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Introduction & Motivation

Petri Nets (PNs) is a formalism for modelling discrete event
systems.

As are planning formalisms (STRIPS, SAS+, etc).
Important differences: general Petri nets are infinite,
diffferent models of event concurrency.

Developed by (and named after) C.A. Petri in 1960s.

An exchange of ideas between Petri net theory and planning
holds potential to benefit both:

A wealth of results (theoretical and practical) exist for
Petri nets.
Yet, some standard planning techniques (e.g., search
heuristics) are unheard of in the PN community.
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Outline of the Tutorial

1 1-Safe Petri Nets.

1 1-Safe nets as a representation of products of transition
systems.

2 Unfolding: An Analysis Method for 1-Safe Nets.

1 Unfoldings and branching processes.
2 Constructing the unfolding: search.
3 Planning via unfolding.
4 Concurrency properties of the generated plans.

3 General Petri Nets.

1 Modelling and expressivity.
2 Analysis methods for general Petri nets.
3 Petri nets with special structure.

4 Conclusions
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Part 1: Introduction to 1-Safe Petri Nets

1-safe Petri nets is a class of Petri nets that is closely
related to planning formalisms.

Compact representation of products of sequential
transition systems.
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Transition systems 1/2

Transition systems used to model sequential systems

s1

s2 s3

s4

t1 t2

t3 t4

t5

A tuple A = 〈S, T, α, β, is〉 where S and T are states and
transitions, α and β are source and target states, and is is
the initial state

E.g., α(t4) = s3, β(t1) = s2, and is = s1
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Transition systems 2/2

s1

s2 s3

s4

t1 t2

t3 t4

t5

The triplet 〈α(t), t, β(t)〉 is a step; e.g. 〈s2, t3, s4〉
A “transition word” t1t2 . . . tk is a computation if there is
sequence s0s1 . . . sk so that 〈si, ti, si+1〉 is a step

A computation is a history if s0 = is

Computation and histories may be infinite; e.g.
t1t3t5t1t3t5 . . . is an infinite history
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(Synchronised) products of transition systems 1/2

Model concurrent systems with multiple components
s1

s2 s3

s4

t1 t2

t3 t4

t5

r1

r2

r3

u1

u2

u3

Let A1, . . . ,An be transition systems. A synchronisation
constraint T is a subset of

(T1 ∪ {ε})× · · · × (Tn ∪ {ε}) \ {〈ε, . . . , ε〉}

Each t ∈ T is a global transition

If ti 6= ε, Ai participates in t
The initial global state is equals 〈is1, . . . , isn〉
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(Synchronised) products of transition systems 2/2

s1

s2 s3

s4

t1 t2

t3 t4

t5

r1

r2

r3

u1

u2

u3

T = {〈t1, ε〉, 〈t2, ε〉, 〈t3, u2〉, 〈t4, u2〉, 〈t5, ε〉, 〈ε, u1〉, 〈ε, u3〉}
is a synchronisation constraint

(Global) steps, computations and histories are defined like
before; e.g. 〈t1, ε〉〈ε, u1〉〈t3, u2〉 is a computation and history
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Transition systems for Gripper with one arm 1/2

Variables:

Position of Robot: R1, R2

Empty gripper: Gt, Gf

Position of ball A: A1, A2, Ar

Position of ball B: B1, B2, Br

R1

R2

Gt

Gf

A2

Ar

A1

B2

Br

B1

tR11

tR12tR21

tR22

tGtftGft tA2rtAr2

tAr1tA1r

tB2rtBr2

tBr1tB1r
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Transition systems for Gripper with one arm 2/2

R1

R2

Gt

Gf

A2

Ar

A1

B2

Br

B1

tR11

tR12tR21

tR22

tGtftGft tA2rtAr2

tAr1tA1r

tB2rtBr2

tBr1tB1r

Synchronisation Constraints:

pickup(A,1) = 〈tR11, tGtf , tA1r, ε〉
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Transition systems for Gripper with one arm 2/2

R1

R2

Gt

Gf

A2

Ar

A1

B2

Br

B1

tR11

tR12tR21

tR22

tGtftGft tA2rtAr2

tAr1tA1r

tB2rtBr2

tBr1tB1r

Synchronisation Constraints:

pickup(A,1) = 〈tR11, tGtf , tA1r, ε〉
pickup(B,2) = 〈tR22, tGtf , ε, tB2r〉
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Transition systems for Gripper with one arm 2/2

R1

R2

Gt

Gf

A2

Ar

A1

B2

Br

B1

tR11

tR12tR21

tR22

tGtftGft tA2rtAr2

tAr1tA1r

tB2rtBr2

tBr1tB1r

Synchronisation Constraints:

pickup(A,1) = 〈tR11, tGtf , tA1r, ε〉
pickup(B,2) = 〈tR22, tGtf , ε, tB2r〉
drop(B,2) = 〈tR22, tGft, ε, tBr2〉
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Transition systems for Gripper with one arm 2/2

R1

R2

Gt

Gf

A2

Ar

A1

B2

Br

B1

tR11

tR12tR21

tR22

tGtftGft tA2rtAr2

tAr1tA1r

tB2rtBr2

tBr1tB1r

Synchronisation Constraints:

pickup(A,1) = 〈tR11, tGtf , tA1r, ε〉
pickup(B,2) = 〈tR22, tGtf , ε, tB2r〉
drop(B,2) = 〈tR22, tGft, ε, tBr2〉
move(1,2) = 〈tR12, ε, ε, ε〉
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Semantics for products: Interleaving semantics

A product A = 〈A1, . . . ,An,T〉 can be translated into an
equivalent transition system TA = 〈S, T, α, β, is〉 where

S is the set of global states of A
T is the set of steps 〈s, t, s′〉
α(〈s, t, s′〉) = s and β(〈s, t, s′〉) = s′

is = is

The interleaving semantics is of exponential size
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Interleaving semantics: Example

〈s1, r1〉

〈s1, r2〉
〈s2, r1〉 〈s3, r1〉

〈s2, r2〉 〈s3, r2〉

〈s4, r3〉

〈s1, r3〉

〈s4, r1〉

〈s2, r3〉 〈s3, r3〉

〈s4, r2〉
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Petri nets 1/5

A Petri net is a bipartite graph, with nodes divided into
places (circles) and transitions (boxes)

p1 p2

t1 t2 t3

p3 p4

Formally, a tuple N = 〈P, T, F 〉 where P / T are the sets of
places / transitions and F ⊆ (P × T ) ∪ (T × P ) is the flow
(i.e., edge) relation

For any node n ∈ P ∪ T , •n = {n′ | (n′, n) ∈ F} and
n• = {n′ | (n, n′) ∈ F} are the inputs and outputs of n
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Petri nets 2/5

The state of a Petri net N = 〈P, T, F 〉 is defined by a
marking, which puts zero or more tokens on each place.
Formally, a marking is a mapping m : P → N

Transition t is enabled at marking m iff m(p) > 0 for each
p ∈ •t, i.e., iff every input of t is marked

