblems:

– One subproblem Pi for each window Wi

– Subproblem Pi involves only the variables Wi, Loc and KLoc

– Flat belief tracking is done in parallel and independently over all subproblems

Usage:

– Queries about window Wi are answered by inspecting belief for subproblem Pi

Result:

– Sound and complete belief tracking for planning

– Combined time/space complexity: O(n3) for n windows

Key Idea: Decompositions

A decomposition of problem P is pair D = 〈T,B〉 where

– T is subset of target variables, and

– contexts B(X) for X in T is a subset of state variables

Decomposition D = 〈T,B〉 decomposes P into subproblems:

– one subproblem PX for each target variable X in T

– subproblem PX involves only state variables in B(X)

Example: Non-deterministic Windows with Key (Unobs.)

· · · W3

W1

W5

Wn W2

W6 W4

Decomposition D = 〈T,B〉 where:

– T = {W1,W2, . . . ,Wn} (target variables are window’s status variables)

– B(Wi) = {Wi, Loc,KLoc} for each i = 1, . . . , n

– that is, total of n subproblems Pi with 3 variables each

Result:

– belief tracking over all subproblems gives sound and complete algorithm

– flat belief tracking on original problem has exponential complexity O(n23n)

– flat belief tracking on all subproblems has combined complexity O(n3)

Factored Decomposition

Decomposition F = 〈TF , BF 〉 where:

– target variables TF are those in preconditions and goal

– contexts BF (X) given by variables Y relevant to X

Relevance relation captures:

– causal relevance induced by conditional effects and sensing formulas

– evidential relevance induced by observables and causal chains

Akin to relevance notions in Bayesian networks!

Factored Decomposition

Decomposition F = 〈TF , BF 〉 where:

– target variables TF are those in preconditions and goal

– contexts BF (X) given by variables Y relevant to X

Theorem

Belief tracking over factored decomposition is sound and complete, and
exponential in the width of the problem

Width of problem:

max number of unknown state variables that are all relevant to a given
precondition or goal variable X

Example: Wumpus and Minesweeper

PIT

PIT

PIT

Breeze

Breeze

Breeze

Breeze

Breeze

Breeze

Stench

Stench

Stench

1

1 3

3

2

2 1

2

4

Wumpus Minesweeper

Factored belief tracking: exponential in width which is O(n) for n cells

Can’t do tractable tracking on these due to the large width! /

New Decomposition: Causal Decompositon

Decomposition C = 〈TC , BC〉 where:

– target variables TF are precondition, goal and observable variables

– contexts BC(X) given by variables Y causally relevant to X

Theorem

Belief tracking over causal decomposition is sound, and exponential in the
causal width of the problem

Causal width of problem:

max number of unknown state variables that are all causally relevant
to a given precondition, goal or observable variable X

Example: Wumpus and Minesweeper

PIT

PIT

PIT

Breeze

Breeze

Breeze

Breeze

Breeze

Breeze

Stench

Stench

Stench

1

1 3

3

2

2 1

2

4

Wumpus Minesweeper

Factored belief tracking: exponential in width which is O(n) for n cells

Causal belief tracking: exponential in causal width which is

– Wumpus: constant 4 for any number of cells ,
– Minesweeper: constant 9 for any number of cells ,

Incompleteness too strong on these problems for solution! /

Complete Belief Tracking over Causal Decomposition

Tracking over causal decomposition is incomplete because:

– two beliefs bX and bY associated with target variables X and Y may
interact and are not independent

Algorithm made complete by enforcing consistency among local beliefs

Resulting algorithm is:

– complete for the class of causally decomposable problems ,
– space exponential in causal width ,
– time exponential in width /

Things are better but still not practical . . .

Effective Tracking over Causal Decomposition: Beam Tracking

Replaces costly enforcement of consistency by effective approximation

Beam tracking is:

– time and space exponential in causal width ,
– sound and powerful, but not complete

– practical algorithm as it is general and effective ,

Demo

Domains:

– Minesweeper

– Wumpus: static and non-deterministic

– Battleship

On all these domains:

– crucial task is belief tracking

– action selection is online done w/ 1-step lookahead and simple heuristics

– match/exceed quality of (handcrafted) state-of-the-art controllers

– run 2-3 orders of magnitude faster that state of the art

Discussion

Related Work

Belief tracking “compiled” at propositional level inside planning problem:

– Det. conformant planning [Palacios & Geffner, JAIR 2009]

– Det. contingent planning [Albore et al., IJCAI 2009; B & Geffner, IJCAI 2011,

Shani & Brafman, IJCAI 2011; Brafman & Shani, AAAI 2012]

Belief tracking using non-flat representations:

– logical filtering [Amir & Russell, IJCAI 2003]

– OBDDs [Cimatti et al., AIJ 2004]

– CNF [Hoffmann & Brafman, ICAPS 2005, AIJ 2006]

– DNF/CNF [To et al., IJCAI 2011]

Belief tracking on probabilistic models:

– Kalman filter (strong assumptions; fundamental in control theory)

– Hidden Markov Models (flat) / Dynamic Bayesian Networks (factored)

– particle filters (widespread use; technical and practical difficulties)

Conclusions

– Planning is model-based approach for autonomous behaviour

– Main challenge in planning is to achieve generality and scalability

– Progress continuosly assessed in benchmarks and competitions

– Planning with sensing is belief tracking plus action selection

– Three factored algorithms for belief tracking:

I Factored BT: sound and complete; exponential in width

I Causal BT: sound but weak; exponential in causal width

I Beam tracking: sound and effective; exponential in causal width

Challenges

– Effective action selection for planning with sensing isn’t clear yet

� algorithms + heuristics (or base policies)

– Deployment of these methods for other AI models

– Probabilistic belief tracking; applications like robotics; SLAM; . . .

More Information

Papers, slides, other groups, etc.:

• My page: http://www.ldc.usb.ve/˜bonet

• Hector Geffner’s page: http://www.tecn.upf.es/˜hgeffner

• Ronen Brafman’s page: http://www.cs.bgu.ac.il/˜brafman

Software:

• Belief tracking: http://code.google.com/p/belief-tracking

• K-replanner: http://code.google.com/p/cp2fsc-and-replanner

• Software for solving MDPs: http://code.google.com/p/mdp-engine

• Other: see my page

http://www.ldc.usb.ve/~bonet
http://www.tecn.upf.es/~hgeffner
http://www.cs.bgu.ac.il/~brafman
http://code.google.com/p/belief-tracking
http://code.google.com/p/cp2fsc-and-replanner
http://code.google.com/p/mdp-engine

New Book on AI Planning

Thanks. Questions?

	Introduction