Notation: m [t〉

If t is enabled it can fire (or occur), leading to a new
marking m′ such that
m′(p) = m(p)− 1 if p ∈ •t (and p 6∈ t•)
m′(p) = m(p) + 1 if p ∈ t• (and p 6∈ •t)
m′(p) = m(p) for all other p

Notation: m [t〉m′

Marking m is 1-bounded iff m(p) ∈ {0, 1} for all p
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Petri nets 3/5

Marking m = (1 1 0 0):

Transition t2 is enabled

p1 p2

t1 t2 t3

p3 p4

Firing t2 at m leads to
m′ = (0 0 1 1):

Now t1 and t3 are enabled

p1 p2

t1 t2 t3

p3 p4
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Petri nets 3/5

Marking m = (1 1 0 0):

Transition t2 is enabled

p1 p2

t1 t2 t3

p3 p4

Firing t2 at m leads to
m′ = (0 0 1 1):

Now t1 and t3 are enabled

p1 p2

t1 t2 t3

p3 p4
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Petri nets 4/5

A pair 〈N,m0〉 of a Petri net and an initial marking is called
a marked net, or net system

For a marked net N = 〈〈P, T, F 〉,m0〉:

A firing sequence (or occurrence sequence) of N is a
sequence of transitions in T , t1, t2, . . . , tn, such that
m0 [t1〉m1 [t2〉 · · · [tn〉mn for some m1 . . .mn

Notation: m0 [t1, . . . , tn〉mn

A marking m is reachable in N iff there exists a firing
sequence t1 . . . tn of N such that m0 [t1, . . . , tn〉m
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Petri nets 5/5

p1 p2

t1 t2 t3

p3 p4

(1 0 0 1) is reachable via the sequence t2, t1 (and also via
t2, t1, t3, t2, t1, etc)

(1 1 1 0) is not reachable
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1-Safety 1/2

A marked net N = 〈N,m0〉 is 1-safe iff every reachable
marking m is 1-bounded (m(p) ∈ {0, 1}, ∀p)

Places in a 1-safe net may be viewed as propositions
(true if marked, false if unmarked)

A marking can be given as the set of marked places

A Petri net N is (structurally) 1-safe iff 〈N,m0〉 is 1-safe
for any 1-bounded initial marking m0
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1-Safety 2/2

Equivalent concept in planning formalisms:

STRIPS: an operator is safe if it does not delete any
proposition that is already false, or add any proposition
that is already true (in any reachable state where the
operator is applicable)

SAS+: operator o is safe if whenever post(o)[v] is
defined, so is pre(o)[v] and pre(o)[v] 6= post(o)[v]
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Petri net representation of transition systems

States map to places, transitions to transitions

Initial marking marks only the initial state
s1

s2 s3

s4

t1 t2

t3 t4

t5

s1

s2 s3

s4

t1 t2

t3 t4

t5

The Petri net corresponding to a transition system is
inherently 1-safe
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Petri net representation of products 1/2

Union of the Petri net representations of product systems

Transitions that participate in a synchronisation constraint
are “merged”

s1 r1

〈t1, ε〉 〈t2, ε〉 〈ε, u1〉

〈t5, ε〉 s2 s3 r2 〈ε, u3〉

〈t3, u2〉 〈t4, u2〉

s4 r3

The product net is also 1-safe
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Petri net representation of products 2/2

Formally, the marked Petri net representation of the product
A = 〈A1, . . . ,An,T〉 is 〈〈P, T, F 〉,m0〉, where:

P = S1 ∪ S2 ∪ · · · ∪ Sn

T = T

F = {(s, t) : ∃i.s = αi(ti)} ∪ {(t, s) : ∃i.s = βi(ti)}

m0 = {is1, . . . , isn}
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Some decision problems for marked Petri nets

For a given marked net (N,m0):

Coverability of a set of places G:
Is there a firing sequence s, valid at m0 that leads to a
marking which marks all places in G?

Reachability of a set of places G:
Is there a firing sequence s, valid at m0 that marks all and
only the places in G?

Executability of transition t:
Is there a valid firing sequence that contains t, i.e., can t
ever be executed?

Note: For 1-safe nets, reachability, coverability and
executability are all easily reduced to one another.
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Some decision problems for marked Petri nets

Repeated Executability of transition t:
Is there a valid firing sequence that contains t infinitely
often?

Livelock
Let L ⊆ T be a set of “visible” transitions: Is there an
infinite global history in which some transition in L occurs,
followed by an infinite sequence of invisible transitions?

All the above problems are PSPACE-Complete for 1-safe Petri
nets, as well as for products of transition systems.
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Petri nets for planning problems

Transition systems for each variable extracted from the
Domain Transition Graphs (DTGs) of the planning problem

Synchronised products formed by taking the global
transitions as the (ground) actions in the planning problem
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Planning via Petri nets

Plan existence can be decided using Petri nets as follows:

Extract the DTGs for each variable X in the planning
problem and make a transition system AX

Form the synchronised product using as global constraint
the actions in the planning problem

Create a new global transition tgoal whose input is the
goal of the planning problem and output a new place

Theorem

There is a valid plan iff tgoal is executable.

This procedure doesn’t compute plans, yet we will come to
this issue later...
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Part 2: Unfolding

Unfolding is an analysis method for 1-safe Petri nets, with
interesting and useful properties.

Partial-order method: Exploits event concurrency to avoid
explosion of interleavings.
Can be directed by state-space search heuristics.

Using unfolding for planning:

Mapping planning problems to 1-safe Petri nets.
Properties of generated plans: Concurrency and
optimality.
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Unfolding of transition systems 1/2

s1

s2 s3

s4

t1 t2

t3 t4

t5

s1

s2 s3

s4 s4

s1 s1

s2 s3 s2 s3
...

...
...

...

t1 t2

t3 t4

t5 t5

t1 t2 t1 t2
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Unfolding of transition systems 2/2

The unfolding of a transition system is a transition system
with labels

The labels refer to states/transitions of the original
transition system

States and transitions are called ocurrences

A state/transition may occur an infinite number of time in
the unfolding
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Unfolding of a product

Can unfold the interleaving semantics of a product
(need the interleaving semantics of exponential size)

Instead, we unfold the Petri net representation of the
product

For this, we need to define banching processes
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Branching process

A branching process is a labeled Petri net that captures the
computations of a Petri net

When unfolding a Petri net, we start with the places with
initial tokens and the net is unfolded iteratively using:

1 If, in the current net, there is a reachable marking that
enables a global transition t, then a new transition
labeled by t and new places labeled with the states of t•

are added to the current net
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Unfolding a product: Example

s1 r1

〈t1, ε〉 〈t2, ε〉 〈ε, u1〉

〈t5, ε〉 s2 s3 r2 〈ε, u3〉

〈t3, u2〉 〈t4, u2〉

s4 r3

s1 r1

1t1 2 t2 3 u1

s2 s3 r2

4〈t3, u2〉 5 〈t4, u2〉

s4 r3 s4 r3

6t5 7 u3 8t5 9 u3

s1 r1 s1 r1

10t1 11 t2 12 u1 13t1 14 t2 15 u1

s2 s3 r2 s2 s3 r2

16〈t3, u2〉 17 〈t4, u2〉 18〈t3, u2〉 19 〈t4, u2〉

s4 r3 s4 r3 s4 r3 s4 r3

...
...

...
...

...
...

...
...
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...
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Unfolding a product: Example
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Fundamental properties of the unfolding

The unfolding is the (unique and perhaps infinite) limiting
branching process

The unfolding contains all computation histories of the net

A marking is reachable in a Petri net iff it “appears” as a
marking in the unfolding

The unfolding has no cycles and no backward conflicts
(places with more than one incoming arrow)
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Causality, conflict and concurrency 1/2

A node x (in the unfolding) is a causal predecessor of y,
denoted by ‘x < y’, if there is a (non-empty) directed path
from x to y

Nodes x and y are in conflict, denoted by ‘x # y’, if there
is a place z, different from x and y, from which one can
reach x and y by exiting z from differents arcs

Nodes x and y are concurrent, denoted by ‘x co y’, if x
and y are neither causally related nor in conflict
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Causality, conflict and concurrency 2/2

Theorem

Two nodes x and y are either causally related, in conflict, or
concurrent.

Theorem

If x and y are causally related, then either x < y or y < x, but
not both.

Theorem

Let P be a set of places of a branching process N of a product
A. There is a reachable marking M of N such that P ⊆M iff
the places of P are pairwise concurrent.
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Configurations 1/2

A realization of a set of events is an occurrence sequence
(of the branching process) in which every event occurs
exactly once, and no other event occurs

E.g., {1, 2} and {4, 6} have no realizations, {1, 3, 4, 7} has
the two realizations 1347 and 3147

A set of events E is a configuration if it has at least one
realization

A set of events E is causally closed if e ∈ E and e′ < e
implies e′ ∈ E
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Configurations 2/2

Theorem

Let E be a set of events. Then,

1 E is a configuration if it is causally closed and no two
events in E are in conflict.

2 All realizations of a finite configuration lead to the same
reachable marking.
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Verification using unfoldings

The question

Does some computation history execute transition t?

can be answered by exploring the unfolding:

1 compute larger and larger portions of the unfolding until
finding an event labeled with t, or

2 until “somehow” we are able to determine that no further
event will be labeled with t
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Constructing the unfolding 1/4

Given a branching process N , we need to compute the
events that extend N

More formally, given N and a global transition t, how can
we decide whether N can be extended with an event labeled
by t?

Let •t = {s1, . . . , sk}. The number k is the number of
components participating in t

This number is called the synchronisation degree of t
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Constructing the unfolding 2/4

N can be extended with an event labeled by t iff there is a
reachable marking that puts a token on places p1, . . . , pk

labeled by s1, . . . , sk

The following procedure solves this problem:

1 consider all candidate sets {p1, . . . , pk} of places of N
labeled by {s1, . . . , sk}

2 for each candidate {p1, . . . , pk}, test whether there is a
reachable marking m that contains {p1, . . . , pk}. If so, we
say that the candidate is reachable
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Constructing the unfolding 3/4

A candidate set is reachable iff its places are pairwise
concurrent. This can be checked in O(k2) time

Therefore, checking whether N can be extended with an
event labeled t can be done in time

O(nk/kk)O(k2) = O(nk/kk−2)
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Constructing the unfolding 4/4

Theorem

Let N be a branching process of a product A and t a global
transition. If A is of bounded synchronisation degree, then
deciding whether N can be extended with an event labeled by
t can be done in polynomial time.

Theorem

In general, deciding whether a branching process can be
extended with an event labeled by t is NP-complete.
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Search procedures (1/2)

We mentioned earlier that we can somehow construct larger
and larger portions of the unfolding, to answer questions like:

1 Executability (Verification) - does some run contain a
particular transition?

2 Repeated executability - does some run contain a particular
transition an infinte number of times?

3 Livelock - does some run have an inifinite tail of ”silent”
transitions?

This is done using search procedures
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Verification: Search procedures 1/2

Use the unfolding to compute answers to verification questions:

Compute more and more of the unfolding, until there is
enough information to answer the verification question

Use a search procedure to compute the unfolding and
determine when the question is answered:

search strategy specifies the event to be added next

search scheme determines which leaves don’t need to be
explored further (termination condition), and when the
search has been successful (success condition)
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Verification: Search procedures 2/2

N := unique branching process without events
T := ∅ /* terminal events */
S := ∅ /* successful terminals */
X := Ext(N , T ) /* possible extensions of N */
while X 6= ∅ do

Choose an event e ∈ X according to search strategy
Extend N with e
if e is terminal according to search scheme then

T := T ∪ {e}
if e is successful according to search scheme then

S := S ∪ {e}
end if

end if
X := Ext(N , T )

end while
return 〈N , T, S〉
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Search strategies for transition systems 1/2

A strategy selects the next event to add
It is a (partial) order on events . . . but with care . . .
We define it as an order on histories of events
H(t) = t1 . . . tn where e1 . . . en are causal predecessors of e
and ti is label of ei
The state reached by H(e) is St(e) = β(e)

s1

1t1 2 t2

s2 s3

3t3 4 t4

s4 s4

5t5 6 t5

s1 s1

7t1 8 t2 9t1 10 t2

s2 s3 s2 s3
...

...
...

...

H(7) = t1t3t5t1 and St(7) = s2.
Also, H(7) = H(3)t5t1.
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Search strategies for transition systems 2/2

A search strategy ≺ for transition systems is an order on T ∗

that refines the prefix order (i.e., w is a proper prefix of w′

then w ≺ w′)

Observe that if e < e′ then H(e) ≺ H(e′) and thus e ≺ e′

Therefore, a search strategy refines the causal order on
events
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Search scheme for transition systems 1/3

Let ≺ be a search strategy. An event e is feasible if no event
e′ < e is terminal. A feasible event e is terminal if either

1 e is labeled with a goal transition (successful terminal), or

2 there is a feasible event e′ ≺ e such that St(e′) = St(e)

The ≺-final prefix is the prefix of the unfolding containing
only feasible events.
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Search scheme for transition systems 2/3

G = {t5}
s1

s2 s3

s4

t1 t2t3

t4
t5

s1

1t1 5 t2

s2 s3

2t3

s3

3t4 4 t5

s2 s4

s1

1t1 2 t2

s2 s3

4t3 3t4 5 t5

s3 s2 s4
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Search scheme for transition systems 2/3

G = {t5} ≺1= lexicographic
s1

s2 s3

s4

t1 t2t3

t4
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Search scheme for transition systems 2/3
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Search scheme for transition systems 3/3

Theorem

The search scheme is sound and complete for every strategy.
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Search strategies for products 1/3

For transition systems, a strategy is an order on T ∗

(histories of events)

This is possible since every event has a unique history

Unfortunately, for products, events may have multiple
histories
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Search strategies for products 2/3

s1 r1

1t1 2 t2 3 u1

s2 s3 r2

4〈t3, u2〉 5 〈t4, u2〉

s4 r3 s4 r3

6t5 7 u3 8t5 9 u3

s1 r1 s1 r1

10t1 11 t2 12 u1 13t1 14 t2 15 u1

s2 s3 r2 s2 s3 r2

16〈t3, u2〉 17 〈t4, u2〉 18〈t3, u2〉 19 〈t4, u2〉

s4 r3 s4 r3 s4 r3 s4 r3

...
...

...
...

...
...

...
...

histories

1 3 4 5 6 12 10
1 3 4 6 10
3 1 4 6 10
1 3 4 6 10 7
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Search strategies for products 3/3

So, we are forced to consider subsets of histories . . .

but we consider those that correspond to Mazurkiewicz
traces
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Mazurkiewicz traces 1/2

Two global transitions are independent if no component
Ai of the product participates in both

E.g., 〈t1, ε〉 and 〈ε, u1〉 are independent transitions

If t and u are independent. Then, for w,w′ ∈ T∗

1 if wtuw′ is a history, then so is wutw′
2 if wt and wu are histories, then so are wtu and wut
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Mazurkiewicz traces 2/2

Two words w,w′ ∈ T∗ are 1-equivalent, denoted by
w ≡1 w′ iff w = w′ or there are independent transitions t
and u such that w = w1tuw2 and w′ = w1utw2

w is equivalent to w′ if w ≡ w′ where ≡ is the transitive
closure of ≡1

A (Mazurkiewicz) trace is an equivalence class of ≡. The
trace of w is [w]. A trace is a history trace if all its
elements are histories
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Search strategies as orders on traces

We follow the same steps as for transition systems:

1 First, define the set of histories for an event
2 Show that this set is a trace
3 Define a strategy as an order on traces

The past of event e, denoted by past(e), is the set of
events e′ such that e′ ≤ e; past(e) is a configuration

A word t1 . . . tn is a history of configuration C if there is a
realization e1 . . . en of C such that ei is labled by ti. The
set of histories of C is denoted by H(C). The set of
histories of past(e) is denoted by H(e).

H(C) is a trace

A strategy is an order on traces that refines the prefix order
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Search scheme for products 1/2

Let C be a configuration. The state reached by C, denoted
by St(C), is the state reached by the execution of any of
the histories of H(C)

Let ≺ be a search strategy. An event e is feasible if no event
e′ < e is terminal. A feasible event e is terminal if either

1 e is labeled with a transition of G (successful terminal), or

2 there is a feasible event e′ ≺ e such that St(e′) = St(e)

Theorem

The search scheme is sound for every strategy. Unfortunately,
it is not complete for every strategy.
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Search schemes for products 2/2

A strategy ≺ is adequate if

1 It is well founded
2 It is preserved by extensions: for all traces [w], [w′], [w′′],

if [w] ≺ [w′] then [ww′′] ≺ [w′w′′]

Theorem

The search scheme is complete for all adequate strategies.

Theorem

The final ≺-prefix has at most K non-terminal nodes if ≺ is a
total order where K is the number of global states.
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Search schemes for products 2/2

A strategy ≺ is adequate if

1 It is well founded
2 It is preserved by extensions: for all traces [w], [w′], [w′′],

if [w] ≺ [w′] then [ww′′] ≺ [w′w′′]

Theorem

The search scheme is complete for all adequate strategies.

Theorem

The final ≺-prefix has at most K non-terminal nodes if ≺ is a
total order where K is the number of global states.
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The size and Parikh strategies

The size strategy, denoted ≺s, is: [w] ≺s [w′] if |w| < |w′|

The Parikh mapping of w is the function P([w]) that maps
each transition t to the number of times it occurs in w

Given a total order <a on transitions. The Parikh strategy,
denoted ≺P , is: [w] ≺P [w′] if [w] ≺s [w′], or [w] =s [w′]
and there is t such that

1 P([w])(t) < P([w′])(t) and
2 P([w])(t′) = P([w′])(t′) for every t′ <a t

The size and Parikh strategies are adequate but not total

There are other (more complex) total and adequate
strategies
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Directed unfolding

In the verification problem, we search the unfolding for an
event labeled by a transition in G until we find it or
conclude no such event exists

In directed unfolding, we guide the search with a heuristic
function that estimates how far the desired event is from a
given part of the branching process

It is the same idea used in heuristic search in which instead
of making a blind search, a heuristic function is used to
focus the search

As expected, when the target event is reachable, directed
unfolding is order of magnitude more efficient than “blind”
unfolding
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Heuristic-guided strategies 1/2

Let C be a configuration

Define g(C) as the size |C|

Let h map configurations C into reals [0,∞] such that

1 if St(C) = St(C ′) then h(C) = h(C ′)
2 if H(C) ∩G 6= ∅, then h(C) = 0

Define f(C) = g(C) + h(C)
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Heuristic-guided strategies 2/2

Define the order ≺h on histories as follows:

[w] ≺h [w′] iff

{
f([w]) < f([w′]) if f([w]) <∞
|w| < |w′| if f([w]) = f([w′]) =∞

Theorem

The ≺h-final prefix is finite, and the search scheme is sound
and complete.

The strategy ≺h is a h-focused strategy
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Heuristics

By definition, h maps global states into non-negative
numbers

Therefore, we can use any heuristic function defined on
global states such as

1 hmax

2 hadd

3 hFF

4 etc
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Experimental results 1/2
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Experimental results 2/2
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Planning Problem

Denote a planning problem by P = 〈V,O, S0, G〉, where

V is a set of multi-valued state variables

O is a set of (grounded) operators characterised by their pre
and post conditions.

S0 is the fully specified initial state

G is the fully or partially specified goal state
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Partially-Ordered Plan

A partially-ordered plan π = 〈A,<〉 consists of a multiset of
operators A in O and a strict partial order relation < over A.

π is a solution plan for planning problem P if any
linearization of π will transition the system from S0 to a
state where all goal propositions hold.
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Using Unfolding for Planning (1/4)

1 Cast planning problem to Petri net executability problem

2 Unfold to solve the related executability question

3 Extract plan
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Using Unfolding for Planning (2/4)

1 Cast planning problem to Petri net executability
problem

1 Map O to a set of 1-safe operators O′.
2 For a STRIPS problem where V is a set of propositions,

introduce complementary set V̂ and replace every
instance of ¬v with v̂.

3 For each variable X ∈ V extract the DTG and make a
transition system AX

4 Form the synchronised product A = 〈A1, . . . ,An,T〉
Synchronisation constraints T are defined by the
planning operators O′.

5 Map A to a Petri net and extend with ”goal” transition.
6 Capture dynamics of prevail conditions.
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1-Safe Operators (1/2)

Recall: SAS+ operator o is safe iff whenever post(o)[v] is
defined, so is pre(o)[v] and pre(o)[v] 6= post(o)[v])
Translating a non-safe operator:

door: open, closed

shut-door = 〈 {at-door}, {closed} 〉

shut-door1 = 〈 {at-door, closed}, { } 〉

shut-door2 = 〈 {at-door, open }, {closed}〉

Number of copies created is exponential in the number of
missing preconditions



Introduction

1-Safe Petri
Nets: Basic
Definitions

Unfolding

Planning via
Unfolding &
Concurrency

From Planning
Problem to Petri
Net

Concurrency,
Plan Flexibility
& Makespan

General Petri
Nets

Conclusion

1-Safe Operators (2/2)

Operator may be safe, without satisfying the definition, due
to mutexes between values of different variables.

Use standard reachability analysis techniques to identify
such cases (computing mutexes and state invariants, as in
e.g. [Bonet & Geffner ’99, Helmert ’06])

Many of the standard benchmark domains are already
1-safe, or nearly 1-safe.
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Product of State Variable DTGs

For each variable X ∈ V extract the DTG and make a
transition system AX

Form the synchronised product A = 〈A1, . . . ,An,T〉
Synchronisation constraints T are defined by the 1-safe
planning operators.
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Petri net representation

Build the marked Petri net representation of A, as described
previously.

Create a new transition tgoal whose input is the goal of the
planning problem and output is a new place



Introduction

1-Safe Petri
Nets: Basic
Definitions

Unfolding

Planning via
Unfolding &
Concurrency

From Planning
Problem to Petri
Net

Concurrency,
Plan Flexibility
& Makespan

General Petri
Nets

Conclusion

Translate Prevail conditions (1/3)

Problem: Two actions with a common prevail condition will
be prohibited from executing concurrently.

Let a1, a2 be two actions with common prevail condition p

Any two events e1 and e2 in the unfolding, labeled by a1

and a2 respectively, will be in conflict due to p, i.e. e1#e2.

Any plan containing a1 and a2 will necessarily require that
a1 < a2 or a2 < a1.
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Translate Prevail Conditions (2/3)

To overcome this we can apply the place replication technique
proposed by [Vogler, Semenov,Yakovlex, 1998]

ac b

o3

âĉ b̂

o3 o2o1
o4 o5

a1 a2c b

o3

âĉ b̂

o3 o2o1
o4 o5

Picture by Sebastian Sardina
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Translate Prevail Conditions (3/3)

c

a1

a2

b

e1

o1
ĉ

a1e1

e2

b̂

a2e2
o2

e3 o3 âe3

e5

o3

âe5

e6

o5

a1

a2

e6

unfolding

continues

Picture by Sebastian Sardina

Denote the Petri net representation of planning problem P
as NP .



Introduction

1-Safe Petri
Nets: Basic
Definitions

Unfolding

Planning via
Unfolding &
Concurrency

From Planning
Problem to Petri
Net

Concurrency,
Plan Flexibility
& Makespan

General Petri
Nets

Conclusion

Using Unfolding for Planning (3/4)

1 Cast planning problem P to Petri net executability problem

2 Unfold NP to solve the related executability problem

Is the transition tg executable?
Direct the unfolding using a sound and complete scheme
May choose to use planning heuristic, etc.
Denote to the resulting final prefix as Unf≺(N(P))

3 Extract plan
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Using Unfolding for Planning (4/4)

1 Cast planning problem to Petri net executability problem

2 Unfold to solve the related executability problem

3 Extract plan from Unf≺(NP)
(Assuming success)
Linear time
Solution plan π = 〈H(eg), <〉 where eg is an event in
Unf≺(NP) labeled by tg and < is the finite closure of the
causal relation over H(eg).
E.g. π = 〈 { o1, o2, o3 }, {o1 < o3} 〉
True concurrency semantics
E.g. o2 can temporally overlap with o1 and o3
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Plan generated via unfolding

Theorem

A plan π, extracted from Unf≺(NP) as described, is a solution
plan for planning problem P

Let us refer to this simply as a plan obtained via unfolding.
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Concurrency Semantics

What is the concurrency semantics of plans synthesised
using this approach?

What are the restrictions on two actions executing
concurrently?

How does it compare to the standard notion of concurrency
induced by Smith and Weld’s [1999] definition of
independent actions?
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Independent Actions

Two actions are independent iff

1 Their effects don’t contradict

2 Their preconditions don’t contradict

3 The preconditions for one aren’t clobbered by the effect of
the other.

A plan respects independence iff for any two non-independent
actions a and b the plan ensures that either a < b or b < a.

Obviously any totally ordered plan respects independence

Theorem

A plan generated via unfolding respects independence.
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Stronger than Independence...

Moreover, planning via unfolding enforces stronger restrictions
on when two actions can be executed concurrently:

Operators in O with common postcondition v = v1 can’t
temporally overlap if their common effect changes the
current state.

Occurs through 1-safety transformation of operators

Value of v not specified in the preconditions
Create set of operators to specify the value of v in the
preconditions,
May be that original operators are independent but
translated ones are not.

.
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Strongly Independent Actions

Two actions are strongly independent in state S iff

1 They are independent

2 Any postcondition p common to both actions already holds
true in S.

A variable is locked in shared mode if the action does not
change its value (read only access)

A variable is locked in exclusive mode if its value is to be
changed by the action (read and write access)

Strong independence reduces to independence if operators are
originally 1-safe.
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Strongly Independent Plan

Let state(π, S0, a) denote the set of states in which
action a may potentially be executed when a linearisation of
plan π is executed in state S0.

A plan π respects strong independence for state S0 iff

For any two different action (instances) a and b which are
not strongly independent for some state S ∈state(π, S0,
a), the plan ensures that either a < b or b < a
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Unfolding Synthesizes Strongly Independent Plan

Theorem

A plan generated via unfolding respects strong independence
for the initial state of the planning problem.

Are solution plans over-constrained wrt these restrictions?

Any totally ordered plan will respect strong independence.
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Plan Flexibility

Partially-ordered plans are in principle more flexible in that
they may avoid over-committing to action orderings

Scheduler can have alternative execution realizations to
choose from

Sequences in the case of interleaved concurrency
Scheduler may be used to post-process or adapt a plan for
actions with deadlines and earliest release times

Execution time may be reduced when actions can be
executed in parallel
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Plan De/reordering

Can we remove (deorder) or change (reorder) the constraints
from a plan synthesized via the unfolding approach?

catch-train < cook-dinner < eat-dinner < read-paper

⇓ deorder - remove constraints

catch-train < cook-dinner < {eat-dinner, read-paper}

m reorder - change constraints

{catch-train, read paper} < cook-dinner < eat-dinner
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Plan validity w.r.t. Strong Independence

A partially ordered plan π is P-valid for planning problem P iff

All linearizations of π solve P, and

π respects strong independence for the initial state of P.

Theorem

Plans synthesized via the unfolding approach are P-valid.
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Minimal De/re-ordering

Consider plan π which is P-valid:

π is a minimal de/re-ordering wrt flexibility if you can’t
de/re-order it to reduce the number of constraints and
retain P-validity.

A plan is a minimal de/re-ordering wrt execution time if
you can’t de/re-order it to reduce the execution time and
retain P-validity.

[Backstrom 98] gave similar definitions in the context of plans
which respect independence.
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Optimality Guarantees (1/2)

Theorem

Any plan synthesized via the unfolding approach is a minimal
deordering wrt flexibility.

i.e. no constraint can be removed without rendering the
plan invalid.

Observe that a minimal deordering wrt flexibility is also a
minimal deordering wrt execution time.

Theorem

All solution plans which are minimally deordered wrt flexibility
exist in the unfolding space.

These results extend to all plans in the unfolding space (i.e.
not necessarily solutions)
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Directing the unfolding wrt time

Briefly...

Use a search strategy based on an order on events ≺time

that prefers histories with a faster execution time.

Use a search scheme based on a semi-admissible order on
events ≺, such that ≺time⇒≺
i.e. Direct the search using ≺time, but test termination
condition using ≺.

This search procedure will find the fastest plan in the
unfolding space, but what does this mean?
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Optimality Guarantees (2/2)

Theorem

If the unfolding is directed to prefer faster plans, then the plan
synthesized is a minimal reordering wrt execution time.

Reordering a plan to be optimal wrt execution time is (still)
NP-hard in the context of strong independence
requirements.
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Flexibility and Minimal Makespan

So how does planning via unfolding compare to the standard
notion of concurrency induced by Smith and Weld’s [1999]
definition of independent actions?

If the original operators are 1-safe then the unfolding space
consists of plans which are least-constrained wrt the
standard definition of independence.

This means a plan with minimum makespan, as defined by
Smith and Weld [1999], exists in the unfolding space and
can be obtained using an appropriate search procedure.

If the operators are not 1-safe, then the unfolding space may
contain “slower” (over-constrained) plans due to the
stronger restriction on when two actions can temporally
overlap.

We can guarantee, however, that these plans will be
least-constrained wrt strong independence.
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Part 3: General Petri Nets

In general (not 1-safe) Petri nets, places are unbounded
counters.

Petri nets have advantages in expressivity and modelling
convenience.
Questions of reachability, coverability, etc. are
computationally harder to answer, but still decidable.

Analysis methods for general Petri nets are often based on
ideas & techniques not common in planning:

Algebraic methods based on the state equation.
Rich literature on the study of classes of nets with special
structure.
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Recap: Petri Nets

A Petri net is a directed bipartite (multi-)graph, with nodes
P ∪ T divided into places and transitions.

F : (P × T ) ∪ (T × P )→ N denotes edge multiplicity.
As usual, for any n ∈ P ∪ T , •n = {n′ |F (n′, n) > 0} and
n• = {n′ |F (n, n′) > 0}.

A marking of the net is a mapping P → N, i.e., places are
unbounded counters.

A transition t is enabled, or firable, at marking m iff
m[i] ≥ F (pi, t), ∀i, and when fired leads to a marking m′

such that m′[i] = m[i]− F (pi, t) + F (t, pi), ∀i.
Notation: m [t〉m′ (t enabled at m: m [t〉 ).

m0 [t1〉m1 [t2〉m2 . . . [tn〉mn is a (valid) firing sequence.

Notation: m [t1, t2, . . . , tn〉mn.
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Modelling Planning Problems Using Counters

# in Room A # in Room B

Robby@A Robby@B

# held

# free

Gripper without Symmetries
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Gold Wood Peasant Supply

100

100

400

500
250

4

Part of the Wargus Domain (Chan et al. 2007)
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Ordinary Petri Nets

A Petri net where all edges have multiplicity 1 is ordinary.

Any net can be transformed into an equivalent ordinary net:

Change p t
2k(+1)

into

p t′
k

p′ t

k(+1)

repeatedly until all edges have multiplicity 1 (and do

likewise with t p
2k(+1)

).

The transformation increases net size by O(log(F (p, t))),
and hence is linear space.
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Vector Notation for Nets and Markings

Marking: |P |-dimensional vector m ∈ N|P |.
Definition: m ≥m′ iff m[i] ≥m′[i], ∀i.
m > m′ iff m ≥m′ and ∃j such that m[j] > m′[j].
Two vectors associated with transition t:

c−(t) =

 F (p1, t)
...

F (p|P |, t)

 c+(t) =

 F (t, p1)
...

F (t, p|P |)


t is enabled at m iff m ≥ c−(t);
c(t) = c+(t)− c(t)−(t) is the effect of t: firing t leads to
m′ = m + c(t).

C =
(
c(t1) c(t2) . . . c(t|T |)

)
is the incidence matrix.

r(p): row of C corresponding to place p.
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Examples

p1 t1

p2

p3

t2

t3

C =

 −1 0 1
1 −1 0
1 1 −1



p1

p2

p3

p4

p5

p6

p7

t1

t2

t3

t4

t5

t6

C =



1 −1 0 0 0 0
−1 1 1 −1 0 0

1 0 0 0 −1 0
0 1 0 0 0 −1
0 0 −1 1 −1 1
0 0 0 0 1 −1
−1 0 0 0 0 1
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Representation Ambiguity and Pure Nets

c(t)[i] = 0:

t

pi

or

t

pi

?

A pure Petri net has no “self loops”, i.e.,
•t ∩ t• = ∅ for every transition t.

For a pure net, the incidence matrix C
unambiguously defines the net.

Any net can be transformed into a pure
net by splitting transitions with loops in
two:

ta p′ tb

pi

The transformation is linear space.
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Decision Problems for Marked Nets

Given a marked net (N,m0):

Reachability: Is there a firing sequence that ends with
given marking m?
Coverability: Is there a firing sequence that ends with a
marking m′ such that m′ ≥m?
Boundedness: Does there exist a (finite) K such that for
every reachable marking m, m ≤ K?

Note: The state space of (N,m0) is finite iff (N,m0)
is bounded.

Coverability and boundedness are EXPSPACE-complete.

Reachability is EXPSPACE-hard, but existing algorithms are
non-primitive recursive (i.e., have unbounded complexity).
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Executability: Is there a firing sequence valid at m0 that
includes transition t?

Executability reduces to coverability: t is executable iff
c−(t) is coverable.
and vice versa: reduction using a “goal transition”.

Repeated Executability: Is there a firing sequence in
which a given transition (or set of transitions) occurs an
infinite number of times?

Reachable Deadlock: Is there a reachable marking m at
which no transition is enabled?

Liveness: Absence of reachable deadlocks.

...and many more (e.g., existence of home states, fairness).
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Equivalence Problems

Equivalence: Given two different marked nets, (N1,m1)
and (N2,m2), with equal (or isomorphic) sets of places, do
they have the equal sets of reachable markings?

Trace Equivalence: Given two different marked nets,
(N1,m1) and (N2,m2), with equal (or isomorphic) sets of
transitions, do they have equal sets of valid firing sequences?

Language Equivalence: Trace equivalence under mapping
of transitions to a common alphabet.

Bisimulation: Equivalence under a bijection between
markings.

In general, equivalence problems are undecidable.
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Structural Properties & Decision Problems

Properties of N independent of initial marking m0.

Invariance:

A vector y ∈ N|P | is a P-invariant of N iff for any
markings m [· · ·〉m′, yTm = yTm′.

A P-invariant is a linear combination of place markings
that is invariant under any transition firing.
In Germany, S-invariant; also called P-semiflow.

A vector x ∈ N|T | is a T-invariant of N iff for any firing
sequence s such that n(s) = x and any marking m where
s is enabled, m [s〉m.

A T-invariant is a multiset of transitions whose
combined effect is zero.
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Structural Liveness: It there a marking m such that
(N,m) is live?

Structural Boundedness: Is (N,m) bounded for every
finite initial marking m?

Repetitiveness: Is there a marking m and a firing sequence
s valid at m such that a given transition / set of transitions
appears infinitely often in s?

Deciding structural properties can be easier than the
corresponding problem for a marked net.
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Complexity: Implications Of and For Expressivity

Bounded Petri nets are expressively equivalent to
propositional STRIPS/PDDL.

Reachability is PSPACE-complete for both.
Note: The “direct” STRIPS→PN translation can blow up
exponentially.

General Petri nets are stictly more expressive than
propositional STRIPS/PDDL.

General Petri nets are at least as expressive as “lifted”
(finite 1st order) STRIPS/PDDL.

Probably also strictly more expressive, but no proof yet.
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A k-counter machine (kCM) is a deterministic finite
automaton with k (positive) integer counters.

Can increment/decrement (by 1), or reset, a counter.
Conditional jumps on ci > 0 or ci = 0.

Note the differences:

A kCM is deterministic: starting configuration determines
a unique execution; a Petri net has choice.
A kCM can branch on ci > 0/ci = 0; a Petri net can only
precondition transitions on m(pi) > 0.

A kCM is M -bounded iff no counter ever exceeds M .
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An n-size Turing machine can be simulated by an O(n)-size
2CM (if properly initialised).

Halting (i.e., reachability) for unbounded 2CMs is
undecidable.
Petri nets are strictly less expressive than unbounded
2CMs.

An n-size and 2n space bounded TM can be simulated by
an O(n)-size 22n

-bounded 2CM.

A 22n
-bounded n-size 2CM can be (non-deterministically!)

simulated by an O(n2)-size Petri net.

Reachability for Petri nets is DSPACE(2
√

n)-hard.
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The Coverability Tree Construction

The coverability tree of a marked net (N,m0) is an explicit
representation of reachable markings – but not exactly the
set of reachable markings.

Constructed by forwards exploration:

Each enabled transition generates a successor marking.
If reach m such that m > m′ for some ancestor m′ of m,
replace m[i] by ω for all i s.t. m[i] > m′[i].

m′ [s = t1, . . . , tl〉m, and since m ≥m′, m [s〉m′′
such that m′′ ≥m; sequence s can be repeated any
number of times.
ω means “arbitraribly large”.

Also check for regular loops (m = m′ for some ancestor
m′ of m).

Every branch has finite depth.
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Example

p1

t1

p2

p3

t2

t3

(1 0 0)

(0 1 1)
t1

(0 0 2)

t2

(1 0ω)
t3

(0 1ω)

t1

(0 0ω)

t2

(1 0ω)
t3

(1ω ω)t3

. . .

t1

. . .
t2

(ω ω ω)

t3

. . .t3

(1ω 0)t3

. . .

t1

. . .

t2
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Uses For The Coverability Tree

Decides coverability:

m is coverable iff m ≤m′ for some m′ in the tree (where
n < ω for any n ∈ N).
If m is coverable, there exists a covering sequence of
length at most O(2n).

Decides boundedness:

(N,m0) is unbounded iff there exists a self-covering
sequence: m0 [s〉m [s′〉m′ such that m′ > m.
I.e., (N,m0) is unbounded iff ω appears in some marking
in the coverability tree.
If (N,m0) is unbounded, there exists a self-covering
sequence of length at most O(2n).

In general, does not decide reachability.

Except if (N,m0) is bounded.
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The State Equation

The firing count vector (a.k.a. Parikh vector) of a firing
sequence s = ti1 , . . . , til is a |T |-dimensional vector
n(s) = (n1, . . . , n|T |) where ni ∈ N is the number of
occurrences of transition ti in s.

If m0 [s〉m′, then

m′ = m0 + c(ti1) + . . .+ c(til) = m0 +
∑

j=1...|T |

c(tj)n(s)[j],

i.e., m′ = m0 + Cn(s).

m is reachable from m0 only if Cn = (m−m0) has a
solution n ∈ N|T |.
This is a necessary but not sufficient condition.

A solution n is realisable iff n = n(s) for some valid firing
sequence s.
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The State Equation & Invariance

y ∈ N|P | is a P-invariant iff it is a solution to yTC = 0.

yTm = yTm0 for any m reachable from m0.

x ∈ N|T | is a T-invariant iff it is a solution to Cx = 0.

m [s〉m whenever n(s) = x and s enabled at m.

Any (positive) linear combination of P-/T-invariants is a
P-/T-invariant.

The reverse dual of a net N is obtained by swapping places
for transitions and vice versa, and reversing all arcs.

The incidence matrix of the reverse dual is the transpose
of the incidence matrix of N .
A P-(T-)invariant of N is a T-(P-)invariant of the reverse
dual.
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Example: P-Invariants



1
1
0
0
1
1
0



T 

1 −1 0 0 0 0
−1 1 1 −1 0 0

1 0 0 0 −1 0
0 1 0 0 0 −1
0 0 −1 1 −1 1
0 0 0 0 1 −1
−1 0 0 0 0 1


=



0
0
0
0
0
0
0



T



1
0
1
1
0
1
2



T 

1 −1 0 0 0 0
−1 1 1 −1 0 0

1 0 0 0 −1 0
0 1 0 0 0 −1
0 0 −1 1 −1 1
0 0 0 0 1 −1
−1 0 0 0 0 1


=



0
0
0
0
0
0
0



T

p1

p2

p3

p4

p5

p6

p7

t1

t2

t3

t4

t5

t6
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Example: T-Invariants



1 −1 0 0 0 0
−1 1 1 −1 0 0

1 0 0 0 −1 0
0 1 0 0 0 −1
0 0 −1 1 −1 1
0 0 0 0 1 −1
−1 0 0 0 0 1




0
0
1
1
0
0

 =


0
0
0
0
0
0




1 −1 0 0 0 0
−1 1 1 −1 0 0

1 0 0 0 −1 0
0 1 0 0 0 −1
0 0 −1 1 −1 1
0 0 0 0 1 −1
−1 0 0 0 0 1




1
1
0
0
1
1

 =


0
0
0
0
0
0



p1

p2

p3

p4

p5

p6

p7

t1

t2

t3

t4

t5

t6
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The support of a P-/T-invariant y is the set {i |y[i] > 0}.
An invariant has minimal support iff no invariants support is
a strict subset.

The number of minimal support P-/T-invariants of a net
is finite, but may be exponential.
All P-/T-invariants are (positive) linear combinations of
minimal support P-/T-invariants.

A P-/T-invariant y is minimal iff no y′ < y is invariant.

A minimal invariant need not have minimal support.
For each minimal support, there is a unique minimal
invariant.

Algorithms exist to generate all minimal support
P-/T-invariants of a net.
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The State Equation & Structural Properties

N is structurally bounded iff yTC ≤ 0 has a solution
y ∈ N|P | such that y[i] ≥ 1 for i = 1, . . . , |P |.

y is a linear combination of all place markings that is
invariant or decreasing under any transition firing.

N is repetitive w.r.t. transition t iff Cx ≥ 0 has a solution
x ∈ N|T | such that x[t] > 0.

x is a multiset of transitions, including t at least once,
whose combined effect is zero or increasing.
Can always find some initial marking m0 from which x is
realisable.



Introduction

1-Safe Petri
Nets: Basic
Definitions

Unfolding

Planning via
Unfolding &
Concurrency

General Petri
Nets

Notation,
Modelling &
Expressivity

Analysis
Methods

Special Classes
of Nets

Conclusion

Reachability

Decidability of the (exact) reachability problem for general
Petri nets was open for some time.

Algorithm proposed by Sacerdote & Tenney in 1977
incorrect (or gaps in correctness proof).
Correct algorithm by Mayr in 1981.
Simpler correctness proof (for essentially the same
algorithm) by Kosaraju in 1982.

Other algorithms have been presented since.

All existing algorithms have unbounded complexity.

Fun fact: A 2-EXP algorithm was proposed in 1998, but
later shown to be incorrect.
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Reachability: Preliminaries

m is semi-reachable from m0 iff there is a transition
sequence s = ti1 , . . . , tin such that
m = m0 + c(ti1) + . . .+ c(tin).

s is does not have to be valid (firable) at m0.
m is semi-reachable from m0 iff Cn = (m−m0) has a
solution n ∈ N|T |.

If m is semi-reachable from m0, then m + a is reachable
from m0 + a for some sufficiently large a ≥ 0.
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A controlled net is a pair of a marked net
(N = 〈P, T, F 〉,m0) and an NFA (A, q0) over alphabet T .

A defines a (regular) subset of (not necessarily firable)
transition sequences.
Define reachability/coverability/boundedness for (N,m0)
w.r.t. A in the obvious way.
The coverability tree construction is easily modified to
consider only sequences accepted by A.

The reverse of N , NRev (w.r.t. A) is obtained by reversing
the flow relation (and arcs in A).

C(NRev) = −C(N).



Introduction

1-Safe Petri
Nets: Basic
Definitions

Unfolding

Planning via
Unfolding &
Concurrency

General Petri
Nets

Notation,
Modelling &
Expressivity

Analysis
Methods

Special Classes
of Nets

Conclusion

Reachability: A Sufficient Condition

In (N,m0) w.r.t. (A, q0), if

(a) (m∗, q∗) is semi-reachable from (m0, q0),
(b) (m0 + a, q0) is reachable from (m0, q0), for a ≥ 1,
(c) (m∗ + b, q∗) is reachable from (m∗, q∗) in NRev w.r.t. A,

for b ≥ 1,
(d) (b− a, q∗) is semi-reachable from (0, q∗),

then (m∗, q∗) is reachable from (m0, q0).

The conditions above are effectively checkable:

(b) & (c) by coverability tree construction,
(a) & (d) through the state equation.
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(m0, q0)

+a

(m0 + ka, q0)

+a
(m∗ + ka, q∗)

b− a
(m∗ + kb, q∗)

b− a
−b

(m∗, q∗)

−b
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Reachability: The Mayr/Kosaraju Algorithm

Consider a controlled net (N,A) of the form,

A1 A2 Ak

q0

m0 mout
1 min

2 mout
2 min

k

q∗

m∗

ti1

with constraints min/out
i [j] = x

i/o
i,j or min/out

i [j] ≥ yi/o
i,j ≥ 0.

If the sufficient reachability condition holds for each
(min

i , q
in
i ) and (mout

i , qout
i ) w.r.t Ai, then (m∗, q∗) is

reachable from (m0, q0).

Let ∆(Ai) = {m |m = Cn(s), s ∈ L(Ai)}.
Let Γ = {min

i ,m
out
i ,ni |mi+1

in −mi
out =

c(tii),mi
out −mi

in ∈ ∆(Ai), and constraints hold}.
If (m0, q0) [s〉 (m∗, q∗), s defines an element in Γ.
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Γ is a semi-linear set: consistency (non-emptiness) is
decidable via Pressburger arithmetic.

If Γ is consistent, but the sufficient condition does not hold
in some Ai, then Ai can be replaced by a new “chain” of
controllers, A1

i , . . . , A
li
i , each of which is “simpler”:

more equality constraints (min/out

il
= x

i/o

il,j
), or

same equality constraints and smaller automaton.

There can be several possible replacements
(non-deterministic choice).

If (m∗, q∗) is not reachable from (m0, q0), every choice
(branch) eventually leads to an inconsistent system.
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FSMs, Marked Graphs & Free Choice Nets

An ordinary Petri net with |•t| = |t•| = 1 for each transition
t is a P-graph, or finite state machine.

Every P-graph is structurally bounded (# of tokens is
constant).

An ordinary Petri net with |•p| = |p•| = 1 for each place p is
a T-graph, or marked graph.

Several properties of marked graphs (e.g., liveness,
boundedness, 1-safety) are decidable in polynomial time.

An ordinary Petri net such that |p•| ≤ 1 or •(p•) = {p} for
each place p, is a free choice net.
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Characterisation by Derivation Rules

Initial net:

Rule #1: Add a new place p′ with r(p′) =
∑

p∈P λpr(p)
and |p′•| = 1.

Rule #2: Replace place p with a connected P-graph N ′,
and connect each input and output of p to at least one
place in N ′.

Must have |•p| > 1 and |p•| > 1, except for initial net.
Every place p′ ∈ N ′ must appear on a path in the
resulting net that enters and leaves N ′.

Theorem: The class of nets obtained by applying the above
rules to the initial net is exactly the class of structurally live
and structurally bounded free choice nets.
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Acyclic Nets

For an acyclic net, every
solution to Cn = (m−m0) is
realisable.

A minimum cost firing
sequence can be found by ILP
(and lower-bounded by LP).

Removing transition input arcs
is a relaxation.

We have a new heuristic!

tx px

p1 t1 p′1

p2 t2 p′2

...
...

...

pn tn p′n

Minimum cost: 2n.
LP relaxation: 2n?
h+: n+ 1.
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Summary & Conclusions

1-Safe Petri nets: Intuitive, graphical modelling formalism,
closely related to planning.

Unfolding: Search that combines partial-order planning with
state-space heuristics.

Petri net theory often uses different tools than planning:

Algebraic methods (based on the state equation).
Characterisation and study of classes of nets with special
structure.

Planning also has tools applicable to Petri nets:

Domain-independent search heuristics.
What else?
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The Many Things We Haven’t Talked About

Extensions of basic Place-Transition nets:

Read arcs, reset arcs and inhibitor arcs.
Colored Petri nets, timed nets, stochastic nets, etc.

Other properties of Petri nets (and related decision
problems):

Model checking (tense logics, process calculi).
Language (trace) properties.

Heaps more results concerning different Petri net subclasses.
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